CN107615686A - 基于双轨和偏振编码的光纤通信 - Google Patents

基于双轨和偏振编码的光纤通信 Download PDF

Info

Publication number
CN107615686A
CN107615686A CN201580080640.0A CN201580080640A CN107615686A CN 107615686 A CN107615686 A CN 107615686A CN 201580080640 A CN201580080640 A CN 201580080640A CN 107615686 A CN107615686 A CN 107615686A
Authority
CN
China
Prior art keywords
light
fiber
double track
polarization
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580080640.0A
Other languages
English (en)
Other versions
CN107615686B (zh
Inventor
D·比特奥德
李宏伟
A·尼斯卡南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Publication of CN107615686A publication Critical patent/CN107615686A/zh
Application granted granted Critical
Publication of CN107615686B publication Critical patent/CN107615686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2726Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
    • G02B6/274Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide based on light guide birefringence, e.g. due to coupling between light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)
  • Optical Transform (AREA)

Abstract

根据一个示例方面,提供了一种装置,其包括:第一光学转换器,耦合到纤维接口并耦合到两个波导;双轨编码器,被配置为利用有效载荷信息对来自两个波导的双轨形式光进行编码;并且其中双轨编码器被耦合到第一光学转换器或被布置在双轨编码器与纤维接口之间的第二光学转换器,并且其中第一光学转换器或第二光学转换器被耦合以便将偏振编码光提供到纤维接口中。

Description

基于双轨和偏振编码的光纤通信
技术领域
本发明涉及光通信,例如涉及光量子密钥分配。
背景技术
信息可以以许多方式受保护。本质上为机密的信息可包括例如财务、医学、企业、政治或个人信息。
机密信息可存储于安全的处所中,通过将该信息放置于诸如办公室保险箱中的上锁的地方以避免意外或恶意的访问该信息。企业地点可进一步地或择一地被提供有警报系统、警卫、栅栏和/或其他访问控制功能。
机密信息可存储在未连接到任何不安全网络的计算机中,以避免未经授权网络入侵其中而获得信息。这种计算机可被称为“空气壁”计算机,因为其没有连接到不安全的网络。
一种避免未经授权访问机密信息的方法是加密,其中明文(例如,诸如法文的自然语言文字)可使用加密算法及密钥转换成密文。加密算法可以被设计为使其非常困难在没有密钥的情况下从密文获得明文。一般来说,密文可被称为加密信息。
在量子通信QC中,双方可交换在量子态中编码的信息。量子态可为量子比特(qubit),其由诸如光子或量子比特的正交偏振态的两个正交态叠加所组成,量子态可包括诸如偏振态对的特别定义的光子特性,例如0°及90°、对角45°、反对角-45°,或者诸如左手性和右手性的圆基态是0°和90°偏振态的可能的叠加。通过量子通信,双方可产生仅由他们知道的共享随机序列比特,其随后可在信息后续的加密及解密中用于作为密钥。第三方在理论上可窃听在该双方间的QC。这种窃听扰乱了QC,然而却引入了可由两预期方检测的异常。双方可后处理QC的结果以去除由窃听者所获取的任何部份信息,并根据从该QC得到的剩余信息来形成共享密钥。
截取并重传包括在量子通信中的光子的窃听者当其重编码并向其原始目的地重传该光子时仅能猜测原始发送基础。接收器可检测窃听,因为对于发送基础与测量基础被发现为匹配的比特值的子集,校验值需完全匹配,假设通信系统经良好的调整并在发送与接收中免于不完整。由窃听导入的比特值中的差异使得发射器与接收器能够检测窃听及校正密钥。
发明内容
本发明由独立权利要求的特征限定。一些特定实施例在从属权利要求中限定。
根据本发明的第一方面,提供一种装置,所述装置包括:第一光学转换器,所述第一光学转换器耦合到纤维接口并耦合到两个波导;双轨编码器,所述双轨编码器被配置为利用有效载荷信息对来自所述两个波导的双轨形式光进行编码,并且其中所述双轨编码器耦合到所述第一光学转换器或耦合到所述双轨编码器和所述纤维接口之间布设的第二光学转换器,并且其中所述第一光学转换器或所述第二光学转换器被耦合,以便向所述纤维接口中提供偏振编码光。
第一方面的各种实施例可包括来自下列项目列表的至少一个特征:
●该第一光学转换器包括偏振旋转器分束器合束器,其被布置为接收来自纤维接口的光以及双轨编码器的输出
●该第一光学转换器包括偏振分束器旋转器,其被布置为将光从该纤维接口转换成双轨形式光,并且第二光学转换器包括偏振旋转器合束器,其被布置为将该双轨编码器的输出转换成偏振编码光
●该装置进一步包括至少一个处理核,被配置为从不同于该纤维接口的接口获取关于纤维的调整信息并且被配置为控制该双轨编码器以至少部分地修改该双轨形式光以修正由该纤维引起的偏振旋转
●该纤维接口包括单模光纤接口
●该装置进一步包括至少一个可变光学衰减器,该至少一个可变光学衰减器中的每一个被配置为施加可变衰减以降低光强度
●该接口包括电通信接口
●该双轨编码器包括马赫-曾德尔干涉仪
●该有效载荷信息包括加密密钥。
根据本发明的第二方面,提供一种装置,其包括:纤维接口,被配置为将来自光源的光提供给纤维;检测器,被配置为接收来自该纤维接口的光以及测量至少一定量的接收光,以及至少一个处理核,被配置为经由不同于该纤维接口的接口来传送关于该纤维的调整信息。
第二方面的各种实施例可包括来自下列项目列表的至少一个特征:
●该装置进一步包括至少一个偏振补偿级,被配置为至少部分基于该调整信息来至少部分地修正由该纤维引起的偏振旋转
●该至少一个偏振补偿级被包括在双轨编码器中,双轨编码器被配置为从偏振旋转器合束器接收双轨编码光并修改该双轨编码光
●该至少一个偏振补偿级包括被布置为在该光源与该纤维接口之间的第一偏振补偿级
●该至少一个偏振补偿级包括被布置在该纤维接口与该检测器之间的第一偏振补偿级
●该至少一个偏振补偿级包括被布置在该光源与该纤维接口之间的第一偏振补偿级以及被布置在该纤维接口与该检测器之间的第二偏振补偿级
●该光源包括激光器。
根据本发明的第三方面,提供一种方法,其包括:将经由纤维入射到装置中的光转换为双轨形式光;采用双轨编码器,利用有效载荷信息对该双轨形式光进行编码;将该双轨编码光转换为偏振编码光,以及向该纤维中提供该偏振编码光。
第三方面的各种实施例可包括对应于来自结合该第一方面而编排的前述项目列表的至少一个特征。
根据本发明的第四方面,提供一种方法,其包括:经由纤维接口将来自光源的光提供给纤维;接收来自该纤维接口的光并测量至少一定量的接收光,以及经由不同于该纤维接口的接口来传送关于该纤维的调整信息。
第四方面的各种实施例可包括对应于来自结合该第二方面而编排的前述项目列表的至少一个特征。
根据本发明的第五方面,提供一种装置,其包括:用于将经由纤维入射到该装置中的光转换成双轨形式光的部件;用于采用双轨编码器,利用有效载荷信息对该双轨形式光进行编码的部件;用于将该双轨编码光转换为偏振编码光的部件,以及用于向该纤维中提供该偏振编码光的部件。
根据本发明的第六方面,提供一种装置,其包括:用于经由纤维接口将来自光源的光提供给纤维的部件;用于接收来自该纤维接口的光以及用于测量至少一定量的接收光的部件,以及用于经由不同于该纤维接口的接口来传送关于该纤维的调整信息的部件。
根据本发明的第七方面,提供一种非瞬态计算机可读介质,具有存储于其上的计算机可读指令集合,该计算机可读指令集合在由至少一个处理器执行时使装置至少:将经由纤维入射到装置中的光转换为双轨形式光;采用双轨编码器,利用有效载荷信息对该双轨形式光进行编码;将该双轨编码光转换为偏振编码光,以及向该纤维中提供该偏振编码光。
根据本发明的第八方面,提供一种非瞬态计算机可读介质,具有存储于其上的计算机可读指令集合,该计算机可读指令集合在由至少一个处理器执行时使装置至少:经由纤维接口将来自光源的光提供给纤维;接收来自该纤维接口的光并测量至少一定量的接收光,以及经由不同于该纤维接口的接口来传送关于该纤维的调整信息。
根据本发明的第九方面,提供一种计算机程序,被配置为使根据该第三方面及该第四方面中的至少一个的方法被执行。
附图说明
图1A示出了根据本发明的至少一些实施例的系统;
图1B示出了根据本发明的至少一些实施例的系统;
图2A示出了双轨编码及补偿;
图2B示出了双轨编码及补偿;
图2C示出了用于反射光的布置;
图3A示出了根据本发明的至少一些实施例的用于接收器的第一架构;
图3B示出了根据本发明的至少一些实施例的用于接收器的第二架构;
图4A示出了根据本发明的至少一些实施例的架构,其中偏振补偿在该接收器中执行;
图4B示出了根据本发明的至少一些实施例的编码器设计;
图5A示出了根据本发明的至少一些实施例的架构;
图5B示出了根据本发明的至少一些实施例的接收器架构;
图6A示出了图5A或图5B的双轨补偿级的可能设计;
图6B示出了图5A或图5B的双轨补偿级的可能设计;
图7示出了根据本发明的至少一些实施例的具有偏振分束纤维耦合器的硅实现;
图8为根据本发明的至少一些实施例的第二方法的流程图;以及
图9为根据本发明的至少一些实施例的第三方法的流程图。
具体实施方式
用于通信的大多数纤维(诸如单模SM纤维)在通过该纤维传播期间不会保持光的偏振。在量子比特经双轨编码时补偿纤维中偏振的旋转可以使能用于发射器和/或接收器的芯片上的紧凑且完全集成的实现。类似地仅将光源置于通信单元之一处使能其他单元的、例如使用光子技术的更紧凑的实现,该其他单元可以被配置为对来自具有光源的单元的、通过纤维接收的光进行编码。双轨补偿也可促进用于在两方向上使用的单一纤维的使用,以能够实现使用不需保持偏振的相同纤维既在一个方向上提供光也在另一方向上传送编码光。
双轨编码可在可为平行的两个波导上实现。信息可被编码于该两个波导中的光的相对相位与幅度上。在相对相位与幅度上的操作可由在两个波导中的至少一个上的移相器和/或由在两个波导之间的光学耦合器执行。一般地,双轨编码可因此包括修改在两个波导的至少一个中的光的幅度与相位中的至少一个,使得在两个波导中的光之间的延迟差异比用于传送一比特的时间少得多。
图1A示出了根据本发明的至少一些实施例的系统。图1A的系统包括发射器120和接收器110、被布置在发射器120与接收器110之间的纤维101。接收器110可包括使接收器110能够与纤维101耦合的纤维接口。发射器120可包括使发射器120能够与纤维101耦合的纤维接口。分离的通信路径130提供与纤维101独立的、在发射器120与接收器110之间的通信途径。
纤维101可包括例如单模SM纤维,该纤维不会保持穿越其的光的偏振。纤维101可包括光纤。纤维101可具有双折射,其中纤维中的缺陷、纤维的应力和/或弯曲可导致穿过该纤维而旋转的光子的偏振。由于纤维的截面的温度可改变,所以纤维101的缺陷可为时变的,纤维可在物理上被重布置为改变其被布置为的弯曲,或纤维中物理缺陷的数量可随时间增加。纤维101的芯可包括玻璃或透明塑料,该芯被具有较低折射率的材料的层包围,例如诸如不同玻璃或塑料。纤维101也可至少部分地导致穿过其的光的衰减和/或穿过其的光的去偏振。在至少一些实施例中,纤维101包括单一纤维。
通信路径130可包括例如不同于纤维101的第二纤维、或电的和/或至少部分无线通信通道。例如,通信路径130可包括因特网协议(IP)连接,接收器110及发射器120可通过此连接使用接收器110及发射器120的IP地址进行通信。通信路径130可至少部分地穿越因特网和/或协作或端到端(p2p)网络。
接收器110可包括光源,诸如激光光源。激光光源可例如包括连续波或调制激光光源。为了从发射器120接收信息,接收器110可以被配置为通过纤维101从被包括在接收器110中的光源将光提供给发射器120。在发射器120中,经由纤维101从接收器110接收的光可被转换为双轨形式、编码有信息、被转换为偏振编码光、并被引导回纤维101,其将会随后将该光传递回接收器110,其中编码到该光中的信息可被恢复。光可例如由将其分成在两个波导内传送的两个正交偏振分量而被转换成双轨形式,每个波导内有一个分量。以所得到的分量中的一个或两个的形式的光可被旋转,使得两轨具有相同偏振。编码到光中的信息(即期望要从发射器120传送到接收器110的信息)可被称为有效载荷信息。
接收器110可以被配置为测量从发射器120入射到接收器110中的光的偏振。这种测量可以以固定偏振基础的方式发生(例如使用合适的检测器)。为了成功地测量接收器110中的偏振编码光,纤维101中发生的偏振旋转可得到补偿。在一些实施例中,接收器110被配置为经由纤维101将从发射器120到达的偏振编码光转换成双轨编码形式。
补偿纤维101中的偏振旋转可在发射器120、接收器110中或部分地在发射器120中以及部分地在接收器110中执行。通信路径130可被用于传送可用于执行补偿的调整信息。例如,接收器110可通知发射器120在接收器110中执行的偏振测量的结果。发射器120可随后推断纤维101中发生多少旋转,因为发射器120知道其发送到纤维101中的光的偏振特性。在补偿在发射器120中被执行的情况下,补偿可在相同时间在发射器120的双轨编码器中完成,因为光被利用要发送到接收器110的信息进行编码。
由于纤维101的双折射特性可随时间改变,接收器110及发射器120可使用通信路径130来周期性地、或响应于通信质量的劣化来重新校准在纤维101中发生的偏振旋转的补偿。例如,重新校准可以以50毫秒、500毫秒或一秒的周期来执行。
在发射器120中利用其对光进行编码的有效载荷信息可包括例如至少一个加密密钥,一旦纤维101的偏振旋转如本文所述被控制,该加密密钥便可以以低强度状态通过纤维101传送到接收器120。
图1B示出了根据本发明的至少一些实施例的系统。图1B的系统可被视为图1A的系统的实施例,其比图1A展示更多细节。接收器110、发射器120、通信路径130及纤维101对应于图1A中的类似元件。
接收器110包括光源112,其如上所述可包括诸如连续波或调制激光的激光器。来自光源112的光经由设备114被导向到纤维101,设备114可包括例如耦合器或循环器。到达接收器110的光可在检测器116中被测量。
在图1B中,发射器120被配置为补偿在纤维101中发生的偏振旋转。发射器120包括检测器129,其被配置为测量经由纤维101入射到发射器120的光的功率。此功率可被用于配置可变光学衰减器126及128以选择合适的衰减因子。发射器120进一步包括光学转换器,例如偏振旋转分束器合束器PBS 122。PBS 122被配置为将经由纤维101入射到发射器120的光转换成双轨形式。经由纤维101入射到发射器120的光可以是例如未编码光。发射器120进一步包括双轨编码器124,其被配置为用信息对双轨形式光进行编码,并且还被配置为执行在纤维101中发生的偏振旋转的补偿。双轨编码器124可例如包括马赫-曾德尔干涉仪(MZI)。一般来说,双轨编码器124可以被配置为使其从PBS 122接收的双轨形式光经历导致编码及补偿的变换。在图1B中,检测器129及可变光学衰减器可布设在PBS 122的任一侧。
双轨编码光可被使得重新进入PBS 122,PBS 122进一步被配置为在其经由纤维101传送回接收器110之前将双轨编码光转换成偏振编码光。最初,当校准补偿时,接收器110和发射器120可交换未衰减或轻度衰减的光。随后,一旦校准完成,布设在将PBS 122耦合到双轨编码器124的波导上的可变光学衰减器126和128可被使得将光衰减,使得要从发射器120传送到接收器110的编码有信息的光可例如为单一光子状态。取决于使用的编码形式,可采用比每脉冲光子甚至还少的脉冲。当更新校准时,可再次采用未衰减或轻度衰减的光。
替代采用PBS 122,发射器120可包括:偏振分束器旋转器,其被配置为将入射光转换成双轨形式;以及分束偏振旋转器合束器,其被配置为在将双轨编码光传送回纤维101之前将该双轨编码光转换回偏振编码光格式。在这种情况中,发射器120包括:两个光学转换器;偏振分束器旋转器,其被配置为将入射光转换成双轨形式;以及偏振旋转器合束器,其被配置为将双轨编码光转换回偏振编码光格式。
图2A示出了双轨编码和补偿。移相器210和230可以被配置为变换入射的双轨编码态并反射其他态。换言之,无论纤维101中的何种偏振旋转需要被补偿,移相器210和230都可以被配置为将最终在接收器110中与测量基础对齐的偏振反射回纤维101。在该配置中,相位偏移会针对每个比特进行计算,这考虑需要生成期望的量子比特态并需要应用补偿以克服纤维101中的偏振。图2A中的设计针对双轨臂采用了反射器201和202。这种反射器可包括例如涂覆芯片小面(coated chip facet)。图2A的设计包括2x2耦合器220。
图2B示出了双轨编码和补偿。图2B类似于图2A,除了替代了反射器201和202以外,图2B的系统采用波导回路以使双轨编码光被引导回纤维。图2B的设计包括2x2耦合器240和260,以及移相器250和270。
图2C示出了用于反射光的布置。这些布置可被用在使光被引导回其来源(例如在发射器120中)以将从接收器110接收的光经由纤维101引导回接收器110。图2C在左侧示出了具有回路的1x2耦合器280,并在右侧示出了包括实现后向反射的45度角的MMI反射器290。
图3A示出了根据本发明的至少一些实施例的用于接收器的第一架构。偏振光束分束器旋转器310可以被配置为将从纤维入射的光分成水平偏振基础和垂直偏振基础,并将其旋转,使得两条路径具有相同的偏振。部分光子被传送到单一光子检测器330。不传送到单一光子检测器330的光子被传送到90度混合体320,其允许其他两个基础的测量,即为对角-反对角及右旋-左旋。此测量设计可例如实现于硅上。光束分束器-旋转器310可包括偏振分束纤维耦合器。90度混合体320可例如包括4x4多模式干涉仪MMI。检测器330可例如包括沉积于波导上的超导纳米线。
图3B示出了根据本发明的至少一些实施例的用于接收器的第二架构。在图3B中,偏振光束分束器旋转器340被配置为根据入射光的偏振来对该入射光进行分束以获得双轨形式光。然后可通过操作一个或两个移相器350、360而选择测量基础。检测发生于检测器370中。
图4A示出了根据本发明的至少一些实施例的架构,其中偏振补偿在接收器中执行。接收器110、发射器120、通信路径130及纤维101对应于如图1A中的类似结构。光源402经由预补偿级407发射光,使得当光抵达发射器120中时,其在传播通过发生偏振旋转的纤维101之后与发射器的基础对齐。检测器440可测量入射到发射器120中的光的强度,且可变衰减器410可用于针对经由纤维101从发射器120传送回接收器110的编码光选择输出功率。PBS 420可将入射到发射器120中的光转换成双轨形式,并且双轨编码器430可以被配置为利用要被传送到接收器110的信息对光进行编码。随后,将该编码双轨格式光传送回PBS420以转换为偏振编码格式,并且光可然后经由纤维101传送回接收器110。检测器Z+(422)和检测器Z-(424)可用于帮助控制光源之后的偏振预补偿。在接收器110中,光穿越耦合器或循环器406,并经历第二预补偿级408以修正从发射器120到接收器110的途中在纤维中发生的偏振旋转。最后,检测器404可以被配置为确定在发射器120中的双轨编码器430中编码到光中的信息。
图4B示出了根据本发明的至少一些实施例的编码器设计。在a)中,移相器450、454、456和2x2耦合器452用于编码双轨中的光。这里,反射器用于将光传送回其来源。在b)中,移相器460、462、466和2x2耦合器464用于编码双轨中的光。这里,反射器用于将光传送回其如在a)中的来源。在c)中,移相器470、474、476和2x2耦合器472用于编码双轨中的光。2x2耦合器478及回路用于将光传送回其来源。在d)中,移相器480、482、486和2x2耦合器484用于编码双轨中的光。2x2耦合器488及回路用于将光传送回其来源。
图4B中的编码器可以被配置为利用固定基础中的多达六个状态在系统中操作,即,由恒定幅度的比特流驱动。对于a),例如,456可对应于{0,pi/2},454可对应于{0,pi/4},并且450可对应于{0,pi/2}。
对于图4B的b),下列表格包括当输入光在顶部波导中时的反射态。0对应于无相位偏移,1对应于针对移相器466的pi/2、针对移相器462的pi/4以及针对移相器460的pi/2的相位偏移。
移相器466 移相器462 移相器460 状态
0 0 0 |0> Z-
1 0 0 |1> Z+
0 1 0 |0>+|1> X+
1 1 0 |0>-|1> X-
0 0 1 |0> Z-
1 0 1 |1> Z+
0 1 1 |0>-i|1> Y-
1 1 1 |0>+i|1> Y+
图5A示出了根据本发明的至少一些实施例的架构。纤维101、接收器110、发射器120及通信路径130对应于图1A中的类似元件。在图5的架构中,针对发生于纤维101中的偏振旋转的补偿发生于接收器110与发射器120两者中。光源550经由耦合器或循环器552及纤维101,将光提供给发射器120。在发射器120中,光的功率可由检测器512测量。该光的功率可由可变衰减器510控制。PBS 520可以被配置为将光转换成双轨形式,以及补偿级530可作用于双轨形式光上以在从接收器110到发射器120穿越纤维101时补偿发生于光中的偏振旋转。双轨编码器540可将双轨形式光编码有期望要从发射器120传送到接收器110的信息。检测器Z+(514)及检测器Z-(516)可经采用于帮助控制偏振补偿。编码双轨形式光可然后在PBS 520中被转换为偏振编码光,且该偏振编码光可然后经由纤维101传送回接收器110。
在接收器110中,经由纤维101从发射器120接收的光可传送通过耦合器或循环器552及后补偿级554到检测器556用于测量。后补偿级554可以被配置为在从发射器120穿越纤维101到接收器110时去除发生于光之中的偏振旋转。后补偿级554可在偏振编码光上操作,或其可布置用于将光转换为双轨编码光并在该双轨编码光上操作以补偿发生于纤维101中的偏振旋转。
图5B示出了根据本发明的至少一些实施例的接收器架构。所示的接收器包括:偏振光束分束器-旋转器560,被配置为将入射的偏振编码光转换为双轨形式;双轨补偿级,被配置为至少部分地补偿发生于纤维101中的偏振旋转;以及最后的90度混合体580及检测器590,诸如以上结合图3A描述的90度混合体580及检测器590。
图6A示出了图5A或图5B的双轨补偿级的可能设计。该补偿级包括移相器610、620及630。移相器可以为可配置的。图6A的设计能够在六态(或更少态)通信系统中执行。2x2耦合器可布设在移相器610与620之间,并再次在移相器620与630之间,如图中所示。
图6B示出了图5A或5B的双轨补偿级的可能设计。在采用四态协议而不是六态(或更少态)协议的情况下,移相器需要的数目可由三减少到二。设计可如在左侧使用反射器,其具有移相器640及650,或该设计可如在右侧使用回路,其具有移相器660及670。2x2耦合器可将该回路耦合到双轨补偿级,如右侧所示。
图7示出了根据本发明的至少一些实施例的具有偏振分束纤维耦合器的硅实现。可包括发射器的至少一部分的硅光子实现的示例的实现,包括偏振分束纤维耦合器710,被配置为将到达发射器中的光转换成双轨形式。检测器Z+(712)及检测器Z-(714)可被用于帮助控制偏振旋转补偿。移相器730、750及760可配置地使双轨形式光被编码有要被传输到接收器的信息,并至少部分补偿发生于纤维101中的偏振旋转。在所示的实现中,左侧的回路是用于将光传送回其来源。在该实现中2x2MMI耦合器740和770传送该双轨形式光。MZI衰减器720可配置地用于选择光功率以发射回纤维内。一般而言,在本发明的各种实施例中,可采用脉波模式。脉波调制可在光在纤维中的回程之前在几个可能级之一中执行,例如,光源本身可被调制,激光器的输出可例如使用MZI被调制,或者调制可在编码器中执行,只要两轨均被调制。调制也可被合并于衰减级中。在图7中,MZI幅度调制780是作为这种实现的一示例被包括的。
图8为根据本发明的至少一些实施例的第二方法的流程图。所示的方法中的阶段可例如发生于发射器120中。
阶段810包括将经由纤维入射进装置的光转换成双轨形式光。阶段820包括采用双轨编码器,利用有效载荷信息对该双轨形式光进行编码。阶段830包括将该双轨编码光转换为偏振编码光。最后,阶段840包括将该偏振编码光提供到纤维中。一般而言,双轨编码光是经编码的双轨形式光。
图9为根据本发明的至少一些实施例的第三方法的流程图。所示的方法中的阶段可例如发生于接收器110中。
阶段910包括经由纤维接口将来自光源的光提供给纤维。此光可例如是未经编码的。阶段920包括从该纤维接口接收光并测量至少数量的接收光。最后,阶段930包括经由不同于该纤维接口的接口传送关于该纤维的调整信息。传送该调整信息可包括发送和/或接收该调整信息。
应该理解,本发明所公开的实施例不限于本文公开的特定的结构、流程步骤、或材料,而可延伸到如可由相关领域的普通技术人员所了解的等同物。还应当理解,本文所采用的术语用于仅描述特定实施例的目的,且其不旨在限制。
整个说明书中对一个实施例或实施例的提及意味着结合实施例描述的特定特征、结构、或特性被包括在本发明的至少一个实施例中。因此,整个说明书中在各处出现的用语“在一个实施例中”或“在实施例中”不一定皆参照相同实施例。在参考使用诸如例如约或实质上的术语的数值的情况下,也公开了确切的数值。
为了方便起见,如本文所使用的多个项目、结构元件、组成元件和/或材料可以呈现在公共列表中。然而,这些列表应该被解释为列表中的每个成员都被单独标识为分离的且独特的成员。因此,此列表中没有单独成员应该被解释为相同列表中任何其他成员的实际等同物,此是仅基于其呈现于共同群组而没有相反的指示。此外,本发明的各种实施例和示例可连同针对其各种组件的替代在本文参照。应当理解,这种实施例、示例及替代不应被解释为彼此的事实等同物,但应被解释为本发明的分离且自主的表示。
此外,所述的特征、结构、或特性可在一个或多个实施例中以任何适合的方式组合。在以下描述中,提供许多具体细节(诸如长度、宽度、形状等的示例),以提供对本发明实施例透彻的理解。然而,相关领域技术人员将知道,本发明可以在没有具体细节中的一个或多个或具有其他方法、部件、材料等情况下实现。在其他实例中,不会示出或详细描述公知的结构、材料、或操作,以避免使本发明的各方面模糊。
尽管前述示例对在一个或多个具体应用中的本发明的原理是示意性的,但对那些本领域普通技术人员而言以下各项时明显的:许多形式、使用、实现细节上的修改可在没有运用创造性能力以及在不脱离本发明的原理或概念的情况下进行。因此,不旨在使本发明是限制性的,除非由如以下阐述的权利要求限制。
本文档中的动词“包括(comprise)”和“包括(include)”用在本文档中作为开放性限制,其既不排除也不需要存在也未被引用的特征。从属权利要求中阐述的特征可双向自由组合,除非另有明确陈述。除此之外,应当理解,在整个文档中的“一”或“一个”(即单数形式)的使用不排除复数。
工业实用性
本发明的至少一些实施例在光学通信上有工业可应用性。
缩略词列表
IP 因特网协议
P2P 端到端
MMI 多模式干涉仪
MZI 马赫-曾德尔干涉仪
PBS 偏振旋转分束器合束器
SM 单模

Claims (35)

1.一种装置,包括:
-第一光学转换器,耦合到纤维接口并且耦合到两个波导;
-双轨编码器,被配置为利用有效载荷信息对来自所述两个波导的双轨形式光进行编码,以及
-其中所述双轨编码器的输出耦合到所述第一光学转换器或耦合到被布设在所述双轨编码器与所述纤维接口之间的第二光学转换器,以及其中所述第一光学转换器或所述第二光学转换器被耦合以便向所述纤维接口中提供偏振编码光。
2.根据权利要求1所述的装置,其中所述第一光学转换器包括偏振旋转器分束器合束器,所述偏振旋转器分束器合束器被布置为接收来自所述纤维接口和所述双轨编码器的所述输出的光。
3.根据权利要求1所述的装置,其中所述第一光学转换器包括偏振分束器旋转器,所述偏振分束器旋转器被布置为将来自所述纤维接口的光转换为所述双轨形式光,并且所述第二光学转换器包括偏振旋转器合束器,所述偏振旋转器合束器被布置为将所述双轨编码器的所述输出转换成偏振编码光。
4.根据权利要求1至3中任一项所述的装置,进一步包括至少一个处理核,所述至少一个处理核被配置为从与所述纤维接口不同的接口获得关于纤维的调整信息并且控制所述双轨编码器来至少部分地修改所述双轨形式光以校正由所述纤维引起的偏振旋转。
5.根据权利要求1至4中任一项所述的装置,其中所述纤维接口包括单模光纤接口。
6.根据权利要求1至5中任一项所述的装置,其中所述装置进一步包括至少一个可变光学衰减器,所述至少一个可变光学衰减器中的每一个被配置为施加可变衰减以降低光强度。
7.根据权利要求4所述的装置,其中所述接口包括电通信接口。
8.根据权利要求1至7中任一项所述的装置,其中所述双轨编码器包括马赫-曾德尔干涉仪。
9.根据权利要求1至8中任一项所述的装置,其中所述有效载荷信息包括加密密钥。
10.一种装置,包括:
-纤维接口,被配置为将来自光源的光提供给纤维;
-检测器,被配置为接收来自所述纤维接口的光以及测量至少一定量的接收光,以及
-至少一个处理核,被配置为经由不同于所述纤维接口的接口来传送关于所述纤维的调整信息。
11.根据权利要求10所述的装置,进一步包括至少一个偏振补偿级,所述至少一个偏振补偿级被配置为至少部分地基于所述调整信息来至少部分地校正由所述纤维引起的偏振旋转。
12.根据权利要求11所述的装置,其中所述至少一个偏振补偿级被包括在双轨编码器中,所述双轨编码器被配置为接收来自偏振旋转器合束器的双轨编码光以及修改所述双轨编码光。
13.根据权利要求11所述的装置,其中所述至少一个偏振补偿级包括被布置在所述光源与所述纤维接口之间的第一偏振补偿级。
14.根据权利要求11或12所述的装置,其中所述至少一个偏振补偿级包括被布置在所述纤维接口与所述检测器之间的第一偏振补偿级。
15.根据权利要求11所述的装置,其中所述至少一个偏振补偿级包括被布置在所述光源与所述纤维接口之间的第一偏振补偿级以及被布置在所述纤维接口与所述检测器之间的第二偏振补偿级。
16.根据权利要求10至15中任一项所述的装置,其中所述光源包括激光器。
17.一种方法,包括:
-将经由纤维入射到装置中的光转换为双轨形式光;
-采用双轨编码器,利用有效载荷信息对所述双轨形式光进行编码;
-将所述双轨编码光转换为偏振编码光,以及
-向所述纤维中提供所述偏振编码光。
18.根据权利要求17所述的方法,进一步包括从不同于所述纤维的接口获得关于所述纤维的调整信息,以及控制所述双轨编码器来至少部分地修改所述双轨形式光以校正由所述纤维引起的偏振旋转。
19.根据权利要求17或18所述的方法,其中所述纤维包括单模光纤。
20.根据权利要求17至19中任一项所述的方法,进一步包括控制至少一个可变光学衰减器,来施加可变衰减以降低光强度。
21.根据权利要求17至20中任一项所述的方法,其中所述接口包括电通信接口。
22.根据权利要求17至21中任一项所述的方法,其中所述双轨编码器包括马赫-曾德尔干涉仪。
23.根据权利要求17至22中任一项所述的方法,其中所述有效载荷信息包括加密密钥。
24.一种方法,包括:
-经由纤维接口将来自光源的光提供给纤维;
-接收来自所述纤维接口的光并测量至少一定量的接收光,以及-经由不同于所述纤维接口的接口来传送关于所述纤维的调整信息。
25.根据权利要求24所述的方法,进一步包括至少部分地基于所述调整信息来校正由所述纤维引起的偏振旋转。
26.根据权利要求25所述的方法,其中对偏振旋转的所述校正在双轨编码器中被执行,所述双轨编码器被配置为接收来自偏振旋转器合束器的双轨形式光并修改所述双轨形式光。
27.根据权利要求25所述的方法,其中对偏振旋转的所述校正发生在被布置在所述光源与所述纤维接口之间的第一偏振补偿级中。
28.根据权利要求25或26所述的方法,其中对偏振旋转的所述校正发生在第一偏振补偿级中,所述第一偏振补偿级被布置在所述纤维接口与被配置为接收来自所述纤维接口的光的检测器之间。
29.根据权利要求25所述的方法,其中对偏振旋转的所述校正发生在第一偏振补偿级和第二偏振补偿级中,所述第一偏振补偿级被布置在所述光源与所述纤维接口之间,所述第二偏振补偿级被布置在所述纤维接口与被配置为接收来自所述纤维接口的光的检测器之间。
30.根据权利要求25至29中任一项所述的方法,其中所述光源包括激光器。
31.一种装置,包括:
-用于将经由纤维入射到所述装置中的光转换成双轨形式光的部件;
-用于采用双轨编码器,利用有效载荷信息对所述双轨形式光进行编码的部件;
-用于将所述双轨编码光转换为偏振编码光的部件,以及
-用于向所述纤维中提供所述偏振编码光的部件。
32.一种装置,包括:
-用于经由纤维接口将来自光源的光提供给纤维的部件;
-用于接收来自所述纤维接口的光以及用于测量至少一定量的接收光的部件,以及
-用于经由不同于所述纤维接口的接口来传送关于所述纤维的调整信息的部件。
33.一种非瞬态计算机可读介质,具有存储于其上的计算机可读指令集合,所述计算机可读指令集合在由至少一个处理器执行时使装置至少:
-将经由纤维入射到装置中的光转换为双轨形式光;
-采用双轨编码器,利用有效载荷信息对所述双轨形式光进行编码;
-将所述双轨编码光转换为偏振编码光,以及
-向所述纤维中提供所述偏振编码光。
34.一种非瞬态计算机可读介质,具有存储于其上的计算机可读指令集合,所述计算机可读指令集合在由至少一个处理器执行时使装置至少:
-经由纤维接口将来自光源的光提供给纤维;
-接收来自所述纤维接口的光并测量至少一定量的接收光,以及
-经由不同于所述纤维接口的接口来传送关于所述纤维的调整信息。
35.一种计算机程序,被配置为使根据权利要求17至30中的至少一项所述的方法被执行。
CN201580080640.0A 2015-04-22 2015-04-22 基于双轨和偏振编码的光纤通信 Active CN107615686B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2015/050278 WO2016170223A1 (en) 2015-04-22 2015-04-22 Fibre-optic communication based on dual-rail and polarization encoding

Publications (2)

Publication Number Publication Date
CN107615686A true CN107615686A (zh) 2018-01-19
CN107615686B CN107615686B (zh) 2020-03-10

Family

ID=57143772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580080640.0A Active CN107615686B (zh) 2015-04-22 2015-04-22 基于双轨和偏振编码的光纤通信

Country Status (5)

Country Link
US (1) US10574449B2 (zh)
EP (1) EP3286853B1 (zh)
CN (1) CN107615686B (zh)
TW (1) TWI618366B (zh)
WO (1) WO2016170223A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343173A (zh) * 2018-12-06 2019-02-15 安徽问天量子科技股份有限公司 一种混合波导集成的干涉仪
CN109883587A (zh) * 2019-01-08 2019-06-14 河北大学 一种保偏光纤定轴布纤装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925486B (zh) 2015-06-11 2021-06-04 诺基亚技术有限公司 基于编码频移光的光纤通信
US10805011B2 (en) 2016-03-29 2020-10-13 Nokia Technologies Oy Bell state measurement
US11223424B2 (en) 2018-08-10 2022-01-11 Nokia Technologies Oy Fibre-based communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019468A1 (en) * 2001-08-24 2003-03-06 The University Of Queensland Quantum optical cnot gate
US20120177134A1 (en) * 2003-07-15 2012-07-12 Kabushiki Kaisha Toshiba Quantum communication system
CN104350701A (zh) * 2012-05-31 2015-02-11 诺基亚公司 安全的无线通信

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2906897A (en) 1996-05-22 1997-12-09 British Telecommunications Public Limited Company Method and apparatus for polarisation-insensitive quantum cryptography
US6538787B1 (en) 1999-09-24 2003-03-25 Lucent Technologies Inc. Apparatus and method for polarization mode dispersion emulation and compensation
US20050190922A1 (en) 2004-02-28 2005-09-01 Lagasse Michael J. Secure use of a single single-photon detector in a QKD system
US7903977B2 (en) * 2004-10-06 2011-03-08 The Board Of Regents Of The University Of Oklahoma Method for polarization-based intrusion monitoring in fiberoptic links
GB2427317B (en) 2005-06-16 2010-05-19 Hewlett Packard Development Co Quantum key distribution apparatus & method
GB2430122B (en) * 2005-09-09 2008-07-09 Toshiba Res Europ Ltd A quantum communication system
US8082443B2 (en) * 2006-01-09 2011-12-20 Bbnt Solutions Llc. Pedigrees for quantum cryptography
KR100890389B1 (ko) 2006-12-05 2009-03-26 한국전자통신연구원 편광 무의존 단방향 양자 암호 수신 및 송수신 장치
GB2449290B (en) 2007-05-17 2010-09-22 Toshiba Res Europ Ltd An optical system
US8005368B2 (en) 2007-12-05 2011-08-23 Ciena Corporation Signal equalizer in a coherent optical receiver
CN101764648B (zh) 2010-02-10 2012-12-26 南通墨禾量子科技发展有限公司 保偏即插即用量子保密通信系统
MY150359A (en) 2010-10-07 2013-12-31 Mimos Berhad Auto-compensating quantum key distribution network
MY152705A (en) 2010-10-07 2014-11-28 Mimos Berhad Apparatus for flipping the polarization state of an optical pulse between a transmitter and a receiver in quantum key distribution and method thereof
US9219605B2 (en) 2011-02-02 2015-12-22 Nokia Technologies Oy Quantum key distribution
US8879873B2 (en) * 2011-02-25 2014-11-04 Nippon Telegraph And Telephone Corporation Optical modulator
US9680567B2 (en) * 2011-03-03 2017-06-13 Acacia Communications, Inc. Fault localization and fiber security in optical transponders
WO2013048671A1 (en) * 2011-09-30 2013-04-04 Los Alamos National Security, Llc Polarization tracking system for free-space optical communication, including quantum communication
WO2013048672A1 (en) 2011-09-30 2013-04-04 Los Alamos National Security, Llc Great circle solution to polarization-based quantum communication (qc) in optical fiber
US9819418B2 (en) * 2012-08-17 2017-11-14 Los Alamos National Security, Llc Quantum communications system with integrated photonic devices
US9794065B2 (en) * 2012-10-15 2017-10-17 Nokia Technologies Oy Quantum key distribution
EP3000197B1 (en) * 2013-05-23 2019-12-18 Qubitekk, Inc. Incorruptible public key using quantum cryptography for secure wired and wireless communications
US10063323B2 (en) 2014-06-09 2018-08-28 Nokia Technologies Oy Fiber-based communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019468A1 (en) * 2001-08-24 2003-03-06 The University Of Queensland Quantum optical cnot gate
US20120177134A1 (en) * 2003-07-15 2012-07-12 Kabushiki Kaisha Toshiba Quantum communication system
CN104350701A (zh) * 2012-05-31 2015-02-11 诺基亚公司 安全的无线通信

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343173A (zh) * 2018-12-06 2019-02-15 安徽问天量子科技股份有限公司 一种混合波导集成的干涉仪
CN109343173B (zh) * 2018-12-06 2023-08-25 安徽问天量子科技股份有限公司 一种混合波导集成的干涉仪
CN109883587A (zh) * 2019-01-08 2019-06-14 河北大学 一种保偏光纤定轴布纤装置及方法
CN109883587B (zh) * 2019-01-08 2021-05-28 河北大学 一种保偏光纤定轴布纤装置及方法

Also Published As

Publication number Publication date
EP3286853A4 (en) 2019-02-27
TWI618366B (zh) 2018-03-11
EP3286853A1 (en) 2018-02-28
US10574449B2 (en) 2020-02-25
TW201642606A (zh) 2016-12-01
CN107615686B (zh) 2020-03-10
EP3286853B1 (en) 2020-12-30
WO2016170223A1 (en) 2016-10-27
US20180109379A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
Wang et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion
CN107612690B (zh) 一种相位解码方法、装置和量子密钥分发系统
CN107615686A (zh) 基于双轨和偏振编码的光纤通信
CN106161011A (zh) 一种基于时间‑相位编码的即插即用量子密钥分发系统和方法以及发送端和接收端
EP3152847B1 (en) Fibre-based communication
Cai et al. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution
CN108370275B (zh) 相位编码通信中的双轨补偿
CN109120403B (zh) 基于偏振正交旋转的直流调制量子密钥分发相位解码方法、装置及系统
CN113676323B (zh) 一种偏振编码测量设备无关量子密钥分发系统
US11483144B1 (en) Systems and methods for time-bin quantum session authorization
GB2510130A (en) Quantum communication system wherein an optical component comprising a birefringent optical material causes a delay between photons of different polarisation
Hajomer et al. Accelerated key generation and distribution using polarization scrambling in optical fiber
CN108540283A (zh) 一种改进的hd-qkd系统
Lee et al. Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers
CN112567651B (zh) 基于光纤的通信
Balado et al. Phase and polarization autocompensating N-dimensional quantum cryptography in multicore optical fibers
WO2021078723A1 (en) Polarization modulation method of photonic pulses for generating quantum cryptographic keys, and related polarization modulator
Liu et al. Improvement of reliability in multi-interferometer-based counterfactual deterministic communication with dissipation compensation
CN209151179U (zh) 基于90度熔接相差控制的直流调制量子密钥分发相位解码装置及相应系统
Zhao et al. Continuous-variable quantum key distribution robust against environmental disturbances
Bogdanski et al. Sagnac secret sharing over telecom fiber networks
Bogdanski et al. Single mode fiber birefringence compensation in Sagnac and “plug & play” interferometric setups
CN209233845U (zh) 分偏振相差控制的量子密钥分发时间比特-相位解码装置及相应系统
Leary et al. Polarization-based control of spin-orbit vector modes of light in biphoton interference
Liu et al. Polarization states encoded by phase modulation for high bit rate quantum key distribution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant