CN107607574A - 基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法 - Google Patents

基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法 Download PDF

Info

Publication number
CN107607574A
CN107607574A CN201710811164.6A CN201710811164A CN107607574A CN 107607574 A CN107607574 A CN 107607574A CN 201710811164 A CN201710811164 A CN 201710811164A CN 107607574 A CN107607574 A CN 107607574A
Authority
CN
China
Prior art keywords
temperature
asphalt
test specimen
phase conversion
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710811164.6A
Other languages
English (en)
Other versions
CN107607574B (zh
Inventor
王旭东
王筵铸
张蕾
周兴业
肖倩
单伶燕
杨光
牛岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Highway Ministry of Transport
Original Assignee
Research Institute of Highway Ministry of Transport
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Highway Ministry of Transport filed Critical Research Institute of Highway Ministry of Transport
Priority to CN201710811164.6A priority Critical patent/CN107607574B/zh
Publication of CN107607574A publication Critical patent/CN107607574A/zh
Application granted granted Critical
Publication of CN107607574B publication Critical patent/CN107607574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法,属于公路材料性能评价方法领域。本发明方法将沥青混合料切成薄片,分为浸水与未浸水两种实验,通过动态力学试验,在固定应变、频率在宽温域范围内变化,获得相应的温度-复模量试验曲线,采用三次曲线模型拟合损耗模量曲线,并确定损耗模量的最大值及其相应的温度,该温度为沥青混合料的相态转化温度,以浸水前后相态转化温度的变化率实现对沥青混合料水稳定性的有效评价,变化率越小,水稳定性越好。

Description

基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳 定性的方法
技术领域
本发明是一种基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法,即通过动态力学试验得到沥青混合料切片试件浸水前后损耗模量变化曲线,以浸水前后损耗模量峰值对应温度的变化率来评价沥青混合料水稳定性的试验方法。
背景技术
水损害问题严重影响了沥青路面的使用功能及服役寿命,是沥青路面早期病害的主要形式。水损害对沥青混合料粘弹特性的损伤是使其路用性能下降的重要原因。沥青混合料属于典型的热粘弹性材料,在不同的温度下表现出不同力学特性,即存在不同的相态,而通过动态力学的实验方法可以实现对沥青混合料粘弹特性及相态转变的研究。动态力学分析是在程序控温下,粘弹性材料在动态荷载作用下其动态模量和阻尼系数与温度关系的一种分析方法。通过动态力学试验可以得到沥青混合料的复模量、弹性模量、损耗模量随温度变化的曲线,模量曲线的特征反映了沥青混合料粘弹特性。损耗模量又称粘性模量,其大小代表沥青混合料发生形变时,由于粘性形变(不可逆)而损耗的能量大小,反映材料粘性大小。在一定温度范围内,损耗模量曲线存在峰值点,峰值点温度可表征沥青混合料的相态转变温度,以此来研究沥青混合料在一定温度范围内的相态转变特性。因此本发明基于动态力学理论,提出浸水前后损耗模量峰值点温度变化评价混合料水稳定性的实验方法,实现对沥青混合料抗水损害性能的有效评价。
发明内容
本发明是运用动态力学的实验方法得到沥青混合料一定温度范围内损耗模量曲线,根据损耗模量峰值点温度确定沥青混合料的相态转变温度,通过比较浸水前后量峰值点温度变化,评价沥青混合料水稳定性的高低。
基于损耗模量峰值的相态转化温度变化,评价沥青混合料水稳定性的方法,包括如下步骤:
(1)选取沥青和石料,按要求成型沥青混合料试件;
(2)将沥青混合料试件切割成方形试件薄片;
(3)将试件薄片分为两组,其中一组按规定的环境条件进行饱水处理;另一组常温空气条件;
(4)对浸水和未浸水试件进行动态力学试验,固定应变、频率在宽温域范围内变化,获得相应的温度-复模量试验曲线;
(5)采用三次曲线模型拟合损耗模量曲线,并确定损耗模量的最大值及其相应的温度,该温度为沥青混合料的相态转化温度;
(6)根据统计分析,确定浸水与未浸水试件的相态转化温度的差值,该差值与未浸水试件的相态转化温度的比值称为变化率,作为评价这种沥青混合料水稳定性的指标,变化率较小,该沥青混合料水稳定性更好。
所述动态力学试验为使用动态力学分析仪Dynamic Mechanical Analyzer对沥青混合料进行分析,夹具选用双悬臂,受力形式为三点弯拉模式,两端固定中心加载,试验参数如下:扫描温度范围:-30~80℃;升温速率:2℃/min;频率:1Hz;应变:25με。
所述沥青混合料的相态转化温度的确定方法为根据模量曲线,选取峰值点附近一定温度范围内的模量数据进行三次曲线模型拟合,根据曲线方程确定沥青损耗模量最大值及其相应的温度,该温度为沥青混合料的相态转化温度。
所述饱水处理为将沥青混合料试件薄片浸入恒温60℃的水箱中,浸水时间为48h,取出后擦干试件表面水分,冷却至室温后立即进行动态力学分析试验,称为A组试件;另一组试件室温状态保存,称为B组试件。
所述变化率为A组浸水试件与B组未浸水试件相态转化温度的差值与B组未浸水试件的相态转化温度比值即为变化率,作为评价这种沥青混合料水稳定性的指标。
所述A组浸水试件与B组未浸水试件采用多个平行试件,相态转化温度采用多个平行试件的平均值。优选4个平行试件。
所述沥青混合料试件按照现场压实度水平成型。
所述沥青混合料试件为圆柱形试件,圆柱形试件尺寸为
所述步骤(1)按照2011版《公路工程沥青及沥青混合料试验规程》T 0702成型标准AC13马歇尔试件圆柱体,所述切割为采用竖式切割的方式,马歇尔试件的高度成为试件薄片的长,马歇尔试件的直径或直径平行方向成为试件薄片的宽。
所述试件薄片尺寸为60±2mm×13±1mm×3.5±0.2mm。
本发明提出了采用损耗模量曲线的峰值点作为沥青混合料的相态转化温度,并采用规定的试验条件,确定相态转化温度在不同浸水条件下的变化指标,并采用相态转化温度的变化率评价沥青混合料水稳定性,变化率越小,水稳定性越好。实验表明,工程实际应用中普遍认为石灰岩沥青混合料水稳定性更好,与本发明实施例中的评价结果相符,即石灰岩要比花岗岩沥青混合料水稳定性好。
附图说明
图1沥青混合料切片试件,
A:试件薄片与1元硬币大小比较,B:马歇尔试件与试件薄片切割模型图,
图2损耗模量随温度变化曲线,
图3沥青混合料损耗模量拟合曲线。
具体实施方式
下面结合实例对本发明做进一步的详细说明。
根据本发明的内容,具体实施步骤如下:
步骤1:选取沥青和石料,按一定要求成型沥青混合料试件
沥青选用70#基质沥青,沥青的性能指标如下表1;矿料选取海南福岭石灰岩、海南大圆花岗岩,其性能指标满足所使用的实体工程的要求或按照《公路沥青路面施工技术规范》(JTG F40-2004)中的要求。
表1:沥青性能指标
沥青种类 针入度/(0.1mm) 软化点/℃ 延度/(15℃)(cm)
70# 72.3 55.5 >100
根据选取的原材料,本发明以成型AC13沥青混合料为例,参照《公路工程沥青及沥青混合料试验规程》(2011版)T 0702成型方法,确定沥青混合料的最佳油石比,并按照最佳油石比状态下混合料毛体积密度的98%进行现场压实度水平的混合料试件的成型(成型方法可以是静压法或者旋转压实法),并以此压实度水平的试件进行水稳定性评价。
步骤2:按试验要求,将混合料试件切割成若干规定尺寸的薄片
试验使用精密切割仪对步骤1成型的沥青混合料试件进行切割,试件切割尺寸为60±2mm×13±1mm×3.5±0.2mm,如图1所示。
步骤3:将试件薄片分为两组,一组按规定的环境条件进行饱水处理
为能考察沥青混合料浸水后的粘弹性能变化,本发明将上一步骤切割的试件分两组,其中一组进行浸水处理,即将沥青混合料切片试件浸入恒温60℃的水箱中,浸水时间为48h,取出后擦干试件表面水分,冷却至室温后立即进行动态力学分析试验,成为A组试件;另一组试件室温状态保存,称为B组试件
步骤4:沥青混合料切片试件动态力学试验
本发明使用动态力学分析仪Dynamic Mechanical Analyzer(DMA)对沥青混合料进行分析,夹具选用双悬臂,受力形式为三点弯拉模式,两端固定中心加载,加载方式为固定应变、频率在宽温域范围内的动态力学扫描,每种混合料平行做4组试验,扫描参数如表2所示:
表2 动态力学扫描参数
扫描温度范围 升温速率/℃/min 频率/Hz 应变/×106
-30~80℃ 2 1 25
对于浸水后的沥青混合料试件采取同样的动态力学分析扫描方法,每种沥青混合料做4组平行试验。
由动态力学扫描得到的混合料损耗模量曲线图如图2所示。
损耗模量值先增大后减小且存在峰值点,对于具有较高温度敏感性的沥青混合料而言,随着温度的升高,其中沥青所含有的高分子组分热运动加强,材料不可逆形变明显增强,即表现为损耗模量的增大;而随着温度的进一步升高,在达到同等应变的情况下所受应力水平减小,即损耗模量值(包括复数模量和弹性模量)迅速减小。浸水作用对沥青沥青混合料产生损伤作用后,表现在损耗模量随温度变化的曲线上即是峰值点的变化,本发明以浸水前后两组沥青混合料损耗模量峰值点对应温度的差值作为评价沥青混合料水稳定性的指标。
步骤5:采用三次曲线模型拟合损耗模量曲线,并确定混合料相态转化温度。
根据动态力学试验的到的损耗模量曲线,选取峰值点温度一定范围内的损耗模量数据进行三次曲线拟合,根据曲线拟合方程,确定损耗模量峰值点及对应的相态转化温度。以石灰岩与70#沥青成型的混合料未浸水试件中的平行试件2为例,曲线拟合如图3所示。
由三次曲线拟合得到的一定温度范围内损耗模量与温度的关系方程为:
y=2199.4+71.70χ+0.50χ2-011χ3
根据方程可以确定曲线极大值点坐标,即得到损耗模量的峰值为3024.6MPa,峰值点对应的相态转化温度为16.33℃。
步骤6:计算浸水和未浸水混合料相态转化温度的差值并评价混合料水稳定性
采用步骤5的方法到其它混合料的相态转化温度如表3所示。
表3 沥青混合料相态转化温度数据
根据步骤4确定的沥青混合料评价指标,得到本发明的试验材料的沥青混合料损耗模量峰值点温度数据如表4所示。
表4 沥青混合料损耗模量峰值点温度数据
根据表4中数据,石灰岩与70#沥青成型的沥青混合料浸水后峰值点对应相态转化温度差值为2.69℃,变化率为15.2%,花岗岩与70#沥青成型的沥青混合料浸水后峰值点对应相态转化温度差值为7.85℃,变化率为52.7%,浸水作用对石灰岩沥青混合料相态转化温度影响较小,即根据本发明确定的沥青混合料水稳定性评价指标,石灰岩沥青混合料的水稳定性要好于花岗岩。

Claims (10)

1.基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法,包括如下步骤:
(1)选取沥青和石料,按要求成型沥青混合料试件;
(2)将沥青混合料试件切割成方形试件薄片;
(3)将试件薄片分为两组,其中一组按规定的环境条件进行饱水处理;另一组常温空气条件;
(4)对浸水和未浸水试件进行动态力学试验,固定应变、频率在宽温域范围内变化,获得相应的温度-复模量试验曲线;
(5)采用三次曲线模型拟合损耗模量曲线,并确定损耗模量的最大值及其相应的温度,该温度为沥青混合料的相态转化温度;
(6)根据统计分析,确定浸水与未浸水试件的相态转化温度的差值,该差值与未浸水试件的相态转化温度的比值称为变化率,作为评价这种沥青混合料水稳定性的指标,变化率较小,该沥青混合料水稳定性更好。
2.根据权利要求1所述的方法,所述动态力学试验为使用动态力学分析仪DynamicMechanical Analyzer对沥青混合料进行分析,夹具选用双悬臂,受力形式为三点弯拉模式,两端固定中心加载,试验参数如下:扫描温度范围:-30~80℃;升温速率:2℃/min;频率:1Hz;应变:25με。
3.根据权利要求2所述的方法,所述沥青混合料的相态转化温度的确定方法为根据模量曲线,选取峰值点附近一定温度范围内的模量数据进行三次曲线模型拟合,根据曲线方程确定沥青损耗模量最大值及其相应的温度,该温度为沥青混合料的相态转化温度。
4.根据权利要求1所述的方法,所述饱水处理为将沥青混合料试件薄片浸入恒温60℃的水箱中,浸水时间为48h,取出后擦干试件表面水分,冷却至室温后立即进行动态力学分析试验,称为A组试件;另一组试件室温状态保存,称为B组试件。
5.根据权利要求4所述的方法,所述变化率为A组浸水试件与B组未浸水试件相态转化温度的差值与B组未浸水试件的相态转化温度比值即为变化率,作为评价这种沥青混合料水稳定性的指标。
6.根据权利要求4所述的方法,所述A组浸水试件与B组未浸水试件采用多个平行试件,相态转化温度采用多个平行试件的平均值。
7.根据权利要求1所述的方法,所述沥青混合料试件按照现场压实度水平成型。
8.根据权利要求7所述的方法,所述沥青混合料试件为圆柱形试件,圆柱形试件尺寸为
9.根据权利要求8所述的方法,所述步骤(1)按照2011版《公路工程沥青及沥青混合料试验规程》T 0702成型标准AC13马歇尔试件圆柱体,所述切割为采用竖式切割的方式,马歇尔试件的高度成为试件薄片的长,马歇尔试件的直径或直径平行方向成为试件薄片的宽。
10.根据权利要求9所述的方法,所述试件薄片尺寸为60±2mm×13±1mm×3.5±0.2mm。
CN201710811164.6A 2017-09-11 2017-09-11 基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法 Active CN107607574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710811164.6A CN107607574B (zh) 2017-09-11 2017-09-11 基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710811164.6A CN107607574B (zh) 2017-09-11 2017-09-11 基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法

Publications (2)

Publication Number Publication Date
CN107607574A true CN107607574A (zh) 2018-01-19
CN107607574B CN107607574B (zh) 2020-10-30

Family

ID=61063303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710811164.6A Active CN107607574B (zh) 2017-09-11 2017-09-11 基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法

Country Status (1)

Country Link
CN (1) CN107607574B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411838A (zh) * 2019-08-28 2019-11-05 交通运输部公路科学研究所 一种通过应力响应分析评价沥青温度敏感性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558366A (zh) * 2013-10-18 2014-02-05 沈阳建筑大学 大粒径沥青混合料水稳定性试验方法
CN103630450A (zh) * 2013-12-10 2014-03-12 云南云岭高速公路养护绿化工程有限公司 考虑疲劳-蠕变交互损伤作用的沥青混合料寿命预测方法
CN105699208A (zh) * 2014-11-28 2016-06-22 沈阳建筑大学 一种寒区大粒径沥青混合料的水稳定性的检测方法
CN106771105A (zh) * 2017-03-08 2017-05-31 苏交科集团股份有限公司 一种评价沥青胶砂水稳定性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558366A (zh) * 2013-10-18 2014-02-05 沈阳建筑大学 大粒径沥青混合料水稳定性试验方法
CN103630450A (zh) * 2013-12-10 2014-03-12 云南云岭高速公路养护绿化工程有限公司 考虑疲劳-蠕变交互损伤作用的沥青混合料寿命预测方法
CN105699208A (zh) * 2014-11-28 2016-06-22 沈阳建筑大学 一种寒区大粒径沥青混合料的水稳定性的检测方法
CN106771105A (zh) * 2017-03-08 2017-05-31 苏交科集团股份有限公司 一种评价沥青胶砂水稳定性的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
何立平: "基于DMA方法的橡胶沥青粘弹特性和高温性能研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
周志刚等: "高温湿热地区沥青混合料抗水损害性能评价", 《长沙理工大学学报(自然科学版)》 *
曹丽萍 等: "应用玻璃化转变温度评价SBS改性沥青低温性能", 《中国公路学报》 *
李小瑞 等: "《高分子科学实验方法》", 31 March 1998, 陕西科学技术出版社 *
梁基照: "《高分子复合材料物性及其定量表征》", 31 December 2013, 华南理工大学出版社 *
郭怡: "《浸胶帘子布性能影响研究》", 31 May 2015, 国防工业出版社 *
陈辉 等: "利用动态模量主曲线研究沥青混合料水稳定性", 《武汉理工大学学报(交通科学与工程版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411838A (zh) * 2019-08-28 2019-11-05 交通运输部公路科学研究所 一种通过应力响应分析评价沥青温度敏感性的方法

Also Published As

Publication number Publication date
CN107607574B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN107462471B (zh) 基于切片试件复模量损伤评价沥青混合料水稳定性的方法
Shen et al. Energy based laboratory fatigue failure criteria for asphalt materials
Najjar et al. Evaluation of the mixed mode (I/II) fracture toughness of cement emulsified asphalt mortar (CRTS-II) using mixture design of experiments
Choubane et al. Suitability of asphalt pavement analyzer for predicting pavement rutting
CN111551457B (zh) 一种测试和评估沥青愈合性能的方法
De Freitas et al. Effect of construction quality, temperature, and rutting on initiation of top-down cracking
CN109472107A (zh) 一种建立再生混凝土在冻融下损伤率演化数学模型的方法
CN110078417A (zh) 一种抗车辙沥青混合料配合比设计方法
CN108181450A (zh) 一种沥青混合料水稳定性评价方法
CN109879640A (zh) 一种高性能沥青混合料及其制备方法
Bhasin et al. Evaluation of simple performance tests on hot-mix asphalt mixtures from south central United States
Garcia et al. Assessing crack susceptibility of asphalt concrete mixtures with overlay tester
Kuchiishi et al. Effect of temperature on the fatigue behavior of asphalt binder
CN107607574A (zh) 基于损耗模量峰值的相态转化温度变化评价沥青混合料水稳定性的方法
Zaumanis et al. Laboratory evaluation of organic and chemical warm mix asphalt technologies for SMA asphalt
CN110261248A (zh) 一种多孔弹性路面混合料设计优化方法
CN107540274B (zh) 内摩擦角与粘聚力的泡沫沥青冷再生混合料配比设计方法
CN110018049A (zh) 一种简单应力状态下沥青混合料疲劳寿命预估方法
CN116165082B (zh) 一种沥青应变-疲劳寿命曲线的快速获取方法
CN110411838A (zh) 一种通过应力响应分析评价沥青温度敏感性的方法
CN109543324B (zh) 基于皮尔逊相关系数的热机械分析曲线转折点的测定方法
Pszczoła et al. Testing of low temperature behaviour of asphalt mixtures in bending creep test
CN114235599B (zh) 一种基于半圆弯曲测试模式的沥青砂浆低温断裂性能测试方法
Poullain et al. Mechanical properties of cob-earth composites: variability and focus on the different calculation methods of Young's modulus
Mansourkhaki et al. Fatigue performance of asphalt mixture under actual loading patterns at different pulse durations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant