CN107607503A - 水环境中痕量铜离子的测定方法 - Google Patents

水环境中痕量铜离子的测定方法 Download PDF

Info

Publication number
CN107607503A
CN107607503A CN201710765214.1A CN201710765214A CN107607503A CN 107607503 A CN107607503 A CN 107607503A CN 201710765214 A CN201710765214 A CN 201710765214A CN 107607503 A CN107607503 A CN 107607503A
Authority
CN
China
Prior art keywords
water
copper ion
solution
gold nano
nano cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710765214.1A
Other languages
English (en)
Inventor
王延敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710765214.1A priority Critical patent/CN107607503A/zh
Publication of CN107607503A publication Critical patent/CN107607503A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种水环境中痕量铜离子的测定方法,属于荧光分析技术领域。本发明的技术方案要点为:水环境中痕量铜离子的测定方法,包括标准曲线的绘制及待测水样中痕量铜离子的测定及水溶性金纳米簇的制备等步骤。本发明的水溶性金纳米簇的合成条件简单可控,制得的水溶性金纳米簇可长期储存且具有光稳定性好、激发波长范围宽和发射光谱峰型对称等优点;该水溶性金纳米簇作为铜离子荧光探针建立的铜离子测定方法,具有灵敏度高、选择性强和抗干扰能力强等特点,能够成功应用于水环境中痕量铜离子的测定。

Description

水环境中痕量铜离子的测定方法
技术领域
本发明属于荧光分析技术领域,具体涉及一种水环境中痕量铜离子的测定方法。
背景技术
铜对人体健康至关重要,能够与一些蛋白结合产生大量的酶。但是,若摄入铜过量,它会与分子氧反应形成反应性氧自由基,也可以破坏蛋白质、核酸和脂类。铜对人体潜在的毒性和对环境产生的污染已经成为世界各国关注的问题。因此,建立准确且灵敏的检测铜离子的方法具有十分重要的意义。
金纳米簇(AuNCs)是一种新型的荧光纳米材料,通常由几个到几十个金原子组成,尺寸小于2nm,已成为材料科学和生命科学等领域研究和应用热点,它们具有荧光强度大、毒性低、水溶性良好和生物相容性高等优点,在分析检测、生物标记及荧光成像等领域有着广泛的应用前景。
发明内容
本发明解决的技术问题是提供了一种快速且简便的高选择和高灵敏的水环境中痕量铜离子的测定方法。
本发明为解决上述技术问题采用如下技术方案,水环境中痕量铜离子的测定方法,其特征在于具体步骤为:
(1)标准曲线的绘制,取300μL合成的水溶性金纳米簇于5mL比色管中,加入已知浓度梯度的铜离子溶液,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min,用1cm*1cm的石英样品池在入射和出射狭缝宽度均为10nm,电压为850V的条件下测量荧光强度,在铜离子浓度范围为0.01-40μmol/L时,F0/F与铜离子呈良好的线性关系,回归方程为:F0/F=0.06968C+1.05944,相关系数R2=0.99425,检出限为0.009μmol/L,铜离子浓度为20μmol/L平行测定12次,相对标准偏差为1.20%;
(2)待测水样中痕量铜离子的测定,取300μL合成的水溶性金纳米簇于5mL比色管中,加入已知体积的待测水样,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min,用1cm*1cm的石英样品池在入射和出射狭缝宽度均为10nm,电压为850V的条件下测量荧光强度,然后根据回归方程F0/F=0.06968C+1.05944得到待测水样中铜离子的浓度,并根据待测水样的体积计算得到待测水样中铜离子的含量;
所述水溶性金纳米簇的具体合成过程为:在5mL摩尔浓度为50mmol/L的头孢噻肟钠溶液中加入2.5mL摩尔浓度为2mol/L的氢氧化钠溶液,再加入20mL去离子水,于100℃反应1h后用冷水冷却至室温,再加入盐酸溶液调节至中性得到头孢噻肟钠降解物溶液备用;将1gHAuCl4 .4H2O溶于去离子水中并定容至500mL得到金溶液备用;将14mL金溶液置于反应容器中并油浴加热至沸腾,沸腾10min后加入7mL头孢噻肟钠降解物溶液,继续沸腾4h,待溶液由棕色到粉紫色再到浅黄色时停止加热,自然冷却至室温,然后用0.45μm的亲水PTFE针式过滤器过滤得到浅黄色透明溶液即水溶性金纳米簇。
本发明与现有技术相比具有以下有益效果:本发明的水溶性金纳米簇的合成条件简单可控,制得的水溶性金纳米簇可长期储存且具有光稳定性好、激发波长范围宽和发射光谱峰型对称等优点,该水溶性金纳米簇作为铜离子荧光探针建立的铜离子测定方法,具有灵敏度高、选择性强和抗干扰能力强等特点,能够成功应用于水环境中痕量铜的测定。
附图说明
图1是测定方法的选择性能曲线;
图2是测定方法的干扰实验结果柱状图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
1、水溶性金纳米簇的制备:
头孢噻肟钠降解物(DCTX)溶液的制备
在5mL摩尔浓度为50mmol/L的头孢噻肟钠溶液中加入2.5mL摩尔浓度为2mol/L的氢氧化钠溶液,再加入20mL去离子水,于100℃反应1h后用冷水冷却至室温,再加入盐酸溶液调节至中性得到头孢噻肟钠降解物溶液备用。
金溶液的制备
将1g HAuCl4 .4H2O溶于去离子水中并定容至500mL得到金溶液备用。
水溶性金纳米簇的制备
将14mL金溶液置于反应容器中并油浴加热至沸腾,沸腾10min后加入7mL头孢噻肟钠降解物溶液,继续沸腾4h,待溶液由棕色到粉紫色再到浅黄色时停止加热,自然冷却至室温,然后用0.45μm的亲水PTFE针式过滤器过滤得到浅黄色透明溶液即水溶性金纳米簇,置于4℃冰箱中暗处保存,备用。
2、水溶性金纳米簇的应用:
标准曲线的绘制
取300μL合成的水溶性金纳米簇于5mL比色管中,加入已知浓度梯度的铜离子溶液,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min,用1cm*1cm的石英样品池在入射和出射狭缝宽度均为10nm,电压为850V的条件下测量荧光强度,在铜离子浓度范围为0.01-40μmol/L时,F0/F与铜离子呈良好的线性关系,回归方程为:F0/F=0.06968C+1.05944,相关系数R2=0.99425,检出限为0.009μmol/L,铜离子浓度为20μmol/L平行测定12次,相对标准偏差为1.20%。
测定方法的选择性强
取300μL合成的水溶性金纳米簇于5mL比色管中,分别加入Cu2+、Zn2+、Al3+、Ni2+、Co2+、Pb2+、Cr3+、Cd2+、Mn2+、Mg2+、K+、Bi3+、Ba2+、Ca2+、Fe3+和Hg2+的溶液,最终金属离子浓度为20μM,空白不加任何离子,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min。如图1所示,铜离子的加入,体系的荧光淬灭最大,而其它金属对体系的荧光强度影响非常小。
测定方法的抗干扰能力强
如图2所示,等摩尔浓度的Zn2+、Al3+、Ni2+、Co2+、Pb2+、Cr3+、Cd2+、Mn2+、Mg2+、K+、Bi3+、Ba2+、Ca2+、Fe3+和Hg2+等金属离子的存在,对铜离子的测定几乎没有干扰。
在水环境痕量铜测定中的应用
取300μL合成的水溶性金纳米簇于5mL比色管中,加入已知体积的待测水样,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min,用1cm*1cm的石英样品池在入射和出射狭缝宽度均为10nm,电压为850V的条件下测量荧光强度,然后根据回归方程F0/F=0.06968C+1.05944得到待测水样中铜离子的浓度,并根据待测水样的体积计算得到待测水样中铜离子的含量。
分别用本发明提出的荧光法和原子吸收法进行测定,结果见表1,每组实验重复5次。t检验(t0.05,4=2.78)结果表明,本发明提出的荧光法成功用于水环境中痕量铜离子的测定,准确可靠,方法可行。
表1 水溶性金纳米簇荧光探针法测定待测水样中痕量铜的含量

Claims (1)

1.水环境中痕量铜离子的测定方法,其特征在于具体步骤为:
(1)标准曲线的绘制,取300μL合成的水溶性金纳米簇于5mL比色管中,加入已知浓度梯度的铜离子溶液,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min,用1cm*1cm的石英样品池在入射和出射狭缝宽度均为10nm,电压为850V的条件下测量荧光强度,在铜离子浓度范围为0.01-40μmol/L时,F0/F与铜离子呈良好的线性关系,回归方程为:F0/F=0.06968C+1.05944,相关系数R2=0.99425,检出限为0.009μmol/L,铜离子浓度为20μmol/L平行测定12次,相对标准偏差为1.20%;
(2)待测水样中痕量铜离子的测定,取300μL合成的水溶性金纳米簇于5mL比色管中,加入已知体积的待测水样,再加入200μL pH=7的磷酸盐缓冲溶液,用超纯水定容至4mL,于30℃放置40min,用1cm*1cm的石英样品池在入射和出射狭缝宽度均为10nm,电压为850V的条件下测量荧光强度,然后根据回归方程F0/F=0.06968C+1.05944得到待测水样中铜离子的浓度,并根据待测水样的体积计算得到待测水样中铜离子的含量;
所述水溶性金纳米簇的具体合成过程为:在5mL摩尔浓度为50mmol/L的头孢噻肟钠溶液中加入2.5mL摩尔浓度为2mol/L的氢氧化钠溶液,再加入20mL去离子水,于100℃反应1h后用冷水冷却至室温,再加入盐酸溶液调节至中性得到头孢噻肟钠降解物溶液备用;将1gHAuCl4 .4H2O溶于去离子水中并定容至500mL得到金溶液备用;将14mL金溶液置于反应容器中并油浴加热至沸腾,沸腾10min后加入7mL头孢噻肟钠降解物溶液,继续沸腾4h,待溶液由棕色到粉紫色再到浅黄色时停止加热,自然冷却至室温,然后用0.45μm的亲水PTFE针式过滤器过滤得到浅黄色透明溶液即水溶性金纳米簇。
CN201710765214.1A 2017-08-30 2017-08-30 水环境中痕量铜离子的测定方法 Pending CN107607503A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710765214.1A CN107607503A (zh) 2017-08-30 2017-08-30 水环境中痕量铜离子的测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710765214.1A CN107607503A (zh) 2017-08-30 2017-08-30 水环境中痕量铜离子的测定方法

Publications (1)

Publication Number Publication Date
CN107607503A true CN107607503A (zh) 2018-01-19

Family

ID=61056538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710765214.1A Pending CN107607503A (zh) 2017-08-30 2017-08-30 水环境中痕量铜离子的测定方法

Country Status (1)

Country Link
CN (1) CN107607503A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504190A (zh) * 2021-06-30 2021-10-15 广东环凯生物技术有限公司 水质痕量铜的快速检测方法及试剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699349A (zh) * 2016-02-29 2016-06-22 信阳师范学院 一种牛血清白蛋白稳定的铜纳米簇荧光生物传感器及其制备方法和应用
US20160178596A1 (en) * 2014-12-22 2016-06-23 Industrial Technology Research Institute Probe and method for detecting metal ions and chemical/biochemical molecules
CN106520114A (zh) * 2016-09-20 2017-03-22 山西大学 一种荧光金纳米团簇探针的制备方法和应用
CN106984828A (zh) * 2017-03-28 2017-07-28 东南大学 一种基于化学刻蚀的荧光金纳米簇快速合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160178596A1 (en) * 2014-12-22 2016-06-23 Industrial Technology Research Institute Probe and method for detecting metal ions and chemical/biochemical molecules
CN105699349A (zh) * 2016-02-29 2016-06-22 信阳师范学院 一种牛血清白蛋白稳定的铜纳米簇荧光生物传感器及其制备方法和应用
CN106520114A (zh) * 2016-09-20 2017-03-22 山西大学 一种荧光金纳米团簇探针的制备方法和应用
CN106984828A (zh) * 2017-03-28 2017-07-28 东南大学 一种基于化学刻蚀的荧光金纳米簇快速合成方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ELENA O. TITANOVAA等: "Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime", 《 SARATOV FALL MEETING. INTERNATIONAL SOCIETY FOR OPTICS AND PHOTONICS》 *
JIANPING XIE等: "Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
LING LI WU等: ""Indirect determination of cefradine with n-propyl alcohol-ammonium sulfate-water system by extraction-flotation of cuprous thiocyanate"", 《CHINESE CHEMICAL LETTERS》 *
RONGCHAO JIN.ET AL: ""Size Focusing: A Methodology for Synthesizing"", 《JOURNAL OF PHYSICS CHEMISTRY LETTERS》 *
ZHENTAO LUO.ET AL: ""Toward Understanding the Growth Mechanism: Tracing All Stable"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
张翔: "金纳米簇材料的制备与分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
施小琼,邓豪华等: "荧光金纳米团簇及其在生命分析中的应用", 《世界复合医学》 *
李进等: "以金纳米簇为荧光探针快速测定蔬菜中的微量铜", 《光谱实验室》 *
樊代明: "《肿瘤研究前沿 第15卷》", 31 December 2015, 第四军医大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504190A (zh) * 2021-06-30 2021-10-15 广东环凯生物技术有限公司 水质痕量铜的快速检测方法及试剂

Similar Documents

Publication Publication Date Title
Qu et al. Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities
Ye et al. N, B-doped carbon dots as a sensitive fluorescence probe for Hg2+ ions and 2, 4, 6-trinitrophenol detection for bioimaging
Cen et al. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma
Salinas-Castillo et al. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources
Bu et al. Fluorescent carbon dots for the sensitive detection of Cr (VI) in aqueous media and their application in test papers
Liu et al. Sensitive and selective detection of Hg 2+ and Cu 2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method
Desai et al. Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+)
Yang et al. Synthesis of highly fluorescent lysine-stabilized Au nanoclusters for sensitive and selective detection of Cu 2+ ion
Zhang et al. Bright far-red/near-infrared gold nanoclusters for highly selective and ultra-sensitive detection of Hg2+
Rajamanikandan et al. Protein-protected red emittive copper nanoclusters as a fluorometric probe for highly sensitive biosensing of creatinine
Campos et al. Fluorescent sensor for Cr (VI) based in functionalized silicon quantum dots with dendrimers
KR101496677B1 (ko) 금 나노입자를 이용한 수은이온의 색변환 측정
CN107655868A (zh) 一种水溶性金纳米簇的制备方法及其作为荧光探针测定中药中痕量铜的应用
CN105038782B (zh) 耐酸性碳量子点的制备及在铀离子检测中的应用
Ahmed et al. Multifunctional dual emissive fluorescent probe based on europium-doped carbon dots (Eu-TCA/NCDs) for highly selective detection of chloramphenicol, Hg 2+ and Fe 3+
CN111690405B (zh) 一种荧光碳点及其制备方法和在检测铜离子中的应用
Tümay et al. A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg 2+ ions in environmental samples
Xu et al. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter
Tall et al. Green emitting N, P-doped carbon dots as efficient fluorescent nanoprobes for determination of Cr (VI) in water and soil samples
Wang et al. Negatively charged molybdate mediated nitrogen-doped graphene quantum dots as a fluorescence turn on probe for phosphate ion in aqueous media and living cells
Liu et al. Europium (III) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper (II) from aqueous solution
Shanmugaraj et al. A “turn-off” fluorescent sensor for the selective and sensitive detection of copper (ii) ions using lysozyme stabilized gold nanoclusters
Li et al. Ratiometric fluorescence detection of Hg2+ and Fe3+ based on BSA-protected Au/Ag nanoclusters and His-stabilized Au nanoclusters
Sun et al. Rapid response and high selectivity for reactive nitrogen species based on carbon quantum dots fluorescent probes
Guo et al. Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180119

RJ01 Rejection of invention patent application after publication