CN107622521B - 用于处理三维图像的方法和装置 - Google Patents

用于处理三维图像的方法和装置 Download PDF

Info

Publication number
CN107622521B
CN107622521B CN201710117546.9A CN201710117546A CN107622521B CN 107622521 B CN107622521 B CN 107622521B CN 201710117546 A CN201710117546 A CN 201710117546A CN 107622521 B CN107622521 B CN 107622521B
Authority
CN
China
Prior art keywords
reference layer
layer
color data
layers
unselected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710117546.9A
Other languages
English (en)
Other versions
CN107622521A (zh
Inventor
金允泰
成基荣
李泓锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN107622521A publication Critical patent/CN107622521A/zh
Application granted granted Critical
Publication of CN107622521B publication Critical patent/CN107622521B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/268Holographic stereogram
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/15Processing image signals for colour aspects of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/189Recording image signals; Reproducing recorded image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/10Modulation characteristics, e.g. amplitude, phase, polarisation
    • G03H2210/13Coloured object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • G03H2210/333D/2D, i.e. the object is formed of stratified 2D planes, e.g. tomographic data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/44Digital representation
    • G03H2210/441Numerical processing applied to the object data other than numerical propagation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/45Representation of the decomposed object
    • G03H2210/454Representation of the decomposed object into planes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/10Shape or geometry
    • G03H2225/133D SLM
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/60Multiple SLMs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/008Cut plane or projection plane definition
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Holo Graphy (AREA)

Abstract

提供了一种用于处理三维图像的方法和装置。所述方法包括:接收原始全息图像的多个层的原始颜色数据和原始深度数据,从所述多个层当中选择参考层,将基于使用未选择的层和参考层的原始深度数据确定的未选择的层的调整颜色数据映射到每个参考层,以及通过使用参考层的原始颜色数据和已经映射到参考层的调整颜色数据来生成计算机生成的全息图图像。

Description

用于处理三维图像的方法和装置
技术领域
与示例性实施例一致的方法和装置涉及处理三维(3D)图像,更具体地,涉及处理计算机生成的全息图(CGH)图像。
背景技术
随着3D图形技术的发展,已经产生了用于显示3D图像的许多立体图像。然而,使用3D图像观看3D电影可能给用户带来各种问题,诸如快速眼睛疲劳或视野的限制。为了克服此类问题,使用全息图实现3D图像最近引起了很大的关注。全息图控制光的振幅和相位以在3D空间上呈现(render)对象,而几乎不受视野或眼睛疲劳的限制。因此,已经积极地进行了用于基于诸如计算机生成的全息图(CGH)的数字全息图的生成来实时再现高分辨率全息图的技术的研究。
发明内容
示例性实施例提供了一种用于处理3D图像的方法和装置。其他方面将在下面的描述中部分地进行阐述,并且部分地将从描述中显而易见,或者可以通过实施所给出的示例性实施例来习得。
根据示例性实施例的一方面,提供了一种用于处理3D图像的方法,所述方法包括:接收与原始全息图像有关的多个层中的每一层的原始颜色数据和原始深度数据,从所述多个层当中选择至少一个参考层,将基于未选择的层和至少一个参考层的原始深度数据确定的所述未选择的层的调整颜色数据映射到所述至少一个参考层的每一个参考层,以及基于所述至少一个参考层的原始颜色数据和所映射的调整颜色数据生成计算机生成的全息图(CGH)图像。
映射调整颜色数据可以包括基于未选择的层和至少一个参考层的每一个参考层之间的相应距离,确定与至少一个参考层的每一个参考层相对应的包括在未选择的层中的像素的相应调整颜色值,以及将所确定的像素的调整颜色值映射到至少一个参考层的每一个参考层。
确定调整颜色值可以包括通过将与每个相应距离对应的相应权重值应用于包括在未选择的层中的像素的原始颜色值来确定相应调整颜色值。
可以与未选择的层的对应像素的相应深度和至少一个参考层的深度之间的差成反比例地设置每个相应权重值。
选择至少一个参考层可以包括从所述多个层当中选择至少一个参考层,以使得所述至少一个参考层的邻近参考层之间的相应间隔是相等的间隔。
选择至少一个参考层可以包括从所述多个层当中选择至少一个参考层,以使得所述至少一个参考层的邻近参考层之间的相应间隔随着所述至少一个参考层至用户的视点的对应距离减小而变窄。
映射调整颜色数据可以包括将调整颜色数据映射到至少一个参考层的每一个参考层。
映射调整颜色数据可以包括将调整颜色数据映射到与未选择的层邻近的两个参考层。
生成CGH图像可以包括:对于至少一个参考层中的每一个,执行与对应的至少一个参考层的原始颜色数据以及映射到对应的至少一个参考层上的调整颜色数据有关的相应频率变换,将每个相应频率变换的相应结果编码为相应整数值,以及基于所编码的整数值生成CGH图像。
根据另一示例性实施例的一方面,提供了一种其上记录有用于在计算机上执行该方法的程序的非暂时性计算机可读记录介质。
根据另一示例性实施例的一方面,提供了一种用于处理三维(3D)图像的装置,所述装置包括存储器,所述存储器被配置为存储与原始全息图像有关的多个层中的每一层的原始颜色数据和原始深度数据,以及处理器,所述处理器被配置为从所述存储器接收原始颜色数据和原始深度数据,从所述多个层当中选择至少一个参考层,将基于所述未选择的层和所述至少一个参考层的原始深度数据确定的未选择的层的调整颜色数据映射到至少一个参考层的每一个上,以及基于所述至少一个参考层的原始颜色数据和所映射的调整颜色数据生成计算机生成的全息图(CGH)图像。
所述处理器可进一步被配置为基于所述未选择的层与所述至少一个参考层的每一个参考层之间的相应距离来确定与所述至少一个参考层的每一个参考层相对应的包括在所述未选择的层中的像素的相应调整颜色值,并且将所确定的像素的调整颜色值映射到所述至少一个参考层的每一个参考层。
所述处理器可进一步被配置为通过将对应于每一个相应距离的相应权重值应用于包括在未选择的层中的像素的原始颜色值来确定所述相应调整颜色值。
可以与未选择的层的对应像素的相应深度和至少一个参考层的深度之间的差成反比例地设置每个相应权重值。
所述处理器还可以被配置为从所述多个层当中选择所述至少一个参考层,以使得所述至少一个参考层的邻近的参考层之间的相应间隔是相等的间隔。
所述处理器还可以被配置为从所述多个层当中选择所述至少一个参考层,以使得所述至少一个参考层的邻近参考层之间的相应间隔随着所述至少一个参考层至用户的视点的对应距离减小而变窄。
处理器还可以被配置为将调整颜色数据映射到至少一个参考层的每一个参考层。
处理器还可以被配置为将调整颜色数据映射到与未选择的层邻近的两个参考层。
处理器还可以被配置为,对于至少一个参考层的每一个,执行与对应的至少一个参考层的原始颜色数据以及映射到对应的至少一个参考层的调整颜色数据有关的相应频率变换,将每个相应频率变换的结果编码成相应的整数值,以及基于编码的整数值生成CGH图像。
所述处理器还可以被配置为单独地生成用于显示器的要显示在至少两个面板中的每一个面板上的多层映射图像,在所述显示器上堆叠所述至少两个面板,并且在空间上不同的位置处形成图像,以及基于至少一个参考层的原始颜色数据和映射的调整颜色数据来生成多层映射图像。
附图说明
通过结合附图对示例性实施例的以下描述,上述和/或其他方面将变得清楚和更容易理解,在附图中:
图1是用于描述根据示例性实施例的通过使用计算设备显示全息图图像的视图;
图2是根据示例性实施例的计算设备的硬件配置的框图;
图3是根据示例性实施例的处理器的详细硬件配置的框图;
图4是用于描述根据示例性实施例的将未选择的层的像素映射到参考层上的视图;
图5是用于描述根据示例性实施例的用于确定调整颜色数据的权重值的视图;
图6是用于描述根据示例性实施例的距离和权重值之间的反比关系的视图;
图7和图8是根据示例性实施例的用于将其中未选择的层被映射到参考层(即,多层映射)的情况与其中不执行多层映射的情况进行比较的视图;
图9是用于描述根据另一示例性实施例的将未选择的层的像素映射到参考层上的视图;
图10和图11是用于描述根据示例性实施例的CGH图像的显示方案的视图;以及
图12是根据示例性实施例的用于处理3D图像的方法的流程图。
具体实施方式
现在将详细参考示例性实施例,其示例在附图中示出,其中相同的附图标记始终表示相同的元件。在这点上,示例性实施例可以具有不同的形式,并且不应被解释为限于本文所阐述的描述。因此,下面仅通过参考附图来描述示例性实施例,以解释各方面。如本文所使用的,术语“和/或”包括一个或多个相关所列项目的任何和所有组合。诸如“至少一个”的表述在先于(preceding)元件列表之时修饰整个元件列表,并且不修饰列表的各个元件。
尽管在考虑相对于示例性实施例的功能的情况下在本公开中使用的术语选择了目前普遍使用的一般术语,但是术语可以根据本领域普通技术人员的意图、司法先例或新技术的引进而改变。此外,在具体情况下,申请人可以自愿选择术语,并且在这种情况下,术语的含义在本公开的相应描述部分中被公开。因此,本公开中使用的术语不应该由术语的简单名称来定义,而是由术语的含义和贯穿本公开的内容来定义。
在示例性实施例的描述中,当部件“连接”到另一部件时,该部件不仅可以直接连接到另一部件,而且还可以电连接到另一部件,在该部件和另一部件之间插入另一设备。如果假定某个部件包括某个组件(component),则术语“包括”意味着相应的组件可以进一步包括其他组件,除非写入与相应组件相反的特定含义。在示例性实施例中使用的诸如“单元”或“模块”的术语指示用于处理至少一个功能或操作的单元,并且可以以硬件、软件或硬件和软件的组合来实现。
如关于示例性实施例所使用的诸如“包括(comprise)”或“包含(include)”的术语不应被解释为包括本文所描述的所有元件或操作,而是应当被解释为排除一些元件或操作或者进一步包括附加的元件或操作。
示例性实施例的以下描述不应被解释为限制示例性实施例的范围,并且本领域的普通技术人员可以容易地推导出的内容应当被解释为落入示例性实施例的范围内。在下文中,将参照附图详细描述用于说明的示例性实施例。
图1是用于描述根据示例性实施例的通过使用计算设备显示全息图图像的视图。
参考图1,计算设备10通过对从外部源输入或存储在计算设备10中的原始全息图像(holographic image)执行CGH处理来生成计算机生成的全息图(CGH)图像30,并显示所生成的CGH图像30以使用户40能够在虚拟3D空间上看到所生成的CGH图像30。这里,CGH处理可以被定义为包括直到由计算设备10生成CGH图像30为止的一系列处理。CGH图像30可以包括作为全息图播放的静止图像或者运动图像。也就是说,CGH图像30可以包括平面(二维:2D)全息图、体积(三维:3D)全息图等。
全息图是一种3D空间表达技术,通过该技术调整光的振幅和相位,以便在3D空间上再现对象而不受视野和立体疲劳(cubic fatigue)的限制。因此,已经开发了许多设备,该设备通过使用能够同时控制光的振幅和相位的复杂空间光调制器(SLM)来实时实现高分辨率全息图。可以通过使用对象波和参考波之间的干涉图案在3D空间上显示全息图。近来,已经使用了通过处理用于播放全息图运动图像的干涉图案而在平板显示器上提供全息图的CGH技术。
数字全息图生成方法,例如CGH技术通过近似光学信号并计算使用数学运算生成的干涉图案来生成全息图。数字全息图生成方法基于3D对象包括一组3D点的特征来计算与3D对象的所有3D点中的每一个相对应的点全息图,从而表示完整的全息图。
从原始全息图像生成CGH图像30可以通过包括各种运算的CGH处理来执行。具体地,CGH处理可以包括执行用于获得3D空间上的每个全息图点的快速傅里叶变换(FFT)。对CGH处理的计算量或速度具有最大影响的因素可以是例如FFT运算。在CGH处理中,必须对每层的每个像素执行FFT。因此,随着包括在原始全息图像中的层的数量增加,FFT不可避免地重复多次,从而增加了用于CGH处理的计算量并降低了用于CGH处理的计算速度。因此,如果可以针对层有效地执行FFT,则可以以相对高的速度完成CGH处理。
计算设备10通过选择包括在原始全息图像中的多个层21(例如,256个8位层)中的一些来执行层量化。所选择的层对应于参考层23(例如,8个层)。
如果针对参考层23中的每个的颜色数据和深度数据被用于生成CGH图像30,并且针对多个层21当中的未被选为参考层23的未选择的层的颜色数据和深度数据不用于生成CGH图像30,则可以减少CGH处理的计算量,并且可以提高CGH处理的计算速度,从而导致CGH图像30的显示质量的劣化。
计算设备10通过使用参考层23执行CGH处理,以减少CGH处理的计算量并提高CGH处理的计算速度,同时保持原始全息图像的显示质量,并且同时,考虑未选择的层的颜色数据和深度数据,以便执行CGH处理。
图2是根据示例性实施例的计算设备的硬件配置的框图。
参考图2,计算设备10是被配置用于处理3D图像(例如,全息图像等)的设备,其可以包括存储器110、处理器120、显示器130和接口140。图2中所示的计算设备10被示为包括与示例性实施例相关联的元件。因此,本领域的普通技术人员将理解,除了图2中所示的元件之外的通用元件,也可以包括在计算设备10中。
计算设备10可以是但不限于台式计算机、膝上型计算机、智能电话、个人数字助理(PDA)、便携式媒体播放器、视频游戏控制台、电视(TV)机顶盒、平板设备、电子书(e-book)阅读器、可穿戴设备等等。在这个方面,计算设备10的类别可以包括各种设备中的任何设备。
处理器120是控制计算设备10的总体操作和功能的硬件组件。例如,处理器120可以驱动操作系统(OS),调用用于CGH处理的图形应用编程接口(API)并执行图形驱动程序。处理器120可以执行各种应用中的任何应用,例如全息图播放应用、网络浏览应用、游戏应用、视频应用等等。
处理器120执行整体CGH处理,用于从多个层21当中选择参考层23并通过使用所选择的参考层23生成CGH图像30。处理器120可以用各种类型中的任一种来实现,诸如中央处理单元(CPU)、图形处理单元(GPU)、应用处理器(AP)等。
存储器110是被配置为存储在计算设备10中处理的各种数据的硬件组件,并且存储器110存储由处理器120处理或要处理的数据或经由接口140接收的数据。例如,存储器110可以存储与原始全息图像相关的数据,例如,包括在原始全息图像中的多个层21的颜色数据和深度数据。存储器110存储映射到用于处理器120的CGH处理的参考层23上的数据,并且存储通过CGH处理计算的GFT运算结果(特别是FFT运算结果)。
存储器110可以包括诸如动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)等的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、光盘(CD)-ROM、蓝光或其他光盘储存器(optical disk storage)、硬盘驱动器(HDD)、固态驱动器(SSD)或闪存中的任何一种,并且还可以包括其他可由计算设备10访问的外部储存设备。
显示器130是能够在3D空间上显示CGH图像30的硬件组件。显示器130可以包括用于诸如SLM的全息图的模块,并且可以包括诸如液晶显示器(LCD)、有机发光二极管(OLED)显示器等的各种类型的显示面板中的任何一种。显示器130可以具有其中两个或更多个焦平面位于空间上分离的不同位置的结构。换句话说,显示器130可以是其中堆叠两个或更多个透明显示器的多焦平面显示器。也就是说,显示器130可以包括用于显示CGH图像30的各种模块和组件。
接口140可以被实现为用于计算设备10与其他外部设备通信的有线/无线网络接口的硬件组件。接口140从诸如另一设备的外部服务器接收要转换成CGH图像30的原始全息图像。接口140将与CGH图像30相关的数据发送到外部服务器或另一设备,以使得CGH图像30在其他设备上是可显示或可再现(reproducible)的。
图3是根据示例性实施例的处理器的详细硬件配置的框图。
参考图3,处理器120可以包括层映射器121、频率变换器122、编码器123和CGH图像生成器124。图3所示的处理器120示为仅包括与示例性实施例相关联的元件,以防止示例性实施例的特性被模糊,因此处理器120可以进一步包括除了图3所示的元件之外的通用元件。层映射器121、频率变换器122、编码器123和CGH图像生成器124基于其功能由单独的独立名称分离,并且可以利用至少一个处理器120来实现。层映射器121、频率变换器122、编码器123和CGH图像生成器124中的每一个可以对应于包括在处理器120中的一个或多个处理模块(或子处理器)。层映射器121、频率变换器122、编码器123和CGH图像生成器124可以对应于基于它们的功能而分离的单独的软件算法单元。也就是说,在处理器120中,层映射器121、频率变换器122、编码器123和CGH图像生成器124的实现形式不限于特定形式。
层映射器121接收原始全息图像的多个层的原始颜色数据和原始深度数据。例如,原始全息图像可以包括8位,即256个层。对每个层,对应的原始颜色数据和原始深度数据被映射。
层映射器121从输入的原始全息图像的多个层当中选择一个或多个参考层。参考层的数量可以小于包括在原始全息图像中的层的总数。参考层的数量可以任意改变并且可以不固定。
层映射器121可以从多个层当中选择参考层,以使得参考层之间具有相等的间隔。层映射器121可以从多个层当中选择参考层,以使得当参考层变得更接近用户的视点时,参考层之间具有变窄的间隔。例如,如果包括在原始全息图像中的层的数量是256,则层映射器121可以选择每个第32层以选择总共8个参考层,而不限于该示例。
层映射器121将通过使用未选择的层和参考层的原始深度数据计算的未选择的层的调整颜色数据分别映射到参考层上。
更具体地,层映射器121基于未选择的层和参考层之间的相应距离,确定与参考层相对应的包括在未选择的层中的像素的调整颜色值。层映射器121将与距离对应的相应权重值应用到包括在未选择的层中的像素的原始颜色值,从而确定要映射到参考层的调整颜色值。距离是相对值,其是未选择的层的像素的深度和参考层的深度之间的距离。每个相应的权重值与未选择的层的像素的深度和参考层的深度之间的对应差成反比例地被设置。
层映射器121分别将确定的像素的调整颜色值映射到参考层。如此,处理器120将未选择的层的数据与参考层的数据重叠,而不是仅基于参考层执行CGH处理,从而将CGH图像的显示质量提高到相对接近原始全息图像的显示质量的水平。
作为映射方案,层映射器121可以将调整颜色数据映射到每个参考层,或者映射到与未选择的层邻近的两个参考层。也就是说,层映射器121的映射方案不特别地限于特定方案。
对于每个参考层,频率变换器122相对于参考层的原始颜色数据和映射到参考层的调整颜色数据执行相应的频率变换。作为频率变换的结果,频率变换器122获得与相应参考层相对应的复数值。因此,对应于频率变换结果的复数值反映每个参考层的原始颜色数据的特性和映射到参考层的调整颜色数据的特性。频率变换器122将对应于每个参考层的复数值传输到存储器110,并且存储器110为每个参考层存储复数值。
频率变换器122通过使用与包括在参考层中的像素相关的坐标数据((x,y)数据)、RGB颜色数据或深度数据(z轴坐标数据)以及与映射到参考层的像素相关的调整坐标数据((x,y)数据)、调整RGB颜色数据或调整深度数据来执行广义菲涅耳变换(GFT)。GFT或菲涅耳变换是用于获得通过图像的菲涅耳衍射获得的衍射图像的分布的运算,并且是本领域普通技术人员所熟知的。
当执行GFT时,频率变换器122对包括在参考层中的像素和映射到参考层的像素执行FFT,并且作为结果,获得对应于每个像素的相应复数值。对应于每个像素的复数值可以包括关于菲涅耳衍射图案的振幅和相位的信息。
如上所述,由于与FFT相关联的计算,出现了CGH处理的最大计算负荷。在CGH处理中,对每层的每个像素执行FFT,使得随着层数的增加,计算量可能增加,并且计算速度可能降低。根据当前示例性实施例的处理器120针对一些层(即,参考层)而不是包括在输入的原始全息图像中的所有层执行FFT,从而更有效地执行CGH处理。此外,未选择的层的数据以及被选作参考层的层的数据被映射到参考层,从而减少CGH图像的显示质量伪影(displayquality artifact)。
编码器123将对应于相应参考层的频率变换结果(即,复数值)编码为整数值。编码器123将复数值编码为8位无符号整数值。例如,编码器123可以对于像素(x1,y1)编码“0.....1”,对于像素(x2,y1)编码“00..1..1”,对于像素(x3,y1)编码“11…00”,以及对于其他像素编码8位无符号整数。对应于相应像素的8位无符号整数是与CGH图像(图1的30)的相应像素相对应的值,并且可以是对应于CGH图像30的每个全息图点的值。
CGH图像生成器124通过使用编码的整数值生成CGH图像。以这种方式,当处理器120执行CGH处理时,原始全息图像可以被转换为CGH图像(图1的30)。这里,通过根据复杂SLM控制针对每个像素的相位值以及根据振幅型(amplitude)SLM控制针对每个像素的透射率,基于复数值,可以输出CGH图像。因此,编码的整数值可以用于控制用于输出CGH图像的复杂SLM和振幅型SLM。
图4是用于描述根据示例性实施例的将未选择的层的像素映射到参考层的视图。
参考图4,以下描述假设原始全息图像包括总共256个层,并且从所有参考层当中以相等的间隔选择8个参考层。因此,参考层1对应于原始层0,参考层2对应于原始层32,参考层3对应于原始层64,参考层4对应于原始层96,参考层5对应于原始层128。
层45未被选择作为参考层,以使得层45的像素的颜色数据被映射到8个参考层中的每一个。相比参考层1,层45更靠近参考层3,以使得层45的像素401的深度和参考层1的深度之间的差(即,距离)大于像素401的深度和参考层3的深度之间的差(即,距离)。因此,层45的像素401的颜色数据的较大部分应被映射到参考层3,而不是参考层1。
层75未被选择为参考层,以使得层75的像素的颜色数据被映射到8个参考层中的每一个。相比参考层5,层75更靠近参考层3,以使得层75的像素402的深度和参考层5的深度之间的差(即,距离)大于像素402的深度和参考层3的深度之间的差(即,距离)。因此,层75的像素402的颜色数据的更大部分将被映射到参考层3,而不是参考层5。
以这种方式,基于未选择的层和参考层之间的距离,将相应权重值应用于未选择的层的每个像素的颜色数据,以便确定未选择的层的像素的调整颜色数据,并且将所确定的调整颜色数据映射到每个参考层。
图5是用于描述根据示例性实施例的用于确定调整颜色数据的权重值的视图。
如上所述,每个相应的权重值可以与包括在未选择的层中的像素的深度和参考层的深度之间的对应差成反比例地被设置。
参考图5,计算当前层的像素501(即,未选择的层的像素)的深度与每个参考层的深度之间的差。在当前示例性实施例中,差将被定义为术语“距离”。距离1、距离2、距离3、距离4和距离5意味着当前层的像素501(未选择的层的像素)的深度与每个参考层(参考层1至参考层5中的每一个)的深度之间的差。基于距离的权重值可以被设置为由如下的等式(1)表示。
Figure BDA0001236047830000111
等式(1)用于计算在每个未选择的层中的权重值。参考等式(1),depthin(i,j)指示位置(i,j)处的深度值,并且layer_depth(k)指示第k个参考层的深度值。因此,在等式(1)中,|depthin(i,j)-layer_depth(k)|可以指示距离。此外,α指示常数值,n指示指数,并且Max_distance指示如等式(2)中定义的未选择的层的像素的深度值和参考层的深度值当中的最大值,其表示如下。
Max_distance=Max(|depthin(i,j)-layer_depth(k)|)
(2)
参考如下表示的等式(3),通过对未选择的层的像素的权重值求和,可以计算sum_wgt_layer(i,j)。
Figure BDA0001236047830000112
在等式(3)中,k指示参考层的索引值,N指示包括在原始全息图像中的所有层的数量。根据等式(1)、(2)和(3),将标准化针对调整颜色值的权重值。
可以使用如下表示的等式(4)来计算要映射到参考层的未选择的层中包括的像素的调整颜色值。
Figure BDA0001236047830000113
在等式(4)中,colorin(i,j)表明位置(i,j)处的原始颜色值。
上述图2的处理器120(即,图3的层映射器121)通过使用等式(1)、(2)、(3)和(4)将针对未选择的层的像素确定的调整颜色值映射到相应参考层。
图6是用于描述根据示例性实施例的距离和权重值之间的反比关系的视图。
图6所示的图表601示出了当等式(1)的α等于1/0.99^8并且n被设置为8时的模拟结果。参考图6,随着距离增加,针对调整颜色值的权重值减小,而随着距离减小,针对调整颜色值的权重值增加。这是因为,如上面参考图4所述,未选择的层的像素的颜色数据的较大部分被映射到较近的参考层,并且颜色数据的较少部分被映射到较远的参考层。
图7和图8是根据示例性实施例的用于将未选择的层映射到参考层的情况(即,多层映射)与不执行多层映射的情况进行比较的视图。
在图7中示出了在未执行根据当前示例性实施例的多层映射的情况下,当像素的颜色值仅映射到最接近未选择的层的一个参考层时的层颜色图像711、712、713和714。在图7中,在与包括在原始全息图像701中的层当中选择的参考层相对应的相应层颜色图像711、712、713和714中,存在颜色值的区域和不存在颜色值的区域根据对应参考层中的深度值很大地变化。
然而,参考图8,在其中执行根据当前示例性实施例的多层映射,在与从包括在原始全息图像701中的层当中选择的参考层相对应的相应层颜色图像811、812、813和814中,存在颜色值的区域和不存在颜色值的区域根据对应参考层中的深度值逐渐或轻微地变化。在这方面,层颜色图像711、712、713和714与层颜色图像811、812、813和814之间的相应差异基于包括在未选择的层中的像素的颜色数据是否均匀地映射到参考层而发生。因此,通过使用根据当前示例性实施例的多层映射方案,可以生成高质量的CGH图像。
图9是用于描述根据另一示例性实施例的将未选择的层的像素映射到参考层的视图。
参考图9,与参考图4描述的映射方案不同,包括在未选择的层中的像素的调整颜色数据可以被映射到与该未选择的层邻近的两个参考层。尽管在图4中调整颜色数据被映射到所有参考层,但是调整颜色数据可以被映射到与未选择的层邻近的两个参考层,而不限于该示例。例如,未选择的层的像素901可以被映射到参考层3和参考层4,它们是最邻近的两个参考层,并且另一未选择的层的像素902可以被映射到参考层2和参考层3,它们是最邻近的两个参考层。基于像素901和902与参考层之间的距离应用权重值的方式可以是基于等式(1)、(2)、(3)和(4)。在这方面,当前示例性实施例不限于该示例,并且未选择的层的像素将被映射到的参考层的数量可以变化。
图10和图11是用于描述根据示例性实施例的CGH图像的显示方案的视图。
参考图10,由处理器(例如,图2的处理器120)生成的CGH图像30可以显示在用单个平板实现的显示设备1000上。基于从复数值编码的整数值,显示设备1000通过根据复杂SLM控制针对每个像素的相位值以及根据振幅SLM控制针对每个像素的透射率来显示CGH图像30。
不同于图10的显示设备1000。图11的显示设备1100可以具有其中两个或更多个焦平面面板1101位于空间上分离的不同位置的结构。在这方面,显示器130可以是其中堆叠两个或更多个透明显示器的多焦平面显示器。在焦平面面板1101上,可以显示不同参考层的层颜色图像。因此,在显示设备1100的相应焦平面面板1101上,不显示参考层的重叠层颜色图案,而是针对相应焦平面面板1101显示单独的层颜色图案。特别地,要显示在每个焦平面面板1101上的多层映射图像可以单独生成,但是从用户的观点来看,用户可以观看作为一个场景的3D图像1110呈现的内容。要在每个焦平面面板1101上显示的多层映射图像可以通过使用参考层的原始颜色数据和映射到参考层的调整颜色数据来生成。
图12是根据示例性实施例的用于处理3D图像的方法的流程图。参考图12,用于处理3D图像的方法包括由上述计算设备10(即,处理器120)按时间序列处理的操作。因此,尽管被省略,但上面参照附图提供的描述可以应用于图12所示的用于处理3D图像的方法。
在操作1210中,处理器120的层映射器121接收原始全息图像的多个层中的每一层的原始颜色数据和原始深度数据。
在操作1220中,处理器120的层映射器121从多个层当中选择一个或多个参考层。
在操作1230中,处理器120的层映射器121将通过使用未选择的层和参考层的原始深度数据计算的未选择的层的调整颜色数据分别映射到每个参考层。
在操作1240中,处理器120的CGH图像生成器124通过使用参考层的原始颜色数据和映射到参考层的调整颜色数据来生成CGH图像。
同时,前述示例性实施例中的至少一些可以被编写为可在计算机上执行的程序,并且可以在通过使用暂时性或非暂时性计算机可读记录介质来操作程序的通用数字计算机上实现。在前述示例性实施例中使用的数据的结构可以使用各种手段记录在暂时性或非暂时性计算机可读记录介质上。非暂时性计算机可读记录介质可以包括诸如磁存储介质(例如,只读存储器(ROM)、软盘、硬盘等)、光学记录介质(例如,光盘(CD)-ROM,数字多功能盘(DVD)等),和/或任何其他合适的介质。
应当理解,本文描述的示例性实施例应当被认为仅是描述性的,而不是为了限制的目的。每个示例性实施例中的特征或方面的描述通常应被视为可用于其他示例性实施例中的其他类似特征或方面。
虽然已经参照附图描述了一个或多个示例性实施例,但是本领域普通技术人员将理解,在不脱离由上述权利要求所定义的精神和范围的情况下,可以在形式和细节上做出各种改变。

Claims (9)

1.一种用于处理三维图像的方法,所述方法包括:
接收与原始全息图像有关的多个层的每一层的原始颜色数据和原始深度数据;
从所述多个层当中选择至少一个参考层;
将基于未选择的层和所述至少一个参考层的原始深度数据确定的所述未选择的层的调整颜色数据映射到所述至少一个参考层的每一个参考层;以及
基于所述至少一个参考层的原始颜色数据和所映射的调整颜色数据生成计算机生成的全息图CGH图像,
其中,所述映射所述调整颜色数据包括:
通过将对应于在所述未选择的层与所述至少一个参考层的每一个参考层之间的每个相应距离的相应权重值应用到包括在所述未选择的层中的像素的原始颜色值,确定与所述至少一个参考层的每一个参考层相对应的包括在所述未选择的层中的像素的相应调整颜色值;以及
将所确定的像素的调整颜色值映射到所述至少一个参考层的每一个参考层,以及
其中,与包括在所述未选择的层中的对应像素的相应深度和所述至少一个参考层的深度之间的差成反比地设置每一个相应权重值。
2.如权利要求1所述的方法,其中,所述选择所述至少一个参考层包括从所述多个层当中选择所述至少一个参考层,以使得在所述至少一个参考层的邻近参考层之间的相应间隔是相等的间隔。
3.如权利要求1所述的方法,其中,所述选择所述至少一个参考层包括从所述多个层当中选择所述至少一个参考层,以使得在所述至少一个参考层的邻近参考层之间的相应间隔随所述至少一个参考层至用户的视点的对应距离减小而变窄。
4.如权利要求1所述的方法,其中,所述映射所述调整颜色数据包括将所述调整颜色数据映射到所述至少一个参考层的每一个参考层。
5.如权利要求1所述的方法,其中,所述映射所述调整颜色数据包括将所述调整颜色数据映射到与所述未选择的层邻近的两个参考层。
6.如权利要求1所述的方法,其中,所述生成所述CGH图像包括:
对于所述至少一个参考层的每一个参考层,执行与对应的至少一个参考层的原始颜色数据以及映射到所述对应的至少一个参考层的调整颜色数据有关的相应频率变换;
将每个相应频率变换的相应结果编码为相应整数值;以及
基于所编码的整数值生成所述CGH图像。
7.一种用于处理三维图像的装置,所述装置包括:
存储器,配置为存储与原始全息图像有关的多个层的每一层的原始颜色数据和原始深度数据;
处理器,配置为:
从所述存储器接收所述原始颜色数据和所述原始深度数据,
从所述多个层当中选择至少一个参考层,
将基于未选择的层和所述至少一个参考层的原始深度数据确定的所述未选择的层的调整颜色数据映射到所述至少一个参考层的每一个参考层;以及
基于所述至少一个参考层的原始颜色数据和所映射的调整颜色数据生成计算机生成的全息图CGH图像,
其中,所述处理器被进一步配置为:
通过将对应于在所述未选择的层与所述至少一个参考层的每一个参考层之间的每个相应距离的相应权重值应用到包括在所述未选择的层中的像素的原始颜色值,确定与所述至少一个参考层的每一个参考层相对应的包括在所述未选择的层中的像素的相应调整颜色值;以及
将所确定的像素的调整颜色值映射到所述至少一个参考层的每一个参考层,以及
其中,与包括在所述未选择的层中的对应像素的相应深度与所述至少一个参考层的深度之间的差成反比地设置每一个相应权重值。
8.如权利要求7所述的装置,其中,所述处理器还被配置为从所述多个层当中选择所述至少一个参考层,以使得在所述至少一个参考层的邻近参考层之间的相应间隔是相等的间隔。
9.如权利要求7所述的装置,其中,所述处理器还被配置为:
对于所述至少一个参考层的每一个参考层,执行与对应的至少一个参考层的原始颜色数据和映射到所述对应的至少一个参考层的调整颜色数据有关的相应频率变换;
将每个相应频率变换的相应结果编码为相应整数值;以及
基于所编码的整数值生成所述CGH图像。
CN201710117546.9A 2016-07-13 2017-03-01 用于处理三维图像的方法和装置 Active CN107622521B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0088710 2016-07-13
KR1020160088710A KR102629583B1 (ko) 2016-07-13 2016-07-13 3차원 이미지를 처리하는 방법 및 장치

Publications (2)

Publication Number Publication Date
CN107622521A CN107622521A (zh) 2018-01-23
CN107622521B true CN107622521B (zh) 2023-06-23

Family

ID=57754947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710117546.9A Active CN107622521B (zh) 2016-07-13 2017-03-01 用于处理三维图像的方法和装置

Country Status (4)

Country Link
US (1) US10175651B2 (zh)
EP (1) EP3270233B1 (zh)
KR (1) KR102629583B1 (zh)
CN (1) CN107622521B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327413B1 (en) * 2016-11-24 2022-04-27 IMEC vzw A method, an apparatus and a system for holographic wavefront sensing
CN108885377B (zh) * 2018-06-14 2021-12-24 京东方科技集团股份有限公司 显示设备及其驱动方法
KR102546321B1 (ko) * 2018-07-30 2023-06-21 삼성전자주식회사 3차원 영상 표시 장치 및 방법
KR102499218B1 (ko) * 2018-08-23 2023-02-10 듀얼리타스 리미티드 홀로그램 계산 방법
US11747767B2 (en) * 2019-03-19 2023-09-05 Samsung Electronics Co., Ltd. Method and apparatus for processing three-dimensional holographic image
KR20210004232A (ko) 2019-07-03 2021-01-13 삼성전자주식회사 홀로그래픽 영상 처리 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838121A (zh) * 2012-11-26 2014-06-04 三星电子株式会社 用于产生全息图图案的设备和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063838A1 (de) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme
GB2445164A (en) 2006-12-21 2008-07-02 Light Blue Optics Ltd Holographic image display systems
KR101412050B1 (ko) 2011-06-13 2014-06-26 광운대학교 산학협력단 홀로그램 생성 장치 및 방법
KR20140096532A (ko) 2013-01-28 2014-08-06 한국전자통신연구원 디지털 홀로그램 생성 장치 및 그 방법
KR102083584B1 (ko) * 2013-04-15 2020-03-02 삼성전자주식회사 홀로그램 패턴 생성 장치 및 방법
KR20140125608A (ko) * 2013-04-19 2014-10-29 엘지전자 주식회사 홀로그램 디스플레이 장치 및 방법
JP2014211565A (ja) 2013-04-19 2014-11-13 東芝アルパイン・オートモティブテクノロジー株式会社 計算機ホログラムのデータ作成装置およびそのデータ作成方法
WO2015065345A1 (en) * 2013-10-30 2015-05-07 Empire Technology Development Llc Holographic image generation and reconstruction
US9465361B2 (en) * 2014-03-31 2016-10-11 Disney Enterprises, Inc. Image based multiview multilayer holographic rendering algorithm
KR102224718B1 (ko) 2014-08-06 2021-03-08 삼성전자주식회사 홀로그램 생성 방법 및 장치
KR20160080229A (ko) * 2014-12-29 2016-07-07 남석균 입체 영상 표시 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838121A (zh) * 2012-11-26 2014-06-04 三星电子株式会社 用于产生全息图图案的设备和方法

Also Published As

Publication number Publication date
US20180017938A1 (en) 2018-01-18
EP3270233B1 (en) 2022-05-04
US10175651B2 (en) 2019-01-08
EP3270233A1 (en) 2018-01-17
CN107622521A (zh) 2018-01-23
KR102629583B1 (ko) 2024-01-25
KR20180007547A (ko) 2018-01-23

Similar Documents

Publication Publication Date Title
CN107622521B (zh) 用于处理三维图像的方法和装置
US10088802B2 (en) Method and apparatus for processing holographic image
RU2434258C9 (ru) Способ вычисления цифровых видеоголограмм и устройство для его осуществления
KR102464363B1 (ko) 푸리에 변환을 수행하는 방법 및 장치
JP2023519728A (ja) 二次元画像の三次元化方法、装置、機器及びコンピュータプログラム
KR102464362B1 (ko) 홀로그래픽 이미지 처리방법 및 장치
KR20210038659A (ko) 2차원 이미지를 외삽하기 위해 깊이 정보를 사용하는 시스템 및 방법
EP3139278A1 (en) Apparatus and method of performing fourier transform
US20240027961A1 (en) Method and apparatus for generating computer-generated hologram
CN107623846A (zh) 用于处理三维(3d)图像的方法和装置
US10901367B2 (en) Image data processing method and apparatus
JP2012008220A (ja) ルックアップテーブルと画像の空間的重複性を用いた計算機合成ホログラムの算出方法及びその装置
US10748249B2 (en) Image data processing method and apparatus
US10996627B2 (en) Image data processing method and apparatus
US11740587B2 (en) Method and apparatus for generating computer-generated hologram
US10915989B2 (en) Apparatus and method of processing image data using IFFT
Jia et al. Computational load reduction by avoiding the recalculation of angular redundancy in computer‐generated holograms
Choe et al. Efficient CGH generation of three-dimensional objects using line-redundancy and novel-look-up table method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant