CN107611978A - A kind of tidal current computing method of consideration UPFC control models - Google Patents

A kind of tidal current computing method of consideration UPFC control models Download PDF

Info

Publication number
CN107611978A
CN107611978A CN201710833920.5A CN201710833920A CN107611978A CN 107611978 A CN107611978 A CN 107611978A CN 201710833920 A CN201710833920 A CN 201710833920A CN 107611978 A CN107611978 A CN 107611978A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
upfc
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710833920.5A
Other languages
Chinese (zh)
Inventor
吴威
孙建龙
王海潜
吴熙
周正宇
王亮
吴晨
王荃荃
刘柏良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Southeast University
State Grid Jiangsu Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Southeast University
State Grid Jiangsu Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Southeast University, State Grid Jiangsu Electric Power Co Ltd, Economic and Technological Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710833920.5A priority Critical patent/CN107611978A/en
Publication of CN107611978A publication Critical patent/CN107611978A/en
Pending legal-status Critical Current

Links

Abstract

The invention discloses a kind of tidal current computing method of consideration UPFC control models.For operations of the UPFC under four kinds of different control models (voltage-regulation control model, phase angle adjustment control pattern, impedance adjustment control pattern and constant dc power control pattern), with bus i voltageTo refer to, by UPFC control voltageBe further broken intoComponent in the same directionWith withVertical componentAnd by line currentAlso withFor reference, be decomposed intoComponent I in the same directionlinepWith withVertical component IlineqUtilize the tide model under various control modes, solution draws UPFC injecting power, and iterates to calculate corresponding parameter respectively until convergence, is finally derived suitable for tidal current computing method when UPFC is these four mode of operations respectively under four kinds of different control models.The research of tidal current computing method during the invention aims to by working in different control models to the UPFC in power system, being calculated for the complicated trend distribution of the power system containing UPFC and optimization problem provides effective reference.

Description

A kind of tidal current computing method of consideration UPFC control models
Technical field
The present invention relates to power system security and control field, more particularly to a kind of trend of consideration UPFC control models Computational methods.
Background technology
THE UPFC (unified power flow controller, UPFC) has very comprehensive compensation Control function, individually controllable parallel reactive compensation can be not only provided and carry out burning voltage, and can be by injecting phase to circuit The free series compensating voltage in angle, or voltage, impedance and the phase angle being selectively controlled on transmission line, realize active and nothing The control of work(trend.In addition, UPFC also has certain help to system transient modelling and dynamic stability.The first UPFC of China shows The success of the western looped network UPFC engineerings in model engineering Nanjing, which puts into operation, to be also demonstrated, and UPFC has powerful power flow regulating ability, Neng Goushi The local transfer of existing trend, the utilization rate of transmission line of electricity is improved, improves system transmission line capability.
With UPFC application, UPFC provides new control device for power system, in order to give full play to UPFC control Effect, excavates existing grid power transmission potentiality, realizes systematic economy safe operation, it is necessary to carry out trend to the power system containing UPFC Optimizing research.And when UPFC runs on different control models, the trend distribution of system also can be influenced to different extents, because This trend to the power system containing UPFC should just take into full account UPFC control model when calculating.
The content of the invention
In order to solve above-mentioned problem, the present invention provides a kind of Load flow calculation side of consideration UPFC control models, pin To operations of the UPFC under four kinds of different control models, using the tide model under various control modes, solution draws UPFC note Enter power, and corresponding parameter is iterated to calculate respectively until convergence, is finally derived suitable respectively under four kinds of different control models Tidal current computing method during for UPFC in these four mode of operations.So as to divide for the complicated trend of the power system containing UPFC Cloth calculates and optimization problem provides effective reference, to provide a kind of tide of consideration UPFC control models up to this purpose, the present invention Flow calculation methodologies, comprise the following steps:
1) UPFC is run under four kinds of different control models, and the control model includes voltage-regulation control model, phase angle Adjustment control pattern, impedance adjustment control pattern and constant dc power control pattern;
2) with bus i voltageTo refer to, by UPFC control voltageBe further broken intoPoint in the same direction AmountWith withVertical componentAnd by line currentAlso withFor reference, be decomposed intoComponent in the same direction IlinepWith withVertical component Ilineq,
3) UPFC injecting power is drawn using the tide model under corresponding control mode, solution;
4) corresponding parameter is iterated to calculate respectively under four kinds of different control models until convergence;
5) finally derive respectively suitable for tidal current computing method when UPFC is these four mode of operations.
Further improved as of the invention, the tidal current computing method derivation of the voltage-regulation control model is as follows:
(1) sending end voltage is setPhase angle is 0, and with, will for referenceBe further broken intoComponent in the same direction With withVertical componentThen there is following equation to set up:
And have,
, will by the definition of voltage-regulation control modelAmplitude is controlled in Vref, then have:
V′sep=Vref-Vi
V′seq=0;
(2) by line currentWithFor reference, be decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq, can obtain:
Vsep+jVseq=V 'sep+jV′seq+j(Ilinep+jIlineq)Xse
=Vref-Vi-IlineqXse+jIlinepXse
That is,
Vsep=Vref-Vi-IlineqXse
Vseq=IlinepXse
(3) during Load flow calculation, if the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentThen have:
(4) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection Power, trend is calculated repeatedly until bus m voltage magnitudes and VrefError be less than set-point ε.
Further improved as of the invention, the tidal current computing method derivation of the phase angle adjustment control pattern is as follows:
(1) sending end voltage is setPhase angle be 0, θrefIt is for the phase angle difference between bus m and bus i, UPFC series sides is electric PressureBe decomposed intoThe component of same-phaseWith withVertical componentWork as θrefFor timing, can try to achieveAmplitude and Its transverse and longitudinal component amplitude:
V′seq=Vmsin|θref|;
V′sep=Vi-Vm cosθref
(2) definition adjusted by phase angle, bus i and bus m voltage magnitudes are equal, i.e. Vi=Vm, above formula is deformed:
Calculate aboveThe size of amplitude, forPhase angle, it is contemplated that θrefThere is positive and negative point,The specific table of phase angle It is as follows up to formula:
In formula, work as θrefDuring less than zero, n=1;Work as θrefDuring more than or equal to zero, n=2.
ForThe direction of component, no matter θrefMore than zero or less than zero,Phase angle be π, and work as θrefDuring more than zero,PhaseWork as θrefDuring more than zero,Phase angle beThen have:
(3) line currentWithFor with reference to carry out Orthogonal Decomposition, decomposition obtain withComponent I in the same directionlinepWith withVertical component Ilineq, then have:
I.e.
So have:
(4) during Load flow calculation, the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentThe trend of kth+1 is calculated according to below equation:
(5) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection Power, trend is calculated repeatedly until bus m and bus i phase angle differences and θrefError be less than set-point ε.
Further improved as of the invention, the tidal current computing method derivation of the impedance-compensated control model is as follows:
(1) Z is analyzedupfcWithRelation, by Zupfc=Rupfc+jX′upfc, X 'upfc=Xupfc+XseThen have:
(2) with sending end voltageTo refer to, and willBe decomposed intoComponent in the same directionWith withVertical componentBy line currentBe decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq.Following public affairs can be obtained Formula:
It is existing:
V′sep=Ilineq(Xupfc+Xse)-IlinepRupfc
V′seq=-IlineqR-Ilinep(Xupfc+Xse);
Further arrange, can obtain:
According toWithBoth relations, can be obtained:
Vsep=IlineqXupfc-IlinepRupfc
Vseq=-IlineqR-IlinepXupfc
(3) during Load flow calculation, the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentThe trend of kth+1 is calculated according to below equation:
(4) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth note Enter power, calculate trend repeatedly until the impedance between bus m and bus i and ZrefError be less than set-point ε.
Further improved as of the invention, the tidal current computing method derivation of the constant dc power control pattern is as follows:
(1) Line Flow that UPFC is controlled is set as Pref+jQref, i.e., the trend on control circuit m-j is Pref+jQref, If the trend on circuit i-m is Pim+jQim, then UPFC be to bus m injecting power:
Have again:
(2) formula of simultaneous two, solves VseAnd θse.By VseAnd θseIt is brought into UPFC injecting power models, UPFC can be obtained The injecting power of each bus:Pi、QiAnd Pk
(3) each bus injecting powers of UPFC is P when setting the t times Load flow calculationi (t)WithTide The trend that stream calculation is obtained on circuit i-m isThen calculated according to above-mentioned methodWithAnd then ask Go out Pi (t+1)WithComputing system trend instructs to meet repeatedly:
Wherein, ε is convergence precision.
The invention discloses a kind of tidal current computing method of consideration UPFC control models, for UPFC in four kinds of different controls Under pattern (voltage-regulation control model, phase angle adjustment control pattern, impedance adjustment control pattern and constant dc power control pattern) Operation, with bus i voltageTo refer to, by UPFC control voltageBe further broken intoComponent in the same directionWith withVertical componentAnd by line currentAlso withFor reference, be decomposed intoComponent I in the same directionlinep With withVertical component Ilineq, using the tide model under various control modes, solution draws UPFC injecting power, and Iterate to calculate corresponding parameter respectively under four kinds of different control models until convergence, finally derive respectively suitable for UPFC this four Tidal current computing method when in kind mode of operation.The invention aims to by working in difference to the UPFC in power system The research of tidal current computing method during control model, calculated for the complicated trend distribution of the power system containing UPFC and optimization problem carries For effective reference.
Brief description of the drawings
Fig. 1 is Load flow calculation flow charts of the UPFC under each control model;
Fig. 2 is IEEE30 system diagrams;
Fig. 3 is UPFC power injection model figures;
Fig. 4 is UPFC series side equivalent circuit diagrams;
Fig. 5 is UPFC voltage dominant vector figures;
Fig. 6 is UPFC phase angle adjustment control vector phasor diagrams;
Fig. 7 is the impedance-compensated control model vectograms of UPFC;
Fig. 8 is UPFC constant dc power control pattern phasor diagrams;
When Fig. 9 is Phase angle control patternWithVector relations figure;
Embodiment
The present invention is described in further detail with embodiment below in conjunction with the accompanying drawings:
The present invention provides a kind of tidal current computing method of consideration UPFC control models, for UPFC in four kinds of different control moulds Operation under formula, using the tide model under various control modes, solution draws UPFC injecting power, and in four kinds of different controls Corresponding parameter is iterated to calculate respectively under molding formula until convergence, is finally derived suitable for UPFC in these four mode of operations respectively Tidal current computing method when middle.So as to be provided effectively for the complicated trend distribution calculating of the power system containing UPFC and optimization problem Reference.
A kind of tidal current computing method of consideration UPFC control models as shown in Figure 1 of the invention, comprises the following steps:
1) UPFC is run under four kinds of different control models, and the control model includes voltage-regulation control model, phase angle Adjustment control pattern, impedance adjustment control pattern and constant dc power control pattern;
2) with bus i voltageTo refer to, by UPFC control voltageBe further broken intoPoint in the same direction AmountWith withVertical componentAnd by line currentAlso withFor reference, be decomposed intoComponent in the same direction IlinepWith withVertical component Ilineq,
3) UPFC injecting power is drawn using the tide model under corresponding control mode, solution;
4) corresponding parameter is iterated to calculate respectively under four kinds of different control models until convergence;
5) finally derive respectively suitable for tidal current computing method when UPFC is these four mode of operations.
The tidal current computing method of voltage-regulation control model of the present invention derives as follows:
(1) sending end voltage is setPhase angle is 0, and with, will for referenceBe further broken intoComponent in the same direction With withVertical componentThen there is following equation to set up:
And have,
, will by the definition of voltage-regulation control modelAmplitude is controlled in Vref, then have:
V′sep=Vref-Vi
V′seq=0;
(2) by line currentWithFor reference, be decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq, can obtain:
That is,
Vsep=Vref-Vi-IlineqXse
Vseq=IlinepXse
(3) during Load flow calculation, if the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentThen have:
(4) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection Power, trend is calculated repeatedly until bus m voltage magnitudes and VrefError be less than set-point ε.
The tidal current computing method of phase angle adjustment control pattern of the present invention derives as follows:
(1) sending end voltage is setPhase angle be 0, θrefIt is for the phase angle difference between bus m and bus i, UPFC series sides is electric PressureBe decomposed intoThe component of same-phaseWith withVertical componentWork as θrefFor timing, can try to achieveAmplitude and Its transverse and longitudinal component amplitude:
V′seq=Vmsin|θref|;
V′sep=Vi-Vm cosθref
(2) definition adjusted by phase angle, bus i and bus m voltage magnitudes are equal, i.e. Vi=Vm, above formula is deformed:
Calculate aboveThe size of amplitude, forPhase angle, it is contemplated that θrefThere is positive and negative point,The specific table of phase angle It is as follows up to formula:
In formula, work as θrefDuring less than zero, n=1;Work as θrefDuring more than or equal to zero, n=2.
ForThe direction of component, no matter θrefMore than zero or less than zero,Phase angle be π, and work as θrefDuring more than zero,PhaseWork as θrefDuring more than zero,Phase angle beThen have:
(3) line currentWithFor with reference to carry out Orthogonal Decomposition, decomposition obtain withComponent I in the same directionlinepWith withVertical component Ilineq, then have:
I.e.
So have:
(4) during Load flow calculation, the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentThe trend of kth+1 is calculated according to below equation:
(5) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection Power, trend is calculated repeatedly until bus m and bus i phase angle differences and θrefError be less than set-point ε.
The tidal current computing method of impedance-compensated control model of the present invention derives as follows:
(1) Z is analyzedupfcWithRelation, by Zupfc=Rupfc+jX′upfc, X 'upfc=Xupfc+XseThen have:
(2) with sending end voltageTo refer to, and willBe decomposed intoComponent in the same directionWith withVertical componentBy line currentBe decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq.Following public affairs can be obtained Formula:
It is existing:
V′sep=Ilineq(Xupfc+Xse)-IlinepRupfc
V′seq=-IlineqR-Ilinep(Xupfc+Xse);
Further arrange, can obtain:
According toWithBoth relations, can be obtained:
Vsep=IlineqXupfc-IlinepRupfc
Vseq=-IlineqR-IlinepXupfc
(3) during Load flow calculation, the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentThe trend of kth+1 is calculated according to below equation:
(4) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection Power, trend is calculated repeatedly until the impedance between bus m and bus i and ZrefError be less than set-point ε.
The tidal current computing method of constant dc power control pattern of the present invention derives as follows:
(1) Line Flow that UPFC is controlled is set as Pref+jQref, i.e., the trend on control circuit m-j is Pref+jQref, If the trend on circuit i-m is Pim+jQim, then UPFC be to bus m injecting power:
Have again:
(2) formula of simultaneous two, solves VseAnd θse.By VseAnd θseIt is brought into UPFC injecting power models, UPFC can be obtained The injecting power of each bus:Pi、QiAnd Pk
(3) each bus injecting powers of UPFC is P when setting the t times Load flow calculationi (t)With The trend that Load flow calculation is obtained on circuit i-m isThen calculated according to above-mentioned methodWithAnd then Obtain Pi (t+1)WithComputing system trend instructs to meet repeatedly:
Wherein, ε is convergence precision.
Load flow calculation flow charts of the UPFC under each control model is chosen IEEE30 bus test systems and entered as shown in Figure 1 Row calculates analysis, and system wiring figure is as shown in Figure 2.UPFC is arranged between circuit 4-6, addition UPFC outlets side bus 31, is System reference power is 100MVA, and other schematic diagrames are as shown in figs. 3-9.
To UPFC control parameters (Vse、θseAnd Vk) random value, parameters span is:0≤Vse≤ 0.12,0≤ θse≤ 2 π, 0.98≤Vk≤1.06.On the premise of the feasibility of parameter is calculated, one group of parameter as shown in table 1 have chosen.
Table 1UPFC control parameters
The flow calculation program containing UPFC based on injected power method is worked out, brings UPFC control parameter into injecting power table Up in formula, Load flow calculation is carried out, while calculate four control targe values corresponding under this group of UPFC control parameter, i.e. circuit 4- 31 trend, the phase angle difference of bus 31,6, the voltage magnitude of bus 31 and UPFC compensating impedances, as a result as shown in table 2.
Table 2UPFC control targe result of calculations
According to tidal current computing methods of the UPFC derived in upper one section under various control models, establishment considers UPFC controls The flow calculation program of pattern, each control targe calculates the trend of the system under each control model as inputting using in table 2 And now UPFC control parameter, result of calculation are as shown in table 3.
Calculation of tidal current (p.u.) under each control models of table 3UPFC
It can be found that following problem from table 3:Voltage-regulation controls the UPFC control ginsengs after being calculated with phase angle adjustment control Number is changed, and the trend of simultaneity factor also has obvious difference with other two kinds of control models.
This is determined by the control feature of voltage-regulation control model and phase angle adjustment control pattern.Both control moulds Formula also adds other restriction conditions while being controlled to voltage and phase angle, requires bus phase angle phase during voltage mode control Together, and during phase angle adjustment control require that voltage magnitude is identical.Due to the presence of above additional conditions, for voltage-regulation control and Phase angle adjustment control can not reach the original flow state of system.However, for the ease of analyzing each control model in system N-1 Afterwards to the influence of system load flow, ensure that initial trend is unanimously necessary under each control model.
Solution:It can only be adjusted one in voltage magnitude or phase angle in view of voltage-regulation control and phase angle adjustment control It is individual, and constant dc power control and impedance-compensated control can adjust busbar voltage amplitude and phase angle simultaneously, therefore the latter can realize System is consistent with the former trend distribution.So four kinds of controls can be divided into two groups:First group is phase angle adjustment control, calmly Power Control and impedance-compensated control, second group is voltage-regulation control, constant dc power control and impedance-compensated control.Respectively On the basis of the trend distribution controlled by phase angle adjustment control and voltage-regulation, by under constant dc power control and impedance-compensated control model Trend be tuned into a reference value, realizing each group of control model has the initial trend of identical.
Analyzed more than, during using Phase angle control desired value as 0.0524rad, calculate constant dc power control pattern and impedance benefit The respective control targe of control model is repaid, as shown in table 4.
4 first groups of each control targe values of control model of table
During using voltage control targe value as 1.04p.u., constant dc power control pattern and impedance-compensated control model are calculated each Control targe, as shown in table 5.
5 second groups of each control targe values of control model of table
By verification, the control targe in table 4 and 5 is brought into calculating, the result of the Load flow calculation under each control model It can be consistent.This result also demonstrates the system load flow calculating under different control models on UPFC of this patent proposition The correctness of formula also calculates the electric power system tide containing UPFC with advanced and provides important references.
The above described is only a preferred embodiment of the present invention, it is not the limit for making any other form to the present invention System, and any modification made according to technical spirit of the invention or equivalent variations, still fall within present invention model claimed Enclose.

Claims (5)

1. a kind of tidal current computing method of consideration UPFC control models, comprises the following steps, it is characterised in that:
1) UPFC is run under four kinds of different control models, and the control model includes voltage-regulation control model, phase angle is adjusted Control model, impedance adjustment control pattern and constant dc power control pattern;
2) with bus i voltageTo refer to, by UPFC control voltageBe further broken intoComponent in the same direction With withVertical componentAnd by line currentAlso withFor reference, be decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq,
3) UPFC injecting power is drawn using the tide model under corresponding control mode, solution;
4) corresponding parameter is iterated to calculate respectively under four kinds of different control models until convergence;
5) finally derive respectively suitable for tidal current computing method when UPFC is these four mode of operations.
A kind of 2. tidal current computing method of consideration UPFC control models according to claim 1, it is characterised in that:The electricity Press the tidal current computing method derivation of adjustment control pattern as follows:
(1) sending end voltage is setPhase angle is 0, and with, will for referenceBe further broken intoComponent in the same directionWith with Vertical componentThen there is following equation to set up:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>;</mo> </mrow>
And have,
<mrow> <mrow> <mo>|</mo> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msub> <mo>|</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>&amp;PlusMinus;</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>;</mo> </mrow>
, will by the definition of voltage-regulation control modelAmplitude is controlled in Vref, then have:
V′sep=Vref-Vi
V′seq=0;
(2) by line currentWithFor reference, be decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq, can :
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
That is,
Vsep=Vref-Vi-IlineqXse
Vseq=IlinepXse
(3) during Load flow calculation, if the voltage for the bus i that kth time Load flow calculation obtains isIt is with line current Then have:
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>V</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> <mo>|</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>a</mi> <mi>n</mi> <mi>g</mi> <mi>l</mi> <mi>e</mi> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
(4) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection work( Rate, trend is calculated repeatedly until bus m voltage magnitudes and VrefError be less than set-point ε.
A kind of 3. tidal current computing method of consideration UPFC control models according to claim 1, it is characterised in that:The phase The tidal current computing method of angle adjustment control pattern derives as follows:
(1) sending end voltage is setPhase angle be 0, θrefFor the phase angle difference between bus m and bus i, by UPFC series side voltages Be decomposed intoThe component of same-phaseWith withVertical componentWork as θrefFor timing, can try to achieveAmplitude and its horizontal stroke Vertical component amplitude:
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mi>m</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>m</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </msqrt> <mo>;</mo> </mrow>
V′seq=Vmsin|θref|;
V′sep=Vi-Vmcosθref
(2) definition adjusted by phase angle, bus i and bus m voltage magnitudes are equal, i.e. Vi=Vm, above formula is deformed:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mi>m</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <msub> <mi>V</mi> <mi>m</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </msqrt> <mo>=</mo> <msqrt> <mrow> <mn>2</mn> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>V</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <msqrt> <mrow> <mn>2</mn> <mo>-</mo> <mn>2</mn> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </msqrt> <mo>=</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>|</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>|</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>|</mo> </mrow> <mn>2</mn> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>;</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </msqrt> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>|</mo> <mrow> <mi>sin</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <mi>sin</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mi>cos</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
Calculate aboveThe size of amplitude, forPhase angle, it is contemplated that θrefThere is positive and negative point,The expression of phase angle It is as follows:
<mrow> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n</mi> </msup> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mo>;</mo> </mrow>
In formula, work as θrefDuring less than zero, n=1;Work as θrefDuring more than or equal to zero, n=2;
ForThe direction of component, no matter θrefMore than zero or less than zero,Phase angle be π, and work as θrefDuring more than zero,'s PhaseWork as θrefDuring more than zero,Phase angle beThen have:
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>;</mo> </mrow>
(3) line currentWithFor with reference to carry out Orthogonal Decomposition, decomposition obtain withComponent I in the same directionlinepWith withHang down Straight component Ilineq, then have:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mi>j</mi> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
I.e.
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
So have:
<mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>V</mi> <mi>i</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
(4) during Load flow calculation, the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentRoot The trend of kth+1 is calculated according to below equation:
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msubsup> <mi>V</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mn>2</mn> <msubsup> <mi>V</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <msub> <mi>&amp;theta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> <mo>|</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>a</mi> <mi>n</mi> <mi>g</mi> <mi>l</mi> <mi>e</mi> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
(5) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection work( Rate, trend is calculated repeatedly until bus m and bus i phase angle differences and θrefError be less than set-point ε.
A kind of 4. tidal current computing method of consideration UPFC control models according to claim 1, it is characterised in that:The resistance The tidal current computing method of anti-compensation control model derives as follows:
(1) Z is analyzedupfcWithRelation, by Zupfc=Rupfc+jX′upfc, X 'upfc=Xupfc+XseThen have:
<mrow> <msubsup> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>Z</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
(2) with sending end voltageTo refer to, and willBe decomposed intoComponent in the same directionWith withVertical componentBy line Road electric currentBe decomposed intoComponent I in the same directionlinepWith withVertical component Ilineq.Formula below can be obtained:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>Z</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mi>R</mi> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
It is existing:
V′sep=Ilineq(Xupfc+Xse)-IlinepRupfc
V′seq=-IlineqR-Ilinep(Xupfc+Xse);
Further arrange, can obtain:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mi>R</mi> <mo>-</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>-</mo> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mi>R</mi> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>jI</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>jX</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
According toWithBoth relations, can be obtained:
Vsep=IlineqXupfc-IlinepRupfc
Vseq=-IlineqR-IlinepXupfc
(3) during Load flow calculation, the voltage for the bus i that kth time Load flow calculation obtains isIt is with line currentRoot The trend of kth+1 is calculated according to below equation:
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mi>R</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mn>1</mn> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mi>R</mi> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mrow> <mi>u</mi> <mi>p</mi> <mi>f</mi> <mi>c</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> <mo>|</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>a</mi> <mi>n</mi> <mi>g</mi> <mi>l</mi> <mi>e</mi> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>p</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>jV</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
(4) willWithIt is brought into UPFC power injection models, obtains+1 Load flow calculation UPFC of kth injection work( Rate, trend is calculated repeatedly until the impedance between bus m and bus i and ZrefError be less than set-point ε.
A kind of 5. tidal current computing method of consideration UPFC control models according to claim 1, it is characterised in that:It is described fixed The tidal current computing method of power control mode derives as follows:
(1) Line Flow that UPFC is controlled is set as Pref+jQref, i.e., the trend on control circuit m-j is Pref+jQrefIf Trend on circuit i-m is Pim+jQim, then UPFC be to bus m injecting power:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>m</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Have again:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>V</mi> <mi>m</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>m</mi> </msub> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>X</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
(2) formula of simultaneous two, solves VseAnd θse.By VseAnd θseIt is brought into UPFC injecting power models, it is each UPFC can be obtained The injecting power of bus:Pi、QiAnd Pk
(3) each bus injecting powers of UPFC is P when setting the t times Load flow calculationi (t)WithTrend meter Calculating the trend obtained on circuit i-m isThen calculated according to above-mentioned methodWithAnd then obtain Pi (t +1)WithComputing system trend instructs to meet repeatedly:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>|</mo> <mrow> <msub> <mi>V</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mi>&amp;epsiv;</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>|</mo> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mi>&amp;epsiv;</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>|</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mi>&amp;epsiv;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Wherein, ε is convergence precision.
CN201710833920.5A 2017-09-15 2017-09-15 A kind of tidal current computing method of consideration UPFC control models Pending CN107611978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710833920.5A CN107611978A (en) 2017-09-15 2017-09-15 A kind of tidal current computing method of consideration UPFC control models

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710833920.5A CN107611978A (en) 2017-09-15 2017-09-15 A kind of tidal current computing method of consideration UPFC control models

Publications (1)

Publication Number Publication Date
CN107611978A true CN107611978A (en) 2018-01-19

Family

ID=61060301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710833920.5A Pending CN107611978A (en) 2017-09-15 2017-09-15 A kind of tidal current computing method of consideration UPFC control models

Country Status (1)

Country Link
CN (1) CN107611978A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218531A (en) * 2013-04-15 2013-07-24 河海大学 Remote voltage control mode accounted node type extended continuous load flow algorithm
CN104779609A (en) * 2014-12-31 2015-07-15 国家电网公司 Power flow cooperative control method for interconnected power grid
CN106549384A (en) * 2016-12-09 2017-03-29 国网江苏省电力公司经济技术研究院 A kind of general tidal current computing method containing UPFC power systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218531A (en) * 2013-04-15 2013-07-24 河海大学 Remote voltage control mode accounted node type extended continuous load flow algorithm
CN104779609A (en) * 2014-12-31 2015-07-15 国家电网公司 Power flow cooperative control method for interconnected power grid
CN106549384A (en) * 2016-12-09 2017-03-29 国网江苏省电力公司经济技术研究院 A kind of general tidal current computing method containing UPFC power systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈曦: "UPFC提高电力系统电压稳定控制研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Similar Documents

Publication Publication Date Title
CN104868500B (en) Method for parallel operation control suitable to be used for microgrid inverter
CN106549384B (en) A kind of general tidal current computing method of the electric system containing UPFC
WO2018121732A1 (en) Non-linearity state observer-based distributed voltage control method for microgrid
CN105226653A (en) The exact linearization method of transformer model in a kind of active distribution network optimal load flow
CN103971026B (en) General method for calculating tide of positive power distribution networks
CN105322546B (en) AC/DC decoupling mixed current algorithm
CN107093901B (en) A kind of machine-electricity transient model and emulation mode of Distributed Power Flow controller
CN105719196A (en) Active power distribution network pressure reactive power control method based on intelligent soft normally open point
CN110504691A (en) It is a kind of meter and VSC control mode alternating current-direct current power distribution network optimal load flow calculation method
CN103279590B (en) The initial self-correcting computational methods of interface power in power system hybrid real-time simulation
CN108880300B (en) Double-fed fan rectifier impedance calculation method based on double closed-loop control
CN108134401A (en) Ac/dc Power Systems multiple target tide optimization and control method
CN100570983C (en) The online merging method of multi-region electric network tide model
CN102761128A (en) On-line coordinated automatic control method for economical operation and reactive power optimization of transformer
CN105914783A (en) Island type microgrid small interference stability analysis method
CN103208818A (en) Distribution network loop closing current calculating method based on distributed power supply
CN106655199A (en) VSC-HVDC power control method for improving voltage stability
CN111697588B (en) Prevention control method considering IPFC control mode
CN110535189A (en) Distributed generation resource low voltage traversing control method and system
CN106159955B (en) Electric system distributed optimal power flow method based on continuous punishment Duality Decomposition
CN105490282A (en) Microgrid real-time voltage control method considering micro power source reactive output balance degree
CN105098798B (en) The control method that a kind of reactive power of distributed power source in parallel is divided equally
CN104899396A (en) Fast decoupled flow calculation method of modified coefficient matrix
CN106655234A (en) Method for analyzing influence of line impedance and call wire power on generalized short-circuit ratio
CN105119269B (en) A kind of probabilistic loadflow computational methods for considering Multi-terminal Unified Power Flow Controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180119

RJ01 Rejection of invention patent application after publication