CN107609684A - A kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor - Google Patents

A kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor Download PDF

Info

Publication number
CN107609684A
CN107609684A CN201710738641.0A CN201710738641A CN107609684A CN 107609684 A CN107609684 A CN 107609684A CN 201710738641 A CN201710738641 A CN 201710738641A CN 107609684 A CN107609684 A CN 107609684A
Authority
CN
China
Prior art keywords
mrow
msubsup
munder
msub
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710738641.0A
Other languages
Chinese (zh)
Other versions
CN107609684B (en
Inventor
董树锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Wanke Amperex Technology Ltd
Original Assignee
Zhejiang Wanke Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Wanke Amperex Technology Ltd filed Critical Zhejiang Wanke Amperex Technology Ltd
Priority to CN201710738641.0A priority Critical patent/CN107609684B/en
Publication of CN107609684A publication Critical patent/CN107609684A/en
Application granted granted Critical
Publication of CN107609684B publication Critical patent/CN107609684B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor.It comprises the following steps:Independent modeling is carried out for the energy generation device in factory, energy conversion and energy storage device, builds the energy supply structure of the integrated energy system based on energy switching network;Consider ice-chilling air conditioning system series connection and two kinds of mode of operations in parallel, further improve integrated energy system economic optimization scheduling model, Optimized model is more agreed with the actual demand of engineering;The minimum optimization aim of annual operating cost formed with operation expense, purchases strategies, fuel cost and energy storage depreciable cost, consider cool and thermal power Constraints of Equilibrium, equipment operation constraint and energy storage device constraint, scheduling is optimized to micro-capacitance sensor, that realizes factory becomes excellent certainly.The beneficial effects of the invention are as follows:Improve the energy consumption efficiency of user side, reduce user with can cost, increase economic efficiency and energy utilization rate, suitable for different types of industrial park integrated energy system.

Description

A kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor
Technical field
The present invention relates to comprehensive energy and electricity needs response correlative technology field, refer in particular to a kind of based on micro-capacitance sensor Integrated energy system economic optimization dispatching method.
Background technology
Integrated energy system (integrated energy system, IES) is the energy resource system of intelligence of future generation so that The energy production of energy resource system, transmission, storage and using having systematization, integrated and the operation and management that become more meticulous.It is comprehensive Energy resource system is the important physical carrier of energy internet, is the key for realizing the technologies such as multi-energy complementation, cascaded utilization of energy. Industrial park is the complicated energy resource system based on industrial load, comprising a variety of production capacities/use energy equipment, to power supply reliability requirement Height, but the problems such as generally existing energy utilization rate is low, energy resource structure is unreasonable, peak valley electric power difference is big, environmental pollution.From China The energy resource consumption situation of every profession and trade sees that industrial consumption energy occupies leading position in AND ENERGY RESOURCES CONSUMPTION IN CHINA, accounts for whole society's total energy consumption 70% or so, it is therefore necessary to energy management is carried out to factory, lifts the economic benefit and energy utilization rate of factory.
The content of the invention
The present invention is above-mentioned in order to overcome the shortcomings of to exist in the prior art, there is provided one kind is increased economic efficiency and the energy The integrated energy system economic optimization dispatching method based on micro-capacitance sensor of utilization rate.
To achieve these goals, the present invention uses following technical scheme:
A kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor, this method comprise the following steps:
(1) energy generation device, energy conversion and the energy storage device being directed in factory carry out Independent modeling, Build the energy supply structure of the integrated energy system based on energy switching network;
(2) consider ice-chilling air conditioning system series connection and two kinds of mode of operations in parallel, further improve integrated energy system warp Help Optimal Operation Model, Optimized model is more agreed with the actual demand of engineering;
(3) annual operating cost formed with operation expense, purchases strategies, fuel cost and energy storage depreciable cost is most Small is optimization aim, considers cool and thermal power Constraints of Equilibrium, equipment operation constraint and energy storage device constraint, micro-capacitance sensor is optimized Scheduling, that realizes factory becomes excellent certainly:
Min CATC=COM+CES+CBW+CF
Wherein, COMRefer to operation expense, CESRefer to purchases strategies, CBWRefer to fuel cost, CFRefer to Energy storage depreciable cost.
This method is built to the energy generation device in factory, energy conversion and energy storage device first Mould, build the energy supply structure of the integrated energy system based on energy switching network.Based on this, consider ice-chilling air conditioning system series connection with Two kinds of mode of operations in parallel, under conditions of cool and thermal power Constraints of Equilibrium and the constraint of equipment plurality of devices, with the annual running cost of user With minimum target, structure considers micro-capacitance sensor economic optimization scheduling model, realizes the excellent scheduling that becomes certainly of factory.This method can answer In different types of industrial park integrated energy system.Its one side, it is contemplated that cool and thermal power multipotency couples, and realizes a variety of Energy cooperative compensating, guiding user are formulated reasonably with energy scheme, improve the energy consumption efficiency of user side, that reduces user uses energy Cost, so as to increase economic efficiency and energy utilization rate;On the other hand, it is contemplated that the mode of operation of distinct device in factory, enter One step improves integrated energy system economic optimization scheduling model, Optimized model control accuracy.
Preferably, in step (1), the energy supply structure of the integrated energy system is including as follows:
(a) gas turbine
Gas turbine is the thermal power of the nucleus equipment in cooling heating and power generation system, its electrical power and recovery:
In formula:WithRespectively i-th of gas turbine is in the period t electrical power exported and gas consumption power; λgasFor heating value of natural gas;Represent the thermal power of waste heat boiler output;WithRespectively gas turbine power generation efficiency With waste heat boiler heat recovery efficiency;
(b) gas fired-boiler
In formula:WithRespectively i-th of gas fired-boiler is in the period t thermal powers exported and gas consumption speed;For the heating efficiency of gas fired-boiler;
(c) photovoltaic unit
In formula:The electrical power exported for i-th of photovoltaic unit in period t;For solar cell plate efficiency;S is Battery plate suqare;For i-th of photovoltaic unit unit area intensity of illumination;
(d) Absorption Refrigerator
In formula:The cooling power for being i-th of Absorption Refrigerator in period t;For Absorption Refrigerator Refrigerating efficiency;The thermal power exported for i-th of gas turbine in period t;
(e) heat pump
In formula:WithThermal power of respectively i-th of the heat pump in period t and the electrical power of consumption;For heat The heating efficiency of pump;
(f) family air-conditioning
Electric cooling/heating family utilizes refrigeration machine with air-conditioning, and cold or heat are produced in the case where consuming electric energy:
In formula:WithSystem of i-th of family air-conditioning in period t is represented respectively Cold power, thermal power, refrigeration and the electrical power of heating consumption;WithThe refrigeration energy of family air-conditioning is represented respectively Effect ratio and heating energy efficiency ratio;
(g) regenerative apparatus
In formula:WithAmount of stored heat of i-th of regenerative apparatus in period t, accumulation of heat power are represented respectively With heating power;It is regenerative apparatus from loss factor;WithThe heat storage efficiency and system of cold-storage device are represented respectively The thermal efficiency;Hop count when t is, T are unit Period Length,
(h) battery energy storage
In formula:WithEnergy storage capacity, charge power of i-th of battery energy storage in period t are represented respectively With discharge power;It is energy storage from loss factor;WithThe charge efficiency and discharging efficiency of energy storage are represented respectively.
Preferably, in step (2), ice-storage air-conditioning is freezed in night low power consumption, utilizes cool storage medium Cold, and the released cold quantity in peak of power consumption on daytime are stored, to meet the cooling needs of factory, according to refrigeration machine and ice-storage equipment Connection and mode of operation, ice-chilling air conditioning system can be divided into parallel and two kinds of tandem, according to ice-storage air-conditioning system System series connection and two kinds of mode of operations in parallel, further improve integrated energy system economic optimization scheduling model so that after optimization Scheduling model more agrees with the actual demand of engineering, specifically includes following two mode of operations:
(i) the parallel ice cold accumulation air-conditioner based on refrigerating unit with dual duty:The refrigeration machine of parallel ice chilling air conditioning system with Ice Storage Tank is in position in parallel in systems, and wherein refrigeration machine also can individually supply refrigeration duty with Ice Storage Tank energy air conditioning, and Refrigeration machine can simultaneously ice making and cooling;
In formula:WithI-th of refrigeration machine of period t and the refrigeration work consumption of Ice Storage Tank are represented respectively;WithI-th of refrigeration machine and the maximum refrigeration work consumption of Ice Storage Tank are represented respectively;WithI-th of expression period t respectively The electrical power of refrigeration machine and Ice Storage Tank;WithThe maximum electric power of i-th of refrigeration machine and Ice Storage Tank is represented respectively;WithI-th of ice-chilling air conditioning system of period t total electrical power, maximum electric power and refrigeration are represented respectively Power;TmeltExpression is in ice-melt period, TrefExpression is in ice-reserving period, TmeltAnd TrefThe formula at place represents Ice Storage Tank Ice-reserving can not be carried out simultaneously with ice-melt operation;Represent the refrigeration efficiency ratio of refrigeration machine;WithRepresent respectively The ice making Energy Efficiency Ratio and ice-melt efficiency of Ice Storage Tank;WithI-th Ice Storage Tank period t+1 and period t are represented respectively Ice-reserving capacity;It is Ice Storage Tank from loss factor;
(ii) the tandem ice-storage air-conditioning based on refrigerating unit with dual duty:The refrigeration machine of tandem ice-chilling air conditioning system and Ice Storage Tank is in series position in systems, and the cold distribution of refrigeration machine and Ice Storage Tank meets certain proportionate relationship, refrigeration machine The proportionate relationship that cold distribution with Ice Storage Tank meets is mainly reflected in following two stages:
(I) in the ice-reserving stage, cold being produced by refrigeration machine and is stored in Ice Storage Tank, now Ice Storage Tank is not involved in refrigeration and made Industry, refrigeration machine participate in refrigeration operation, Ice Storage Tank ice making powerWith refrigeration machine cooling powerRelation is as follows:
In formula:WithRespectively period t Ice Storage Tanks and the temperature difference of refrigeration machine inlet and outlet ethylene glycol;
(II) in the cooling stage, Ice Storage Tank and refrigeration machine must cooling simultaneously, and both cold distribution meet it is certain Proportionate relationship:
In formula:εs.iFor the cold distribution coefficient of i-th of ice-chilling air conditioning system.
Preferably, under the mode of operation of (i), ice-chilling air conditioning system it is specific control variable be by Ice Storage Tank and Following relation be present with circulation ethylene glycol flow in the semen donors of the circulation ethylene glycol flow of refrigeration machine, Ice Storage Tank and refrigeration machine:
In formula:WithRepresent that period t passes through Ice Storage Tank and the circulation ethylene glycol flow of refrigeration machine respectively;Cgly、 ρglyWith Δ TglyRespectively the specific heat capacity of ethylene glycol solution, fluid density and supply and return water temperature are poor;Imitated for refrigeration machine cooling Rate.
Preferably, in step (3),
(A) operation expense:
In formula:ξOM, iFor the operation and maintenance cost of equipment i unit capacities;Represent i-th of equipment period t's Power output;
(B) purchases strategies:
In formula:WithRespectively period t power purchase price and power purchase power;WithRespectively period t's Sale of electricity price and sale of electricity power;
(C) fuel cost:
In formula:WithThe respectively gas consumption rate of i-th of gas turbine of period t and i-th of gas fired-boiler;For gas price;
(D) energy storage depreciable cost:
With the intensification of depth of discharge, the discharge and recharge of battery energy storage, which is recycled number, to be reduced, but cycle charge-discharge total amount base This is constant, if discharge and recharge constant total quantity of the battery energy storage in life cycle management, obtains battery energy storage accumulated discharge 1kWh's Depreciable cost is as follows:
In formula:Cbat.repFor the replacement cost of energy storage, qlifetimeTotal amount is exported for the energy storage monomer life-cycle;
Then the depreciable cost of energy storage is:
Wherein:For i-th of battery energy storage period t discharge power.
Preferably, in step (3), described cool and thermal power Constraints of Equilibrium includes electrical power Constraints of Equilibrium, thermal power is put down Weighing apparatus constraint and cold power-balance constraint;Described electrical power Constraints of Equilibrium includes the constraint of ac bus total load, AC-DC conversion Device efficiency constraints, the constraint of dc bus total load and interconnection constraint and purchase sale of electricity state constraint, specific constraints are as follows:
(1) ac bus total load constrains:
In formula:For period t AC load;For the electrical power of alternating current-direct current converter;For the total electrical power of family air-conditioning;
(2) AC/DC changeover switch efficiency constraints:
In formula:For period t dc bus total load;ηA/DFor the conversion efficiency of AC-to DC;ηD/AArrived for direct current The conversion efficiency of exchange;
(3) dc bus total load constrains:
In formula:For period t DC load;
(4) interconnection constraint and purchase sale of electricity state constraint:
In formula:WithRespectively to power network power purchase and the upper limit of the power of sale of electricity;WithRespectively period t 0-1 state variables in power purchase and sale of electricity,1 expression power purchase is taken,1 expression sale of electricity is taken, also define can not be simultaneously Purchase sale of electricity.
Preferably, the constraints of the heating power balance constraint is as follows:
In formula:WithRespectively the space thermic load of shop equipment and hot water load.
Preferably, the constraints of the cold power-balance constraint is as follows:
In formula:For refrigeration duty.
Preferably, in step (3), the constraints of the equipment operation constraint is as follows:
In formula:WithInput-output powers of the equipment i in period t is represented respectively;WithRepresent respectively Equipment i is in period t power output bound;WithRepresent equipment i in period t input power bound respectively.
Preferably, in step (3), the energy storage device constraint needs to meet energy storage state constraint and charge and discharge energy power Constraint, in order to ensure the continuity of scheduling, before and after dispatching cycle, the energy storage capacity of energy storage device should be consistent;The energy storage is set The constraints of standby constraint is as follows:
SL.i=ST.i
Wherein:WithThe minimum and maximum storage volume of energy storage device is represented respectively;SL.iAnd ST.iFor energy storage Initial capacity and the capacity at the end of dispatching cycle;WithThe maximum charge and electric discharge work(of energy storage device are represented respectively Rate;WithRepresent that energy storage device is in the 0-1 state variables for filling energy and exoergic in period t respectively,1 expression is taken to fill energy,Take 1 expression exoergic, ensure that equipment can not charge and discharge energy simultaneously.
The beneficial effects of the invention are as follows:On the one hand, it is contemplated that cool and thermal power multipotency couples, and it is mutual to realize various energy resources collaboration Benefit, user's formulation is guided reasonably with energy scheme, to improve the energy consumption efficiency of user side, that reduces user uses energy cost, so as to Increase economic efficiency and energy utilization rate;On the other hand, it is contemplated that the mode of operation of distinct device in factory, further improve comprehensive Close energy resource system economic optimization scheduling model, Optimized model control accuracy;Suitable for different types of industrial park comprehensive energy In system.
Brief description of the drawings
Fig. 1 is the structural representation of micro-capacitance sensor in the present invention.
Embodiment
The present invention will be further described with reference to the accompanying drawings and detailed description.
In embodiment as described in Figure 1, integrated energy system includes hot and cold, the gentle 4 kinds of energy forms of electricity, is born in system Lotus wide variety, function device enrich, and its capital equipment has miniature gas turbine, photovoltaic cell, waste heat boiler, absorption refrigeration Machine, family air-conditioning, gas fired-boiler, battery energy storage, hot energy storage, cold-storage device.The system passes through centralized power bus-bar and public Power network Change Power, it is preferential to meet local all kinds of workload demands using the operating mechanism of " generating power for their own use, surplus is surfed the Net ", simultaneously Allow rich electricity being transported to distribution system.Meanwhile without between combustion-gas jet test, with gas company inside integrated energy system In the presence of unidirectional buying behavior.
A kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor, this method comprise the following steps:
(1) energy generation device, energy conversion and the energy storage device being directed in factory carry out Independent modeling, Build the energy supply structure of the integrated energy system based on energy switching network;
(a) gas turbine
Gas turbine is the thermal power of the nucleus equipment in cooling heating and power generation system, its electrical power and recovery:
In formula:WithRespectively i-th of gas turbine is in the period t electrical power exported and gas consumption power; λgasFor heating value of natural gas;Represent the thermal power of waste heat boiler output;WithRespectively gas turbine power generation efficiency With waste heat boiler heat recovery efficiency;
(b) gas fired-boiler
In formula:WithRespectively i-th of gas fired-boiler is in the period t thermal powers exported and gas consumption speed;For the heating efficiency of gas fired-boiler;
(c) photovoltaic unit
In formula:The electrical power exported for i-th of photovoltaic unit in period t;For solar cell plate efficiency;S is Battery plate suqare;For i-th of photovoltaic unit unit area intensity of illumination;
(d) Absorption Refrigerator
In formula:The cooling power for being i-th of Absorption Refrigerator in period t;For Absorption Refrigerator Refrigerating efficiency;The thermal power exported for i-th of gas turbine in period t;
(e) heat pump
In formula:WithThermal power of respectively i-th of the heat pump in period t and the electrical power of consumption;For The heating efficiency of heat pump;
(f) family air-conditioning
Electric cooling/heating family utilizes refrigeration machine with air-conditioning, and cold or heat are produced in the case where consuming electric energy:
In formula:WithSystem of i-th of family air-conditioning in period t is represented respectively Cold power, thermal power, refrigeration and the electrical power of heating consumption;WithThe refrigeration energy of family air-conditioning is represented respectively Effect ratio and heating energy efficiency ratio;
(g) regenerative apparatus
In formula:WithAmount of stored heat of i-th of regenerative apparatus in period t, accumulation of heat work(are represented respectively Rate and heating power;It is regenerative apparatus from loss factor;WithRespectively represent cold-storage device heat storage efficiency and Heating efficiency;Hop count when t is, T are unit Period Length,
(h) battery energy storage
In formula:WithEnergy storage capacity, charge power of i-th of battery energy storage in period t are represented respectively With discharge power;It is energy storage from loss factor;WithThe charge efficiency and discharging efficiency of energy storage are represented respectively.
(2) consider ice-chilling air conditioning system series connection and two kinds of mode of operations in parallel, further improve integrated energy system warp Help Optimal Operation Model, Optimized model is more agreed with the actual demand of engineering;
Ice-storage air-conditioning is freezed in night low power consumption, and cold is stored using cool storage medium, and in electricity consumption on daytime Released cold quantity during peak, to meet the cooling needs of factory, according to the connection and mode of operation of refrigeration machine and ice-storage equipment, Ice-chilling air conditioning system can be divided into parallel and two kinds of tandem, according to ice-chilling air conditioning system series connection and two kinds of Working moulds in parallel Formula, further improve integrated energy system economic optimization scheduling model so that the scheduling model after optimization more agrees with the reality of engineering Border demand, specifically include following two mode of operations:
(i) the parallel ice cold accumulation air-conditioner based on refrigerating unit with dual duty:The refrigeration machine of parallel ice chilling air conditioning system with Ice Storage Tank is in position in parallel in systems, and wherein refrigeration machine also can individually supply refrigeration duty with Ice Storage Tank energy air conditioning, and Refrigeration machine can simultaneously ice making and cooling;
In formula:WithI-th of refrigeration machine of period t and the refrigeration work consumption of Ice Storage Tank are represented respectively;WithI-th of refrigeration machine and the maximum refrigeration work consumption of Ice Storage Tank are represented respectively;WithI-th of expression period t respectively The electrical power of refrigeration machine and Ice Storage Tank;WithThe maximum electric power of i-th of refrigeration machine and Ice Storage Tank is represented respectively;WithI-th of ice-chilling air conditioning system of period t total electrical power, maximum electric power and refrigeration are represented respectively Power;TmeltExpression is in ice-melt period, TrefExpression is in ice-reserving period, TmeltAnd TrefThe formula at place represents Ice Storage Tank Ice-reserving can not be carried out simultaneously with ice-melt operation;Represent the refrigeration efficiency ratio of refrigeration machine;WithRepresent respectively The ice making Energy Efficiency Ratio and ice-melt efficiency of Ice Storage Tank;WithI-th Ice Storage Tank period t+1 and period t are represented respectively Ice-reserving capacity;It is Ice Storage Tank from loss factor;
In practice, the specific of ice-chilling air conditioning system controls variable as by the circulation second two of Ice Storage Tank and refrigeration machine to engineering Following relation be present with circulation ethylene glycol flow in the semen donors of alcohol flow, Ice Storage Tank and refrigeration machine:
In formula:WithRepresent that period t passes through Ice Storage Tank and the circulation ethylene glycol flow of refrigeration machine respectively;Cgly、 ρglyWith Δ TglyRespectively the specific heat capacity of ethylene glycol solution, fluid density and supply and return water temperature are poor;Imitated for refrigeration machine cooling Rate.
(ii) the tandem ice-storage air-conditioning based on refrigerating unit with dual duty:The refrigeration machine of tandem ice-chilling air conditioning system and Ice Storage Tank is in series position in systems, and the cold distribution of refrigeration machine and Ice Storage Tank meets certain proportionate relationship, refrigeration machine The proportionate relationship that cold distribution with Ice Storage Tank meets is mainly reflected in following two stages:
(I) in the ice-reserving stage, cold being produced by refrigeration machine and is stored in Ice Storage Tank, now Ice Storage Tank is not involved in refrigeration and made Industry, refrigeration machine participate in refrigeration operation, Ice Storage Tank ice making powerWith refrigeration machine cooling powerRelation is as follows:
In formula:WithRespectively period t Ice Storage Tanks and the temperature difference of refrigeration machine inlet and outlet ethylene glycol;
(II) in the cooling stage, Ice Storage Tank and refrigeration machine must cooling simultaneously, and both cold distribution meet it is certain Proportionate relationship:
In formula:εs.iFor the cold distribution coefficient of i-th of ice-chilling air conditioning system.
(3) annual operating cost formed with operation expense, purchases strategies, fuel cost and energy storage depreciable cost is most Small is optimization aim, considers cool and thermal power Constraints of Equilibrium, equipment operation constraint and energy storage device constraint, micro-capacitance sensor is optimized Scheduling, that realizes factory becomes excellent certainly:
Min CATC=COM+CES+CBW+CF
Wherein, COMRefer to operation expense, CESRefer to purchases strategies, CBWRefer to fuel cost, CFRefer to Energy storage depreciable cost.
(A) operation expense:
In formula:ξOM.iFor the operation and maintenance cost of equipment i unit capacities;Represent i-th of equipment period t's Power output;
(B) purchases strategies:
In formula:WithRespectively period t power purchase price and power purchase power;WithRespectively period t's Sale of electricity price and sale of electricity power;
(C) fuel cost:
In formula:WithThe respectively gas consumption rate of i-th of gas turbine of period t and i-th of gas fired-boiler;For gas price;
(D) energy storage depreciable cost:
With the intensification of depth of discharge, the discharge and recharge of battery energy storage, which is recycled number, to be reduced, but cycle charge-discharge total amount base This is constant, if discharge and recharge constant total quantity of the battery energy storage in life cycle management, obtains battery energy storage accumulated discharge 1kWh's Depreciable cost is as follows:
In formula:Cbat.repFor the replacement cost of energy storage, qlifetimeTotal amount is exported for the energy storage monomer life-cycle;
Then the depreciable cost of energy storage is:
Wherein:For i-th of battery energy storage period t discharge power.
1) cool and thermal power Constraints of Equilibrium includes electrical power Constraints of Equilibrium, heating power balance constraint and cold power-balance constraint.
I) electrical power Constraints of Equilibrium:
It includes the constraint of ac bus total load, the constraint of AC/DC changeover switch efficiency constraints, dc bus total load and connection Winding thread constrains as follows with purchase sale of electricity state constraint, specific constraints:
(1) ac bus total load constrains:
In formula:For period t AC load;For the electrical power of alternating current-direct current converter;For the total electrical power of family air-conditioning;
(2) AC/DC changeover switch efficiency constraints:
In formula:For period t dc bus total load;ηA/DFor the conversion efficiency of AC-to DC;ηD/AArrived for direct current The conversion efficiency of exchange;
(3) dc bus total load constrains:
In formula:For period t DC load;
(4) interconnection constraint and purchase sale of electricity state constraint:
In formula:WithRespectively to power network power purchase and the upper limit of the power of sale of electricity;WithRespectively period t 0-1 state variables in power purchase and sale of electricity,1 expression power purchase is taken,1 expression sale of electricity is taken, also define can not be simultaneously Purchase sale of electricity.
Ii) constraints of heating power balance constraint is as follows:
In formula:WithRespectively the space thermic load of shop equipment and hot water load.
Iii) constraints of cold power-balance constraint is as follows:
In formula:For refrigeration duty.
2) equipment operation constraint:
In formula:WithInput-output powers of the equipment i in period t is represented respectively;WithRepresent respectively Equipment i is in period t power output bound;WithRepresent equipment i in period t input power bound respectively.
3) energy storage device constrains:
It needs to meet energy storage state constraint and charge and discharge energy power constraint, in order to ensure the continuity of scheduling, dispatching cycle Front and rear, the energy storage capacity of energy storage device should be consistent;The constraints of energy storage device constraint is as follows:
SL.i=ST.i
Wherein:WithThe minimum and maximum storage volume of energy storage device is represented respectively;SL.iAnd ST.iFor energy storage Initial capacity and the capacity at the end of dispatching cycle;WithThe maximum charge and electric discharge work(of energy storage device are represented respectively Rate;WithRepresent that energy storage device is in the 0-1 state variables for filling energy and exoergic in period t respectively,1 expression is taken to fill energy,Take 1 expression exoergic, ensure that equipment can not charge and discharge energy simultaneously.
According to optimum results, output factory from become it is excellent with can scheme, by the method for operation of each equipment in regulating system with Working condition, reduce the operating cost of industrial user.This method is first to the energy generation device in factory, energy conversion And energy storage device is modeled, the energy supply structure of the integrated energy system based on energy switching network is built.Based on this, examine Ice-chilling air conditioning system series connection and two kinds of mode of operations in parallel are considered, in the bar that cool and thermal power Constraints of Equilibrium and equipment plurality of devices constrain Under part, with the minimum target of the annual operating cost of user, structure considers micro-capacitance sensor economic optimization scheduling model, realizes factory oneself Become excellent scheduling.This method can be applied in different types of industrial park integrated energy system.Its one side, it is contemplated that cold and hot Electric multipotency couples, and realizes various energy resources cooperative compensating, and guiding user, which formulates, reasonably uses energy scheme, improves the use of user side Can efficiency, reduce user with can cost, so as to increase economic efficiency and energy utilization rate;On the other hand, it is contemplated that in factory The mode of operation of distinct device, further improve integrated energy system economic optimization scheduling model, Optimized model control accuracy.

Claims (10)

1. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor, it is characterized in that, this method includes following step Suddenly:
(1) energy generation device, energy conversion and the energy storage device being directed in factory carry out Independent modeling, build The energy supply structure of integrated energy system based on energy switching network;
(2) consider ice-chilling air conditioning system series connection and two kinds of mode of operations in parallel, it is excellent further to improve integrated energy system economy Change scheduling model, Optimized model is more agreed with the actual demand of engineering;
(3) annual operating cost formed with operation expense, purchases strategies, fuel cost and energy storage depreciable cost is minimum Optimization aim, consider cool and thermal power Constraints of Equilibrium, equipment operation constraint and energy storage device constraint, tune is optimized to micro-capacitance sensor Degree, that realizes factory becomes excellent certainly:
MinCATC=COM+CES+CBW+CF
Wherein, COMRefer to operation expense, CESRefer to purchases strategies, CBWRefer to fuel cost, CFRefer to energy storage Depreciable cost.
2. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 1, its feature It is that in step (1), the energy supply structure of the integrated energy system is including as follows:
(a) gas turbine
Gas turbine is the thermal power of the nucleus equipment in cooling heating and power generation system, its electrical power and recovery:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>T</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>G</mi> <mi>T</mi> </mrow> <mi>e</mi> </msubsup> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <msubsup> <mi>F</mi> <mrow> <mi>G</mi> <mi>T</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
<mrow> <msubsup> <mi>H</mi> <mrow> <mi>W</mi> <mi>H</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>W</mi> <mi>H</mi> </mrow> <mi>h</mi> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>G</mi> <mi>T</mi> </mrow> <mi>e</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <msubsup> <mi>F</mi> <mrow> <mi>G</mi> <mi>T</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:WithRespectively i-th of gas turbine is in the period t electrical power exported and gas consumption power;λgasFor Heating value of natural gas;Represent the thermal power of waste heat boiler output;WithRespectively gas turbine power generation efficiency and remaining Heat boiler heat recovery efficiency;
(b) gas fired-boiler
<mrow> <msubsup> <mi>H</mi> <mrow> <mi>G</mi> <mi>B</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>G</mi> <mi>B</mi> </mrow> <mi>h</mi> </msubsup> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> </msub> <msubsup> <mi>F</mi> <mrow> <mi>G</mi> <mi>B</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:WithRespectively i-th of gas fired-boiler is in the period t thermal powers exported and gas consumption speed; For the heating efficiency of gas fired-boiler;
(c) photovoltaic unit
In formula:The electrical power exported for i-th of photovoltaic unit in period t;For solar cell plate efficiency;S is battery Plate suqare;For i-th of photovoltaic unit unit area intensity of illumination;
(d) Absorption Refrigerator
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>C</mi> <mi>H</mi> </mrow> <mi>h</mi> </msubsup> <msubsup> <mi>H</mi> <mrow> <mi>G</mi> <mi>T</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:The cooling power for being i-th of Absorption Refrigerator in period t;For the refrigeration of Absorption Refrigerator Efficiency;The thermal power exported for i-th of gas turbine in period t;
(e) heat pump
<mrow> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>H</mi> <mi>P</mi> </mrow> <mi>h</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:WithThermal power of respectively i-th of the heat pump in period t and the electrical power of consumption;For heat pump Heating efficiency;
(f) family air-conditioning
Electric cooling/heating family utilizes refrigeration machine with air-conditioning, and cold or heat are produced in the case where consuming electric energy:
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>EER</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> </mrow> <mi>c</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>c</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
<mrow> <msubsup> <mi>H</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>EER</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> </mrow> <mi>h</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>h</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:WithRefrigeration work(of i-th of family air-conditioning in period t is represented respectively Rate, thermal power, refrigeration and the electrical power of heating consumption;WithThe refrigeration efficiency ratio of family air-conditioning is represented respectively And heating energy efficiency ratio;
(g) regenerative apparatus
<mrow> <msubsup> <mi>S</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>i</mi> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> <mi>h</mi> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>S</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> <mi>s</mi> </msubsup> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <mfrac> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>H</mi> <mi>S</mi> </mrow> <mi>r</mi> </msubsup> </mfrac> <mo>&amp;rsqb;</mo> <mi>T</mi> </mrow>
In formula:WithRepresent i-th of regenerative apparatus in period t amount of stored heat, accumulation of heat power and confession respectively Thermal power;It is regenerative apparatus from loss factor;WithThe heat storage efficiency and heating for representing cold-storage device respectively are imitated Rate;Hop count when t is, T are unit Period Length,
(h) battery energy storage
<mrow> <msubsup> <mi>S</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>i</mi> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>E</mi> <mi>S</mi> </mrow> <mi>e</mi> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>S</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>E</mi> <mi>S</mi> </mrow> <mi>s</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>E</mi> <mi>S</mi> </mrow> <mi>r</mi> </msubsup> </mfrac> <mo>&amp;rsqb;</mo> <mi>T</mi> </mrow>
In formula:WithRepresent i-th of battery energy storage in period t energy storage capacity, charge power with putting respectively Electrical power;It is energy storage from loss factor;WithThe charge efficiency and discharging efficiency of energy storage are represented respectively.
3. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 2, its feature It is that in step (2), ice-storage air-conditioning is freezed in night low power consumption, cold is stored using cool storage medium, and white Released cold quantity during its peak of power consumption, to meet the cooling needs of factory, according to the connection and work of refrigeration machine and ice-storage equipment Operation mode, ice-chilling air conditioning system can be divided into parallel and two kinds of tandem, according to ice-chilling air conditioning system series connection and in parallel two Kind mode of operation, further improves integrated energy system economic optimization scheduling model so that the scheduling model after optimization more agrees with The actual demand of engineering, specifically include following two mode of operations:
(i) the parallel ice cold accumulation air-conditioner based on refrigerating unit with dual duty:The refrigeration machine and ice-reserving of parallel ice chilling air conditioning system Groove is in position in parallel in systems, and wherein refrigeration machine also can individually supply refrigeration duty with Ice Storage Tank energy air conditioning, and freeze Machine can simultaneously ice making and cooling;
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>Q</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>EER</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mi>c</mi> </msubsup> </mrow>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>l</mi> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msubsup> <mi>S</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;sigma;</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>S</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>EER</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>c</mi> </msubsup> <mi>T</mi> <mo>-</mo> </mrow>
<mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>&amp;Element;</mo> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>l</mi> <mi>t</mi> </mrow> </msub> </mrow> </munder> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mi>T</mi> <mo>/</mo> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>m</mi> </msubsup> </mrow>
In formula:WithI-th of refrigeration machine of period t and the refrigeration work consumption of Ice Storage Tank are represented respectively;WithPoint I-th of refrigeration machine and the maximum refrigeration work consumption of Ice Storage Tank are not represented;WithRespectively represent period t i-th of refrigeration machine and The electrical power of Ice Storage Tank;WithThe maximum electric power of i-th of refrigeration machine and Ice Storage Tank is represented respectively; WithI-th of ice-chilling air conditioning system of period t total electrical power, maximum electric power and refrigeration work consumption are represented respectively;TmeltTable Show and be in ice-melt period, TrefExpression is in ice-reserving period, TmeltAnd TrefThe formula at place represents ice-reserving and the ice-melt of Ice Storage Tank Operation can not be carried out simultaneously;Represent the refrigeration efficiency ratio of refrigeration machine;WithThe system of Ice Storage Tank is represented respectively Ice Energy Efficiency Ratio and ice-melt efficiency;WithI-th Ice Storage Tank period t+1 and period t ice-reserving capacity are represented respectively;It is Ice Storage Tank from loss factor;
(ii) the tandem ice-storage air-conditioning based on refrigerating unit with dual duty:The refrigeration machine and ice-reserving of tandem ice-chilling air conditioning system Groove is in series position in systems, and the cold distribution of refrigeration machine and Ice Storage Tank meets certain proportionate relationship, refrigeration machine and storage The proportionate relationship that the cold distribution of ice bank meets is mainly reflected in following two stages:
(I) in the ice-reserving stage, cold is produced by refrigeration machine and is stored in Ice Storage Tank, now Ice Storage Tank is not involved in operation of freezing, Refrigeration machine participates in refrigeration operation, Ice Storage Tank ice making powerWith refrigeration machine cooling powerRelation is as follows:
<mrow> <mfrac> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>EER</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>c</mi> </msubsup> </mrow> <msubsup> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mfrac> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&amp;Delta;T</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>t</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>&amp;Delta;T</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;Delta;T</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>t</mi> </msubsup> </mrow> </mfrac> </mrow>
In formula:WithRespectively period t Ice Storage Tanks and the temperature difference of refrigeration machine inlet and outlet ethylene glycol;
(II) in the cooling stage, Ice Storage Tank and refrigeration machine must coolings, and both cold distribution meet certain ratio simultaneously Relation:
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> </msub> <msubsup> <mi>Q</mi> <mrow> <mi>f</mi> <mi>r</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
<mrow> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;T</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> </msub> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>c</mi> </msubsup> </mrow> <mrow> <msub> <mi>&amp;Delta;T</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mi>c</mi> </msubsup> </mrow> </mfrac> </mrow>
In formula:εs.iFor the cold distribution coefficient of i-th of ice-chilling air conditioning system.
4. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 3, its feature It is that under the mode of operation of (i), the specific of ice-chilling air conditioning system controls variable as by the circulation second of Ice Storage Tank and refrigeration machine Following relation be present with circulation ethylene glycol flow in the semen donors of glycol flow, Ice Storage Tank and refrigeration machine:
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>t</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mi>g</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>&amp;rho;</mi> <mrow> <mi>g</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>&amp;Delta;T</mi> <mrow> <mi>g</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>tan</mi> <mi>k</mi> </mrow> <mi>m</mi> </msubsup> </mrow>
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mi>t</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mi>g</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>&amp;rho;</mi> <mrow> <mi>g</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>&amp;Delta;T</mi> <mrow> <mi>g</mi> <mi>l</mi> <mi>y</mi> </mrow> </msub> <msubsup> <mi>&amp;eta;</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mi>c</mi> </msubsup> </mrow>
In formula:WithRepresent that period t passes through Ice Storage Tank and the circulation ethylene glycol flow of refrigeration machine respectively;
Cgly、ρglyWith Δ TglyRespectively the specific heat capacity of ethylene glycol solution, fluid density and supply and return water temperature are poor;For refrigeration machine Refrigerating efficiency.
5. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 3 or 4, it is special Sign is, in step (3),
(A) operation expense:
<mrow> <msub> <mi>C</mi> <mrow> <mi>O</mi> <mi>M</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <msub> <mi>&amp;xi;</mi> <mrow> <mi>O</mi> <mi>M</mi> <mo>.</mo> <mi>i</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mi>T</mi> </mrow>
In formula:ξOM.iFor the operation and maintenance cost of equipment i unit capacities;Represent output of i-th of the equipment in period t Power;
(B) purchases strategies:
<mrow> <msub> <mi>C</mi> <mrow> <mi>E</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <mrow> <mo>(</mo> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </mrow>
In formula:WithRespectively period t power purchase price and power purchase power;WithRespectively period t sale of electricity valency Lattice and sale of electricity power;
(C) fuel cost:
<mrow> <msub> <mi>C</mi> <mi>F</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <mrow> <mo>(</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>F</mi> <mrow> <mi>G</mi> <mi>T</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mi>G</mi> <mi>B</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>s</mi> </mrow> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </mrow>
In formula:WithThe respectively gas consumption rate of i-th of gas turbine of period t and i-th of gas fired-boiler;For Gas price;
(D) energy storage depreciable cost:
With the intensification of depth of discharge, the discharge and recharge of battery energy storage, which is recycled number, to be reduced, but cycle charge-discharge total amount is substantially not Become, if discharge and recharge constant total quantity of the battery energy storage in life cycle management, obtains battery energy storage accumulated discharge 1kWh depreciation Cost is as follows:
<mrow> <msub> <mi>c</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>t</mi> <mo>.</mo> <mi>r</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <msub> <mi>q</mi> <mrow> <mi>l</mi> <mi>i</mi> <mi>f</mi> <mi>e</mi> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </msub> </mfrac> </mrow>
In formula:Cbat.repFor the replacement cost of energy storage, qlifetimeTotal amount is exported for the energy storage monomer life-cycle;
Then the depreciable cost of energy storage is:
<mrow> <msub> <mi>C</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <msub> <mi>c</mi> <mrow> <mi>B</mi> <mi>W</mi> <mo>.</mo> <mi>i</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mi>T</mi> </mrow>
Wherein:For i-th of battery energy storage period t discharge power.
6. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 5, its feature It is that in step (3), described cool and thermal power Constraints of Equilibrium includes electrical power Constraints of Equilibrium, heating power balance constraint and cold power Constraints of Equilibrium;Described electrical power Constraints of Equilibrium includes the constraint of ac bus total load, AC/DC changeover switch efficiency constraints, direct current Bus total load constrains and interconnection constraint is with purchasing sale of electricity state constraint, and specific constraints is as follows:
(1) ac bus total load constrains:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>T</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>A</mi> <mi>C</mi> <mo>-</mo> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> <mi>t</mi> </msubsup> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>A</mi> <mi>C</mi> <mo>-</mo> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>H</mi> <mi>P</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:For period t AC load;For the electrical power of alternating current-direct current converter;
For the total electrical power of family air-conditioning;
(2) AC/DC changeover switch efficiency constraints:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>A</mi> <mi>C</mi> <mo>-</mo> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>A</mi> <mo>/</mo> <mi>D</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>D</mi> <mo>/</mo> <mi>A</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
In formula:For period t dc bus total load;ηA/DFor the conversion efficiency of AC-to DC;ηD/AFor direct current to exchange Conversion efficiency;
(3) dc bus total load constrains:
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>P</mi> <mi>V</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>D</mi> <mi>C</mi> <mo>-</mo> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>c</mi> </mrow> <mi>t</mi> </msubsup> </mrow> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>E</mi> <mi>S</mi> <mo>.</mo> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:For period t DC load;
(4) interconnection constraint and purchase sale of electricity state constraint:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>max</mi> </msubsup> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>max</mi> </msubsup> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>b</mi> <mi>u</mi> <mi>y</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
In formula:WithRespectively to power network power purchase and the upper limit of the power of sale of electricity;WithRespectively period t is in purchase Electricity and the 0-1 state variables of sale of electricity,1 expression power purchase is taken,1 expression sale of electricity is taken, also defines to purchase simultaneously and sells Electricity.
7. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 6, its feature It is that the constraints of the heating power balance constraint is as follows:
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>W</mi> <mi>H</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>G</mi> <mi>B</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>W</mi> <mi>P</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;GreaterEqual;</mo> <msubsup> <mi>H</mi> <mrow> <mi>s</mi> <mi>p</mi> <mi>a</mi> <mi>c</mi> <mi>e</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mrow> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>W</mi> <mi>H</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>G</mi> <mi>B</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>W</mi> <mi>P</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>-</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>H</mi> <mrow> <mi>H</mi> <mi>S</mi> <mo>.</mo> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;GreaterEqual;</mo> <msubsup> <mi>H</mi> <mrow> <mi>w</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:WithRespectively the space thermic load of shop equipment and hot water load.
8. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 6, its feature It is that the constraints of the cold power-balance constraint is as follows:
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>Q</mi> <mrow> <mi>C</mi> <mi>H</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>Q</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>d</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>Q</mi> <mrow> <mi>i</mi> <mi>c</mi> <mi>e</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;GreaterEqual;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> <mi>t</mi> </msubsup> </mrow>
In formula:For refrigeration duty.
9. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 1, its feature It is that in step (3), the constraints of the equipment operation constraint is as follows:
<mrow> <msubsup> <mi>w</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>w</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>w</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow>
<mrow> <msubsup> <mi>w</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>w</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>w</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow>
In formula:WithInput-output powers of the equipment i in period t is represented respectively;WithEquipment i is represented respectively In period t power output bound;WithRepresent equipment i in period t input power bound respectively.
10. a kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor according to claim 1, its feature It is that in step (3), the energy storage device constraint needs to meet energy storage state constraint and charge and discharge energy power constraint, in order to ensure The continuity of scheduling, before and after dispatching cycle, the energy storage capacity of energy storage device should be consistent;The constraint bar of the energy storage device constraint Part is as follows:
<mrow> <msubsup> <mi>S</mi> <mi>i</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>S</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>S</mi> <mi>i</mi> <mi>max</mi> </msubsup> </mrow>
SL.i=ST.i
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>w</mi> <mrow> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>w</mi> <mrow> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>w</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <msubsup> <mi>w</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>max</mi> </msubsup> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>s</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;gamma;</mi> <mrow> <mi>r</mi> <mo>.</mo> <mi>i</mi> </mrow> <mi>t</mi> </msubsup> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
Wherein:WithThe minimum and maximum storage volume of energy storage device is represented respectively;SL.iAnd ST.iFor the first of energy storage Beginning capacity and the capacity at the end of dispatching cycle;WithThe maximum charge and discharge power of energy storage device are represented respectively;WithRepresent that energy storage device is in the 0-1 state variables for filling energy and exoergic in period t respectively,1 expression is taken to fill energy,Take 1 Represent exoergic, ensure equipment can not simultaneously charge and discharge energy.
CN201710738641.0A 2017-08-24 2017-08-24 Comprehensive energy system economic optimization scheduling method based on micro-grid Active CN107609684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710738641.0A CN107609684B (en) 2017-08-24 2017-08-24 Comprehensive energy system economic optimization scheduling method based on micro-grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710738641.0A CN107609684B (en) 2017-08-24 2017-08-24 Comprehensive energy system economic optimization scheduling method based on micro-grid

Publications (2)

Publication Number Publication Date
CN107609684A true CN107609684A (en) 2018-01-19
CN107609684B CN107609684B (en) 2021-12-03

Family

ID=61065897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710738641.0A Active CN107609684B (en) 2017-08-24 2017-08-24 Comprehensive energy system economic optimization scheduling method based on micro-grid

Country Status (1)

Country Link
CN (1) CN107609684B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206543A (en) * 2018-02-05 2018-06-26 东北大学 A kind of energy source router and its running optimizatin method based on energy cascade utilization
CN108487994A (en) * 2018-02-28 2018-09-04 中国科学院广州能源研究所 A kind of micro- energy net composite energy storage system
CN108830743A (en) * 2018-05-25 2018-11-16 天津大学 Consider the garden integrated energy system Optimization Scheduling of a variety of cold-storage devices
CN109146182A (en) * 2018-08-24 2019-01-04 南京理工大学 The economic load dispatching method of meter and the distributed triple-generation system of a variety of energy storage
CN109345012A (en) * 2018-08-29 2019-02-15 华南理工大学 Garden energy internet running optimizatin method based on comprehensive evaluation index
CN109345030A (en) * 2018-10-26 2019-02-15 南方电网科学研究院有限责任公司 The integrated energy system thermoelectricity energy flow distribution formula optimization method and device of more microgrids
CN109375588A (en) * 2018-02-12 2019-02-22 浙江大学 A kind of factory considering General Requirement response provides multiple forms of energy to complement each other Optimization Scheduling
CN109376912A (en) * 2018-09-29 2019-02-22 东南大学 Cooling heating and power generation system running optimizatin method based on civil building thermal inertia
CN109829643A (en) * 2019-01-28 2019-05-31 山东大学 A kind of the new energy cooling heating and power generation system integrated evaluating method and system of multi-level simulation tool
CN109962476A (en) * 2019-02-01 2019-07-02 中国电力科学研究院有限公司 Source net lotus storage interaction energy management method and device in a kind of micro-capacitance sensor
CN109993345A (en) * 2019-01-29 2019-07-09 国网江苏省电力有限公司经济技术研究院 A kind of isolated operation towards garden is provided multiple forms of energy to complement each other system dynamic economic dispatch method
CN110070216A (en) * 2019-04-11 2019-07-30 河海大学 A kind of industrial park integrated energy system economic operation optimization method
CN110163443A (en) * 2019-05-27 2019-08-23 西南石油大学 Consider the micro- energy net Optimization Scheduling in the natural gas pressure regulating station of electric-gas integration requirement response
CN110361969A (en) * 2019-06-17 2019-10-22 清华大学 A kind of cool and thermal power integrated energy system optimizing operation method
CN110416992A (en) * 2019-07-24 2019-11-05 东北电力大学 A kind of comprehensive energy optimization energy method being applicable in direct current electricity consumption user
CN110426590A (en) * 2019-07-15 2019-11-08 国电南瑞科技股份有限公司 A kind of multipotency information interactive device suitable for integrated energy system
CN110516868A (en) * 2019-08-21 2019-11-29 广东电网有限责任公司 A kind of integrated energy system optimal operation model considering network constraint
CN110570010A (en) * 2019-07-31 2019-12-13 中国科学院广州能源研究所 Energy management method of distributed system containing heat storage device
CN110598313A (en) * 2019-09-10 2019-12-20 国网河北省电力有限公司 Comprehensive energy system optimization configuration method considering energy storage full-life cycle operation and maintenance
CN110739710A (en) * 2018-07-20 2020-01-31 中国农业大学 Method and device for coordinated scheduling of multiple energy types based on optimization algorithm
CN110766241A (en) * 2019-11-27 2020-02-07 广西电网有限责任公司 Demand response control method, apparatus, device and storage medium
CN110912124A (en) * 2019-12-05 2020-03-24 深圳供电局有限公司 Multi-energy complementary microgrid system
WO2020081003A1 (en) * 2018-10-17 2020-04-23 Agency For Science, Technology And Research Cooling plant system and method of operating said system
CN111091227A (en) * 2019-11-14 2020-05-01 中国电建集团西北勘测设计研究院有限公司 Comprehensive energy system dispatching management platform
CN111091404A (en) * 2018-10-24 2020-05-01 中国电力科学研究院有限公司 Micro-energy network energy selling price determining method and system
CN111191820A (en) * 2019-12-17 2020-05-22 国网浙江省电力有限公司 Site selection and volume fixing optimization planning method for energy storage device in comprehensive energy system
CN112000146A (en) * 2019-05-27 2020-11-27 南京南瑞继保电气有限公司 Scheduling method and system of air temperature adjusting system
CN112257899A (en) * 2020-09-22 2021-01-22 国网河北省电力有限公司营销服务中心 CCHP system optimal scheduling method and terminal equipment
CN112398164A (en) * 2020-10-30 2021-02-23 东南大学 Micro-energy-source network group optimization operation and cost distribution method containing shared energy storage system
CN112803401A (en) * 2021-01-31 2021-05-14 国网黑龙江省电力有限公司 Regulation and control method and device of virtual distributed energy cluster and terminal equipment
CN112861335A (en) * 2021-02-01 2021-05-28 昆明理工大学 Low-carbon economic dispatching method for comprehensive energy system containing P2G and stored energy
CN113378409A (en) * 2021-07-06 2021-09-10 国网江苏省电力有限公司营销服务中心 Comprehensive energy system multi-energy complementary optimization scheduling method and system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246263A (en) * 2013-04-22 2013-08-14 天津大学 General optimized dispatching strategy for combined supply of cooling, heating and power microgrid system
CN103617460A (en) * 2013-12-06 2014-03-05 天津大学 Double-layer optimization planning and designing method for combined cooling, heating and power micro-grid system
CN105303247A (en) * 2015-09-16 2016-02-03 北京国电通网络技术有限公司 Garden type hot and cold energy mixed application energy network regulation method and system
CN105869075A (en) * 2016-04-19 2016-08-17 东南大学 Economic optimization scheduling method for cold, heat and electricity combined supply type miniature energy grid
CN106709610A (en) * 2017-01-12 2017-05-24 浙江大学 Micro-grid electricity energy storage and ice storage combined optimization scheduling method
CN106786753A (en) * 2016-12-29 2017-05-31 上海博翎能源科技有限公司 The system and its adjusting method of the Regional Energy internet of multi-user
CN106786793A (en) * 2016-12-14 2017-05-31 东南大学 A kind of supply of cooling, heating and electrical powers type microgrid operation method based on robust optimization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246263A (en) * 2013-04-22 2013-08-14 天津大学 General optimized dispatching strategy for combined supply of cooling, heating and power microgrid system
CN103617460A (en) * 2013-12-06 2014-03-05 天津大学 Double-layer optimization planning and designing method for combined cooling, heating and power micro-grid system
CN105303247A (en) * 2015-09-16 2016-02-03 北京国电通网络技术有限公司 Garden type hot and cold energy mixed application energy network regulation method and system
CN105869075A (en) * 2016-04-19 2016-08-17 东南大学 Economic optimization scheduling method for cold, heat and electricity combined supply type miniature energy grid
CN106786793A (en) * 2016-12-14 2017-05-31 东南大学 A kind of supply of cooling, heating and electrical powers type microgrid operation method based on robust optimization
CN106786753A (en) * 2016-12-29 2017-05-31 上海博翎能源科技有限公司 The system and its adjusting method of the Regional Energy internet of multi-user
CN106709610A (en) * 2017-01-12 2017-05-24 浙江大学 Micro-grid electricity energy storage and ice storage combined optimization scheduling method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国优秀硕士学位论文全文数据库-工程科技Ⅱ辑: "《冰蓄冷空调系统的研究与技术经济分析》", 《中国优秀硕士学位论文全文数据库-工程科技Ⅱ辑》 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206543B (en) * 2018-02-05 2021-06-04 东北大学 Energy router based on energy cascade utilization and operation optimization method thereof
CN108206543A (en) * 2018-02-05 2018-06-26 东北大学 A kind of energy source router and its running optimizatin method based on energy cascade utilization
CN109375588A (en) * 2018-02-12 2019-02-22 浙江大学 A kind of factory considering General Requirement response provides multiple forms of energy to complement each other Optimization Scheduling
CN109375588B (en) * 2018-02-12 2021-01-01 浙江大学 Factory multi-energy complementary optimization scheduling method considering generalized demand response
CN108487994A (en) * 2018-02-28 2018-09-04 中国科学院广州能源研究所 A kind of micro- energy net composite energy storage system
CN108830743A (en) * 2018-05-25 2018-11-16 天津大学 Consider the garden integrated energy system Optimization Scheduling of a variety of cold-storage devices
CN108830743B (en) * 2018-05-25 2021-10-15 天津大学 Optimal scheduling method of park comprehensive energy system considering various cold accumulation devices
CN110739710A (en) * 2018-07-20 2020-01-31 中国农业大学 Method and device for coordinated scheduling of multiple energy types based on optimization algorithm
CN109146182A (en) * 2018-08-24 2019-01-04 南京理工大学 The economic load dispatching method of meter and the distributed triple-generation system of a variety of energy storage
CN109345012A (en) * 2018-08-29 2019-02-15 华南理工大学 Garden energy internet running optimizatin method based on comprehensive evaluation index
CN109345012B (en) * 2018-08-29 2021-09-21 华南理工大学 Park energy Internet operation optimization method based on comprehensive evaluation indexes
CN109376912B (en) * 2018-09-29 2021-07-02 东南大学 Operation optimization method of combined cooling heating and power system based on thermal inertia of civil building
CN109376912A (en) * 2018-09-29 2019-02-22 东南大学 Cooling heating and power generation system running optimizatin method based on civil building thermal inertia
US11898803B2 (en) 2018-10-17 2024-02-13 Agency for Science, Technology and Research Singapore District Cooling Pte Ltd Cooling plant system and method of operating said system
WO2020081003A1 (en) * 2018-10-17 2020-04-23 Agency For Science, Technology And Research Cooling plant system and method of operating said system
CN111091404A (en) * 2018-10-24 2020-05-01 中国电力科学研究院有限公司 Micro-energy network energy selling price determining method and system
CN109345030A (en) * 2018-10-26 2019-02-15 南方电网科学研究院有限责任公司 The integrated energy system thermoelectricity energy flow distribution formula optimization method and device of more microgrids
CN109345030B (en) * 2018-10-26 2022-02-15 南方电网科学研究院有限责任公司 Multi-microgrid comprehensive energy system thermoelectric energy flow distribution type optimization method and device
CN109829643A (en) * 2019-01-28 2019-05-31 山东大学 A kind of the new energy cooling heating and power generation system integrated evaluating method and system of multi-level simulation tool
CN109993345A (en) * 2019-01-29 2019-07-09 国网江苏省电力有限公司经济技术研究院 A kind of isolated operation towards garden is provided multiple forms of energy to complement each other system dynamic economic dispatch method
CN109993345B (en) * 2019-01-29 2022-08-09 国网江苏省电力有限公司经济技术研究院 Garden-oriented dynamic economic dispatching method for multi-energy complementary system for island operation
CN109962476A (en) * 2019-02-01 2019-07-02 中国电力科学研究院有限公司 Source net lotus storage interaction energy management method and device in a kind of micro-capacitance sensor
CN110070216B (en) * 2019-04-11 2021-02-26 河海大学 Economic operation optimization method for industrial park comprehensive energy system
CN110070216A (en) * 2019-04-11 2019-07-30 河海大学 A kind of industrial park integrated energy system economic operation optimization method
CN112000146A (en) * 2019-05-27 2020-11-27 南京南瑞继保电气有限公司 Scheduling method and system of air temperature adjusting system
CN112000146B (en) * 2019-05-27 2022-04-19 南京南瑞继保电气有限公司 Scheduling method and system of air temperature adjusting system
CN110163443A (en) * 2019-05-27 2019-08-23 西南石油大学 Consider the micro- energy net Optimization Scheduling in the natural gas pressure regulating station of electric-gas integration requirement response
CN110163443B (en) * 2019-05-27 2022-09-09 西南石油大学 Natural gas pressure regulating station micro-energy network optimization scheduling method considering electricity-gas comprehensive demand response
CN110361969B (en) * 2019-06-17 2021-01-05 清华大学 Optimized operation method of cooling, heating and power comprehensive energy system
CN110361969A (en) * 2019-06-17 2019-10-22 清华大学 A kind of cool and thermal power integrated energy system optimizing operation method
CN110426590B (en) * 2019-07-15 2022-01-25 国电南瑞科技股份有限公司 Multi-energy information interaction device suitable for comprehensive energy system
CN110426590A (en) * 2019-07-15 2019-11-08 国电南瑞科技股份有限公司 A kind of multipotency information interactive device suitable for integrated energy system
CN110416992A (en) * 2019-07-24 2019-11-05 东北电力大学 A kind of comprehensive energy optimization energy method being applicable in direct current electricity consumption user
CN110416992B (en) * 2019-07-24 2022-03-18 东北电力大学 Comprehensive energy optimization energy utilization method suitable for direct current power utilization users
CN110570010A (en) * 2019-07-31 2019-12-13 中国科学院广州能源研究所 Energy management method of distributed system containing heat storage device
CN110570010B (en) * 2019-07-31 2023-01-17 中国科学院广州能源研究所 Energy management method of distributed system containing heat storage device
CN110516868B (en) * 2019-08-21 2022-05-10 广东电网有限责任公司 Comprehensive energy system optimization operation model considering network constraints
CN110516868A (en) * 2019-08-21 2019-11-29 广东电网有限责任公司 A kind of integrated energy system optimal operation model considering network constraint
CN110598313B (en) * 2019-09-10 2023-05-16 国网河北省电力有限公司 Comprehensive energy system optimal configuration method considering energy storage full life cycle operation and maintenance
CN110598313A (en) * 2019-09-10 2019-12-20 国网河北省电力有限公司 Comprehensive energy system optimization configuration method considering energy storage full-life cycle operation and maintenance
CN111091227A (en) * 2019-11-14 2020-05-01 中国电建集团西北勘测设计研究院有限公司 Comprehensive energy system dispatching management platform
CN111091227B (en) * 2019-11-14 2023-04-18 中国电建集团西北勘测设计研究院有限公司 Comprehensive energy system dispatching management platform
CN110766241A (en) * 2019-11-27 2020-02-07 广西电网有限责任公司 Demand response control method, apparatus, device and storage medium
CN110912124A (en) * 2019-12-05 2020-03-24 深圳供电局有限公司 Multi-energy complementary microgrid system
CN111191820A (en) * 2019-12-17 2020-05-22 国网浙江省电力有限公司 Site selection and volume fixing optimization planning method for energy storage device in comprehensive energy system
CN111191820B (en) * 2019-12-17 2023-05-09 国网浙江省电力有限公司 Site selection and volume fixation optimization planning method for energy storage device in comprehensive energy system
CN112257899A (en) * 2020-09-22 2021-01-22 国网河北省电力有限公司营销服务中心 CCHP system optimal scheduling method and terminal equipment
CN112398164B (en) * 2020-10-30 2022-06-28 东南大学 Micro-energy-source network group optimization operation and cost distribution method containing shared energy storage system
CN112398164A (en) * 2020-10-30 2021-02-23 东南大学 Micro-energy-source network group optimization operation and cost distribution method containing shared energy storage system
CN112803401B (en) * 2021-01-31 2022-12-27 国网黑龙江省电力有限公司 Regulation and control method and device of virtual distributed energy cluster and terminal equipment
CN112803401A (en) * 2021-01-31 2021-05-14 国网黑龙江省电力有限公司 Regulation and control method and device of virtual distributed energy cluster and terminal equipment
CN112861335A (en) * 2021-02-01 2021-05-28 昆明理工大学 Low-carbon economic dispatching method for comprehensive energy system containing P2G and stored energy
CN113378409A (en) * 2021-07-06 2021-09-10 国网江苏省电力有限公司营销服务中心 Comprehensive energy system multi-energy complementary optimization scheduling method and system

Also Published As

Publication number Publication date
CN107609684B (en) 2021-12-03

Similar Documents

Publication Publication Date Title
CN107609684A (en) A kind of integrated energy system economic optimization dispatching method based on micro-capacitance sensor
CN107832979A (en) A kind of factory integration energy resource system economic optimization dispatching method for considering cascaded utilization of energy
CN109919478B (en) Comprehensive energy microgrid planning method considering comprehensive energy supply reliability
CN110866627B (en) Multi-zone electricity-gas coupling comprehensive energy system optimal scheduling method considering step gas price
He et al. A review on the influence of intelligent power consumption technologies on the utilization rate of distribution network equipment
CN106022503A (en) Micro-grid capacity programming method meeting coupling type electric cold and heat demand
CN103617460A (en) Double-layer optimization planning and designing method for combined cooling, heating and power micro-grid system
CN109190859A (en) The more micro-grid systems of supply of cooling, heating and electrical powers type and its economic optimization dispatching method
CN110163443A (en) Consider the micro- energy net Optimization Scheduling in the natural gas pressure regulating station of electric-gas integration requirement response
CN108832656A (en) Turn gas and the micro- energy net multi-objective planning method of renewable energy utilization based on electricity
CN108491992A (en) A kind of cooling heating and power generation system peak regulation containing photovoltaic and accumulation of energy is regulated and stored Optimal Operation Model
CN105955931B (en) Regional Energy network optimization dispatching method towards the consumption of high density distributed photovoltaic
CN109523065A (en) A kind of micro- energy net Optimization Scheduling based on improvement quanta particle swarm optimization
CN111737884B (en) Multi-target random planning method for micro-energy network containing multiple clean energy sources
CN113987734A (en) Multi-objective optimization scheduling method for park comprehensive energy system under opportunity constraint condition
CN106779471A (en) A kind of multipotency interconnects alternating current-direct current mixing micro-capacitance sensor system and Optimal Configuration Method
CN108008629A (en) The complementary optimizing operation method for utilizing system of one kind of multiple energy
CN109685332A (en) A kind of comprehensive energy multiagent balance of interest Optimization Scheduling and equipment
CN113240166A (en) Day-ahead economic dispatching method of micro-energy network considering high-proportion new energy consumption
CN110163767A (en) A kind of regional complex energy resource system distributing planing method containing more Interest Main Bodies
CN115173470A (en) Comprehensive energy system scheduling method and system based on power grid peak shaving
CN115907240A (en) Power grid multi-type peak regulation resource planning method considering complementary mutual-aid operation characteristics
CN115081700A (en) Comprehensive energy storage technology-based data center multi-energy collaborative optimization method and system
CN107565605A (en) A kind of shop equipment based on micro-capacitance sensor tends to the method for optimization automatically
Lingmin et al. A Q-learning based optimization method of energy management for peak load control of residential areas with CCHP systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 310052 Room 1708, Hanshi Building, 1786 Binsheng Road, Changhe Street, Binjiang District, Hangzhou City, Zhejiang Province

Applicant after: Wanke Energy Technology Co., Ltd.

Address before: 310000 Room 1708, Hanshi Building, 1786 Binsheng Road, Changhe Street, Binjiang District, Hangzhou City, Zhejiang Province

Applicant before: Zhejiang Wanke Amperex Technology Limited

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant