CN107612878B - 基于博弈论的动态窗口选择方法及无线网络信任管理系统 - Google Patents

基于博弈论的动态窗口选择方法及无线网络信任管理系统 Download PDF

Info

Publication number
CN107612878B
CN107612878B CN201710600172.6A CN201710600172A CN107612878B CN 107612878 B CN107612878 B CN 107612878B CN 201710600172 A CN201710600172 A CN 201710600172A CN 107612878 B CN107612878 B CN 107612878B
Authority
CN
China
Prior art keywords
attacker
representing
strategy
value
game
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710600172.6A
Other languages
English (en)
Other versions
CN107612878A (zh
Inventor
裴庆祺
刘晋丽
李子
李红宁
刘雪峰
马立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710600172.6A priority Critical patent/CN107612878B/zh
Publication of CN107612878A publication Critical patent/CN107612878A/zh
Application granted granted Critical
Publication of CN107612878B publication Critical patent/CN107612878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Computer And Data Communications (AREA)

Abstract

本发明属于计算机网络安全技术领域,公开了一种基于博弈论的动态窗口选择方法及无线网络信任管理系统,建立信任管理系统和攻击者之间的博弈模型;系统量化攻击者的策略集,并根据攻击者的策略集量化自己的策略集;采用数值模拟的方法得到博弈模型的支付矩阵,利用极小极大定理求解博弈模型;根据纳什均衡点选择最优窗口大小。本发明能够根据攻击者的行为特征和网络状态动态选择信任计算中的最优窗口大小,最小化系统损失,检测具有动态行为的恶意节点。

Description

基于博弈论的动态窗口选择方法及无线网络信任管理系统
技术领域
本发明属于计算机网络安全技术领域,尤其涉及一种基于博弈论的动态窗口选择方法及无线网络信任管理系统。
背景技术
信任管理技术是保证网络安全的重要手段。通过在用户认证阶段和访问控制阶段引入信任评估机制,可以很大程度上保证用户、应用对资源的非恶意性,从而保护网络资源不被破坏。其中,信任在网络中作为一种对实体行为可信度的度量,有多方面的作用:第一,信任管理可将信任程度根据历史经验数据和节点行为信息进行量化,得出节点的信任值,表现对某个节点的行为的期望;第二,信任值可表达一个节点具体行为的可信度;第三,信任值是对节点的行为可信度的评判结果,可以作为对节点采取惩罚或奖励策略的根据。正确的评估节点的信任值是保证信任管理方案有效性的重要因素。基于行为的信任管理方案通常基于节点的行为历史记录和当前行为特征来评估节点的信任值。为了检测前后行为不一致的节点,引入滑动窗口机制来记录节点一段时间内的行为轨迹,调节节点历史行为和当前行为之间的比重,使节点的信任值随着其行为与过去行为的偏差而变化,但同时也抑制信任值的变化率,以防止信任值受到最新行为的过度影响。因此,设置合适的窗口大小对计算前后行为不一致节点的信任值影响很大。文章“A sensing and etiquettereputation-based trust management for centralized cognitive radio networks”在计算信任时使用一个默认大小为无穷大的窗口和一个临时的小窗口来共同计算节点的信任值,从而抵抗具有动态行为的攻击者。但是,该方案存在的问题是只使用一个固定大小的临时窗口,当攻击者行为动态变化或者信任阈值改变时,固定窗口大小计算出来的信任值变化情况不同,对系统造成的损失也不同,因此需要根据网络环境动态选择窗口大小。文章“Trust management for defending on-off attacks”提出了一种动态变化的滑动窗口机制,并对窗口大小进行量化,根据被评估节点信任值的大小以及系统设置的窗口最大值和最小值来动态改变窗口大小,但是,攻击者和防御者是策略交互的,不能仅考虑攻击者的行为对系统的影响,还应该考虑系统的行为对攻击者行为的影响,该方案存在的问题是只考虑到具有动态行为的攻击者自己的行为模式改变,并未考虑系统的防御策略对于攻击者选择攻击策略的影响。
综上所述,现有技术存在的问题是:使用固定大小的窗口计算信任值不能适应动态变化的网络环境;此外,现有窗口机制中窗口的大小没有充分考虑攻防双方的策略互动,只考虑了攻击者行为对系统的影响,未考虑系统的行为对攻击者行为的影响,导致信任管理系统无法有效检测根据系统防御策略动态改变攻击策略的攻击者。
发明内容
针对现有技术存在的问题,本发明提供了一种基于博弈论的动态窗口选择方法及无线网络信任管理系统。
本发明是这样实现的,一种基于博弈论的动态窗口选择方法,所述基于博弈论的动态窗口选择方法包括:建立信任管理系统和攻击者之间的博弈模型;系统量化攻击者的策略集,并根据攻击者的策略集量化自己的策略集;采用数值模拟的方法得到博弈模型的支付矩阵,利用极小极大定理求解博弈模型;根据纳什均衡点选择最优窗口大小。
进一步,所述基于博弈论的动态窗口选择方法包括:
(1)建立攻防博弈模型:
将信任管理系统与攻击者之间的策略交互建立为一个同时行动的二元非合作攻防零和博弈模型G;
G=<{Ni},{Ai},u>,i∈{1,2};
其中,G表示该二元非合作攻防零和博弈模型,{Ni}表示参与者集合,{Ai}表示各参与者的策略,u表示各参与者的支付函数;
(2)量化攻防策略集:
2a)利用下式量化攻击者策略集:
Figure BDA0001356941960000031
其中,A1表示攻击者的策略集,q表示攻击者发动攻击的概率,
Figure BDA0001356941960000032
表示攻击者选择以攻击概率q发动攻击,n是大于1的正整数,∈表示属于符号,N+表示正整数集;
2b)利用下式量化信任管理系统的策略集:
Figure BDA0001356941960000033
其中,A2表示信任管理系统的策略集,w表示窗口大小,
Figure BDA0001356941960000034
表示系统选择大小为w的窗口计算节点的信任值,wmin表示窗口最小值,wmax表示窗口最大值,m为大于1的正整数,∈表示属于符号,N+表示正整数集;
(3)求解博弈模型:
3a)采用数值模拟法计算攻击者和信任管理系统各策略组合下的支付函数值,用支付矩阵U表示;
3b)通过极小极大定理计算混合策略下的纳什均衡(x*,y*),其中,
Figure BDA0001356941960000035
Figure BDA0001356941960000036
表示攻击者的最优策略的概率分布向量,
Figure BDA0001356941960000037
表示攻击者选择攻击策略集中
Figure BDA0001356941960000038
的概率为
Figure BDA00013569419600000316
表示信任管理系统的最优策略的概率分布向量,
Figure BDA00013569419600000311
表示系统选择防御策略集中
Figure BDA00013569419600000312
的概率为
Figure BDA00013569419600000313
3c)将混合策略下的纳什均衡的概率分布与信任管理系统策略集组合成为匹配矩阵M:
Figure BDA00013569419600000314
其中,M表示
Figure BDA00013569419600000315
的匹配矩阵,y*表示混合策略下的纳什均衡的概率分布,A2表示信任管理系统策略集,wmin和wmax分别表示窗口最小值和最大值;
(4)选择最优窗口:在匹配矩阵M中选择概率最大的策略所对应的窗口值为作为最优窗口大小。
进一步,所述(1)的支付函数是指博弈过程中参与者根据彼此行动所能获得的收益值;在信任管理系统和攻击者之间的博弈中,支付函数指的是攻击给网络带来的损失,该损失由具体攻击行为类型和网络环境决定。
进一步,所述3a)中的支付矩阵是指,一个
Figure BDA0001356941960000041
的矩阵,ujk表示矩阵中第j行第k列的元素,
Figure BDA0001356941960000042
对应博弈模型中攻击者选择第j个策略与系统选择第k个策略情况下支付函数的值。
进一步,所述3a)中的数值模拟方法是指,对于攻击者的策略集中的每一个策略,运行50000次试验得到系统选择不同窗口下的支付函数值,取平均值作为支付矩阵中对应的函数值。
进一步,所述3b)中的极小极大定理是指,通用的寻找混合策略下同时行动的零和博弈的纳什均衡的方法;设x为一个n+1维向量,表示攻击者策略集中可能选择的各攻击策略
Figure BDA0001356941960000043
的概率分布,y为一个
Figure BDA0001356941960000044
维向量,表示系统策略集中可能选择的各系统策略
Figure BDA0001356941960000045
的概率分布,计算以下两式:
Figure BDA0001356941960000046
Figure BDA0001356941960000047
其中,x*表示攻击者的最优策略概率分布,y*表示系统的最优策略概率分布,
Figure BDA0001356941960000048
表示求使得f(x)值最大的x的取值,min表示求最小值符号,yT表示向量y的转置,
Figure BDA0001356941960000049
表示求使得f(y)值最小的y的取值,max表示求最大值符号。
本发明的另一目的在于提供一种利用所述基于博弈论的动态窗口选择方法的无线网络信任管理系统。
本发明的优点及积极效果为:通过建立攻击者和信任管理系统之间的攻防博弈,以系统损失作为攻击者和系统的支付函数,系统在考虑攻击者的最优攻击策略的情况下,以最小化系统损失为目的,求解攻防博弈在混合策略下的纳什均衡,在纳什均衡点下的系统防御策略即为系统损失最小的情况,并根据纳什均衡选择信任计算中的最优窗口大小,检测具有动态行为的恶意节点。
为了提供技术对比,以认知无线电网络为例,在认知无线电网络中的信任管理系统中,信任机制被用来在协作频谱感知的过程中检测感知数据篡改(SSDF)攻击,减小篡改数据对感知数据融合结果准确性的影响。通过建立SSDF攻击者和信任管理系统之间的攻防博弈,以系统损失作为SSDF攻击者和系统的支付函数,此处,系统损失具体指感知数据融合结果的错误概率E,则系统通过使用本发明方案中提出的方法确定的最优窗口为防御策略,与现有其他技术对比数据如下:
方案1(固定窗口) 方案2(变化窗口) 方案3(动态最优窗口)
E 0.073 0.041 0.035
其中,方案1为“A sensing and etiquette reputation-based trustmanagement for centralized cognitive radio networks”,方案2为“Trust managementfor defending on-off attacks”。方案3为本发明方案。
本发明提出了信任计算中具体的动态窗口大小选择方法,能够根据网络具体状态和攻击者攻击概率选择最优窗口大小;利用博弈论的优点,充分考虑了攻防双方的策略互动,攻击者在考虑系统最优防御策略的情况下选择自己的最优攻击策略,同时系统在考虑攻击者的攻击策略的情况下选择自己的最优防御策略。
附图说明
图1是本发明实施例提供的基于博弈论的动态窗口选择方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例提供的基于博弈论的动态窗口选择方法包括以下步骤:
S101:建立信任管理系统和攻击者之间的博弈模型;系统量化攻击者的策略集,并根据攻击者的策略集量化自己的策略集;
S102:采用数值模拟的方法得到博弈模型的支付矩阵,利用极小极大定理求解博弈模型;
S103:根据纳什均衡点选择最优窗口大小。
本发明实施例提供的基于博弈论的动态窗口选择方法具体包括以下步骤:
步骤1:建立攻防博弈模型。
信任管理系统与攻击者之间的策略交互可被建立为一个同时行动的二元非合作攻防零和博弈模型G:
G=<{NN},Ai},u>,i∈{1,2};
其中,G表示该二元非合作攻防零和博弈模型,{Ni}表示参与者集合,{Ai}表示各参与者的策略,u表示各参与者的支付函数,是指博弈过程中参与者根据彼此行动所能获得的收益。在信任管理系统和攻击者之间的博弈中,支付函数指的是攻击给网络带来的损失,该损失由具体攻击行为类型和网络环境决定。例如,在认知无线电网络中的信任管理系统中,当信任被用来衡量次级用户的频谱感知行为时,支付函数被定义为网络检测频谱状态的错误率。
步骤2:量化攻防策略集。
首先,信任管理系统利用下式量化攻击者策略集:
Figure BDA0001356941960000071
其中,A1表示攻击者的策略集,q表示攻击者发动攻击的概率,
Figure BDA0001356941960000072
表示攻击者选择以攻击概率q发动攻击,n是大于1的正整数,∈表示属于符号,N+表示正整数集。
其次,信任管理系统根据攻击者的策略集,利用下式量化信任管理系统的策略集:
Figure BDA0001356941960000073
其中,A2表示信任管理系统的策略集,w表示窗口大小,
Figure BDA0001356941960000074
表示系统选择大小为w的窗口计算节点的信任值。wmin表示窗口最小值。wmax表示窗口最大值。m为大于1的正整数,∈表示属于符号,N+表示正整数集。
步骤3:求解博弈模型。
首先,系统采用数值模拟法,对于攻击者的策略集中的每一个策略,运行50000次试验得到系统选择不同窗口下的支付函数值并取它们的平均值,用支付矩阵U表示。其中,U是一个
Figure BDA0001356941960000075
的矩阵,ujk表示矩阵中第j行第k列的元素,
Figure BDA0001356941960000076
并且对应博弈模型中攻击者选择第j个策略与系统选择第k个策略情况下支付函数的值。
其次,设x为一个n+1维向量,表示攻击者策略集中可能选择的各攻击策略
Figure BDA0001356941960000077
的概率分布,y为一个
Figure BDA0001356941960000078
维向量,表示系统策略集中可能选择的各系统策略
Figure BDA0001356941960000079
的概率分布,根据极小极大定理,计算以下两式:
Figure BDA00013569419600000710
Figure BDA00013569419600000711
其中,x*表示攻击者的最优策略概率分布,y*表示系统的最优策略概率分布,
Figure BDA00013569419600000712
表示求使得f(x)值最大的x的取值,min表示求最小值符号,yT表示向量y的转置,
Figure BDA00013569419600000713
表示求使得f(y)值最小的y的取值,max表示求最大值符号。
则混合策略下的纳什均衡为(x*,y*),其中,
Figure BDA00013569419600000812
表示攻击者的最优策略的概率分布向量,
Figure BDA0001356941960000082
表示攻击者选择攻击策略集中
Figure BDA0001356941960000083
的概率为
Figure BDA00013569419600000813
Figure BDA0001356941960000086
表示信任管理系统的最优策略的概率分布向量,
Figure BDA0001356941960000087
表示系统选择防御策略集中
Figure BDA0001356941960000088
的概率为
Figure BDA0001356941960000089
然后,系统将混合策略下的纳什均衡的概率分布与信任管理系统策略集组合成为匹配矩阵M:
Figure BDA00013569419600000810
其中,M表示
Figure BDA00013569419600000811
的匹配矩阵,y*表示混合策略下的纳什均衡的概率分布,A2表示信任管理系统策略集,wmin和wmax分别表示窗口最小值和最大值。
步骤4:最优窗口选择。
系统在匹配矩阵M中选择概率最大的策略所对应的窗口值为作为最优窗口大小。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于博弈论的动态窗口选择方法,其特征在于,所述基于博弈论的动态窗口选择方法包括:建立信任管理系统和攻击者之间的博弈模型;系统量化攻击者的策略集,并根据攻击者的策略集量化自已的策略集;采用数值模拟的方法得到博弈模型的支付矩阵,利用极小极大定理求解博弈模型;根据纳什均衡点选择最优窗口大小;
所述基于博弈论的动态窗口选择方法包括:
(1)建立攻防博弈模型:
将信任管理系统与攻击者之间的策略交互建立为一个同时行动的二元非合作攻防零和博弈模型G;
G=<{Ni},{Ai},u>,i∈{1,2};
其中,G表示该二元非合作攻防零和博弈模型,{Ni}表示参与者集合,{Ai}表示各参与者的策略,u表示各参与者的支付函数;
(2)量化攻防策略集:
2a)利用下式量化攻击者策略集:
Figure FDA0002569616480000011
其中,A1表示攻击者的策略集,q表示攻击者发动攻击的概率,
Figure FDA0002569616480000012
表示攻击者选择以攻击概率q发动攻击,n是大于1的正整数,∈表示属于符号,N+表示正整数集;
2b)利用下式量化信任管理系统的策略集:
Figure FDA0002569616480000013
其中,A2表示信任管理系统的策略集,w表示窗口大小,
Figure FDA0002569616480000014
表示系统选择大小为w的窗口计算节点的信任值,wmin表示窗口最小值,wmax表示窗口最大值,m为大于1的正整数,∈表示属于符号,N+表示正整数集;
(3)求解博弈模型:
3a)采用数值模拟法计算攻击者和信任管理系统各策略组合下的支付函数值,用支付矩阵U表示;
3b)通过极小极大定理计算混合策略下的纳什均衡(x*,y*),其中,
Figure FDA0002569616480000021
表示攻击者的最优策略的概率分布向量,
Figure FDA0002569616480000022
表示攻击者选择攻击策略集中
Figure FDA0002569616480000023
的概率为
Figure FDA0002569616480000024
Figure FDA0002569616480000025
表示信任管理系统的最优策略的概率分布向量,
Figure FDA0002569616480000026
表示系统选择防御策略集中
Figure FDA0002569616480000027
的概率为
Figure FDA0002569616480000028
3c)将混合策略下的纳什均衡的概率分布与信任管理系统策略集组合成为匹配矩阵M:
Figure FDA0002569616480000029
其中,M表示
Figure FDA00025696164800000210
的匹配矩阵,y*表示混合策略下的纳什均衡的概率分布,A2表示信任管理系统策略集,wmin和wmax分别表示窗口最小值和最大值;
(4)选择最优窗口:在匹配矩阵M中选择概率最大的策略所对应的窗口值为作为最优窗口大小。
2.如权利要求1所述的基于博弈论的动态窗口选择方法,其特征在于,所述(1)的支付函数是指博弈过程中参与者根据彼此行动所能获得的收益值;在信任管理系统和攻击者之间的博弈中,支付函数指的是攻击给网络带来的损失,该损失由具体攻击行为类型和网络环境决定。
3.如权利要求1所述的基于博弈论的动态窗口选择方法,其特征在于,所述3a)中的支付矩阵是指,一个
Figure FDA00025696164800000211
的矩阵,ujk表示矩阵中第j行第k列的元素,
Figure FDA0002569616480000031
对应博弈模型中攻击者选择第j个策略与系统选择第k个策略情况下支付函数的值。
4.如权利要求1所述的基于博弈论的动态窗口选择方法,其特征在于,所述3a)中的数值模拟方法是指,对于攻击者的策略集中的每一个策略,运行50000次试验得到系统选择不同窗口下的支付函数值,取平均值作为支付矩阵中对应的函数值。
5.如权利要求1所述的基于博弈论的动态窗口选择方法,其特征在于,所述3b)中的极小极大定理是指,通用的寻找混合策略下同时行动的零和博弈的纳什均衡的方法;设x为一个n+1维向量,表示攻击者策略集中可能选择的各攻击策略
Figure DEST_PATH_FDA0001356941950000031
的概率分布,y为一个
Figure DEST_PATH_FDA0001356941950000032
维向量,表示系统策略集中可能选择的各系统策略
Figure DEST_PATH_FDA0001356941950000033
的概率分布,计算以下两式:
x*=arg maxxminyxUyT
y*=arg minymaxxxUyT
其中,x*表示攻击者的最优策略概率分布,y*表示系统的最优策略概率分布,arg maxxf(x)表示求使得f(x)值最大的x的取值,min表示求最小值符号,yT表示向量y的转置,argminyf(y)表示求使得f(y)值最小的y的取值,max表示求最大值符号。
CN201710600172.6A 2017-07-21 2017-07-21 基于博弈论的动态窗口选择方法及无线网络信任管理系统 Active CN107612878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710600172.6A CN107612878B (zh) 2017-07-21 2017-07-21 基于博弈论的动态窗口选择方法及无线网络信任管理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710600172.6A CN107612878B (zh) 2017-07-21 2017-07-21 基于博弈论的动态窗口选择方法及无线网络信任管理系统

Publications (2)

Publication Number Publication Date
CN107612878A CN107612878A (zh) 2018-01-19
CN107612878B true CN107612878B (zh) 2020-08-25

Family

ID=61059883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710600172.6A Active CN107612878B (zh) 2017-07-21 2017-07-21 基于博弈论的动态窗口选择方法及无线网络信任管理系统

Country Status (1)

Country Link
CN (1) CN107612878B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474785B (zh) * 2018-05-10 2023-04-28 中国信息通信研究院 一种面向雾计算网络的网络补丁资源分配方法及系统
CN108718452B (zh) * 2018-05-21 2020-05-12 电子科技大学 一种基于博弈论最优puea方式的动态干扰方法
CN110324332A (zh) * 2019-06-28 2019-10-11 重庆大学 一种用于微电网在网络攻击下的安全控制方法
CN111464501A (zh) * 2020-03-09 2020-07-28 南京邮电大学 一种面向数据服务的自适应入侵响应博弈方法及其系统
CN112488486B (zh) * 2020-11-25 2022-04-15 吉林大学 一种基于零和博弈的多准则决策方法
CN113346969B (zh) * 2021-06-07 2022-04-15 中山大学 一种基于门控循环单元的频谱感知方法及系统
CN115077514B (zh) * 2022-07-19 2022-11-11 香港中文大学(深圳) 一种基于动态窗口的无线电地图构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643259B1 (en) * 1999-11-12 2003-11-04 3Com Corporation Method for optimizing data transfer in a data network
CN102202322A (zh) * 2011-04-08 2011-09-28 上海交通大学 基于博弈论的无线传感器网络对抗干扰的方法
CN105142174A (zh) * 2015-09-22 2015-12-09 镇江锐捷信息科技有限公司 一种基于博弈论的认知无线网络干扰抑制方法
CN106790213A (zh) * 2017-01-10 2017-05-31 西安电子科技大学 一种中心式认知无线网络中基于嵌套博弈的信任管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643259B1 (en) * 1999-11-12 2003-11-04 3Com Corporation Method for optimizing data transfer in a data network
CN102202322A (zh) * 2011-04-08 2011-09-28 上海交通大学 基于博弈论的无线传感器网络对抗干扰的方法
CN105142174A (zh) * 2015-09-22 2015-12-09 镇江锐捷信息科技有限公司 一种基于博弈论的认知无线网络干扰抑制方法
CN106790213A (zh) * 2017-01-10 2017-05-31 西安电子科技大学 一种中心式认知无线网络中基于嵌套博弈的信任管理方法

Also Published As

Publication number Publication date
CN107612878A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
CN107612878B (zh) 基于博弈论的动态窗口选择方法及无线网络信任管理系统
Li et al. SINR-based DoS attack on remote state estimation: A game-theoretic approach
CN112749392B (zh) 一种联邦学习中异常节点的检测方法及系统
CN112668044B (zh) 面向联邦学习的隐私保护方法及装置
CN115943382A (zh) 用于防御对联邦学习系统的对抗性攻击的方法和装置
Rafi et al. Fairness and privacy preserving in federated learning: A survey
CN108701260B (zh) 用于辅助决策的系统和方法
Wang et al. Protecting semantic trajectory privacy for VANET with reinforcement learning
Tsikerdekis Identity deception prevention using common contribution network data
CN115442099B (zh) 一种基于分布式gan的隐私保护数据共享方法及系统
CN106846031A (zh) 基于信誉系统和Stackelberg博弈的可信P2P流媒体带宽定价方法
Jin et al. On the security-privacy tradeoff in collaborative security: A quantitative information flow game perspective
CN110795768A (zh) 基于私有数据保护的模型学习方法、装置及系统
CN114363043A (zh) 一种对等网络中基于可验证聚合和差分隐私的异步联邦学习方法
Hu et al. Shield Against Gradient Leakage Attacks: Adaptive Privacy-Preserving Federated Learning
Zhou et al. A multi-shuffler framework to establish mutual confidence for secure federated learning
Vuppula et al. Blockchain‐oriented location privacy preserving for cooperative spectrum sensing in 6G wireless networks
Zhang et al. Visual object detection for privacy-preserving federated learning
Fangwei et al. Reputation-based secure spectrum situation fusion in distributed cognitive radio networks
Zhao et al. Local differentially private federated learning with homomorphic encryption
Garms et al. Reputation schemes for pervasive social networks with anonymity
Masuda et al. Model fragmentation, shuffle and aggregation to mitigate model inversion in federated learning
Wang et al. Optimal network defense strategy selection based on Bayesian game
Wang et al. Jamming defense against a resource-replenishing adversary in multi-channel wireless systems
Li et al. PAFL: Parameter-Authentication Federated Learning for Internet of Vehicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant