CN107607103A - MEMS gyroscope Hybrid Learning control method based on interference observer - Google Patents

MEMS gyroscope Hybrid Learning control method based on interference observer Download PDF

Info

Publication number
CN107607103A
CN107607103A CN201711073630.1A CN201711073630A CN107607103A CN 107607103 A CN107607103 A CN 107607103A CN 201711073630 A CN201711073630 A CN 201711073630A CN 107607103 A CN107607103 A CN 107607103A
Authority
CN
China
Prior art keywords
mrow
msub
mover
msup
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711073630.1A
Other languages
Chinese (zh)
Other versions
CN107607103B (en
Inventor
许斌
张睿
张安龙
刘瑞鑫
邵添羿
赵万良
吴枫
成宇翔
谷丛
林建华
刘洋
慕容欣
刘美霞
应俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shanghai Aerospace Control Technology Institute
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Shanghai Aerospace Control Technology Institute
Shenzhen Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Shanghai Aerospace Control Technology Institute, Shenzhen Institute of Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201711073630.1A priority Critical patent/CN107607103B/en
Publication of CN107607103A publication Critical patent/CN107607103A/en
Application granted granted Critical
Publication of CN107607103B publication Critical patent/CN107607103B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a kind of MEMS gyroscope Hybrid Learning control method based on interference observer, for solving the technical problem of the modal control method poor practicability of existing MEMS gyroscope.Technical scheme is to design interference observer first, and interference is estimated and compensated, and reduces sliding formwork and buffets;Simultaneously according to fuzzy prediction error and tracking error, the compound adaptive rule rule of design fuzzy logic weights, the weight coefficient of fuzzy logic is corrected, realizes unknown dynamic (dynamical) effective dynamic estimation.The present invention considers prediction error and tracking error, designs the Hybrid Learning more new law of fuzzy logic weights, corrects the weight coefficient of fuzzy logic, realize unknown dynamic (dynamical) effective dynamic estimation.With reference to sliding mode control theory, dynamic (dynamical) feedforward compensation unknown to MEMS gyro is realized, further improves the control accuracy of MEMS gyroscope.Interference observer is designed, interference is compensated in sliding formwork control, is buffeted so as to reduce sliding formwork, practicality is good.

Description

MEMS gyroscope Hybrid Learning control method based on interference observer
Technical field
It is more particularly to a kind of based on interference observer the present invention relates to a kind of modal control method of MEMS gyroscope MEMS gyroscope Hybrid Learning control method.
Background technology
With the development of nonlinear control techniques, Park S et al. draw advanced intelligence learning and Non-Linear Control Theory During entering MEMS gyroscope Model control, to improving system robustness, improve MEMS gyroscope performance and be made that significant contribution. Consider unknown and dynamic change uncertain in MEMS gyro system and interference, how to realize unknown dynamic (dynamical) effectively study and The feedforward compensation of sliding formwork control, it is the key for improving gyro performance.
《Robust adaptive sliding mode control of MEMS gyroscope using T-S fuzzy model》(Shitao Wang and Juntao Fei,《Nonlinear Dynamics》, 2014 volume 77 the 1st- 2 phases) in a text, Fei Juntao et al. using the dynamic (dynamical) indeterminate of T-S fuzzy logic systems study MEMS gyro and interference, then Uncertain and interference is compensated using sliding mode controller.Although this method realizes the MEMS under uncertain unknown situation Gyro control, but uncertain original idea on the one hand is approached due to having run counter to fuzzy logic, it is difficult to realize unknown dynamic (dynamical) effective Dynamic estimation, on the other hand to eliminate uncertain and disturbing the handoff gain, it is necessary to very big, bring serious sliding formwork and buffet.
The content of the invention
In order to overcome the shortcomings of the modal control method poor practicability of existing MEMS gyroscope, the present invention provides one kind and is based on The MEMS gyroscope Hybrid Learning control method of interference observer.This method designs interference observer first, and interference is estimated Meter and compensation, reduce sliding formwork and buffet;Simultaneously according to fuzzy prediction error and tracking error, design fuzzy logic weights it is compound from Rule rule is adapted to, the weight coefficient of fuzzy logic is corrected, realizes unknown dynamic (dynamical) effective dynamic estimation.The present invention considers prediction Error and tracking error, the Hybrid Learning more new law of fuzzy logic weights is designed, correct the weight coefficient of fuzzy logic, realized not Know dynamic (dynamical) effective dynamic estimation.With reference to sliding mode control theory, dynamic (dynamical) feedforward compensation unknown to MEMS gyro is realized, is entered One step improves the control accuracy of MEMS gyroscope.Interference observer is designed, interference is compensated in sliding formwork control, so as to drop Low sliding formwork is buffeted, and practicality is good.
The technical solution adopted for the present invention to solve the technical problems:A kind of MEMS gyroscope based on interference observer is answered Learning control method is closed, is characterized in comprising the following steps:
(a) kinetic model of the MEMS gyroscope of consideration quadrature error is:
Wherein, m is the quality of detection mass;ΩzFor gyro input angular velocity;For electrostatic drive power; x*It is acceleration of the MEMS gyroscope detection mass along drive shaft, speed and displacement respectively;y*It is detection respectively Acceleration of the mass along detection axle, speed and displacement;dxx, dyyIt is damped coefficient;kxx, kyyIt is stiffness coefficient;dxyIt is damping The coefficient of coup, kxyIt is stiffness coupling coefficient.
To improve the Analysis on Mechanism degree of accuracy, nondimensionalization processing is carried out to MEMS gyro kinetic model.Take nondimensionalization Time t*oT, then formula (1) both sides simultaneously divided by reference frequency squareReference length q0With detection mass matter M is measured, the nondimensionalization model for obtaining MEMS gyro is
Wherein,
Redefining relevant system parameters is
Then the nondimensionalization model abbreviation of MEMS gyro is
Make A=2S-D, B=Ω2- K, parameter fluctuation caused by considering environmental factor and non-modeling factors and outside are dry Disturb, then formula (4) is expressed as
The model is by state variable q=[x y]TWith control input u=[ux uy]TComposition.Wherein, x, y are respectively immeasurable Mass is detected after guiding principle along drive shaft and the moving displacement of detection axle;ux, uyRepresent that nondimensionalization is after-applied in drive shaft respectively With the power of detection axle;A, B, C are the parameters of model, and its value is relevant with the structural parameters and dynamics of gyroscope;P is mould The uncertain unknown dynamics brought of shape parameter, andΔ A, Δ B are that environmental factor and non-modeling factors are made Into unknown parameter fluctuation;D (t) is external disturbance.
(b) fuzzy logic system is constructedApproachThe fuzzy logic system is by M bar IF-THEN languages Sentence description, wherein the i-th rule has following form:
Using the average defuzzifier in product inference machine, monodrome fuzzy device and center, the output of fuzzy system is
Wherein, XinIt is the input vector of fuzzy logic system, and For the weights of fuzzy logic Matrix;θ(Xin) it is the fuzzy base vector of M dimensions.I-th of element of fuzzy base vector be
Wherein,It is respectivelyxi, yiTo domain A1i, A2i, A3i, A4iDegree of membership,Membership function be designed as following Gaussian function:
Wherein,σiIt is center and the standard deviation of the Gaussian function respectively.
Define optimal estimation parameter w*For
Wherein, ψ is w set.
Therefore, the indeterminate of kinetic model is expressed as
Wherein, ε is the approximate error of fuzzy system.
And the evaluated error of indeterminate is
Wherein,And
(c) design interference observer is
Wherein,For external disturbance d (t) estimate;L is positive definite matrix;Z is intermediate variable.
Define interference observer evaluated error be
Therefore have
(d) the dynamics reference model for establishing MEMS gyro is
Wherein,qdTo refer to vibration displacement signal,For qdTwo Order derivative;Ax, AyMass is respectively detected along drive shaft and the reference amplitude of detection shaft vibration;ωx, ωyRespectively detect matter Gauge block along drive shaft and detection shaft vibration reference angular frequency.
Building tracking error is
E=q-qd (15)
Define sliding-mode surface
Wherein,β meets Hurwitz conditions.Then
Sliding mode controller design is
Wherein, K0For positive definite matrix.
Sliding mode controller formula (18) is substituted into formula (17), had
Definition And define new signal
Define modeling errorTo predict error.In order that closed-loop system ensure s andConvergence, consider pre- Survey error and sliding formwork function, the Hybrid Learning more new law of fuzzy logic weight matrix are designed as
Wherein, λ,For positive definite matrix.
(e) according to obtained interference observer (12), sliding mode controller formula (18) and Hybrid Learning weight more new law formula (21) the kinetic simulation pattern (5) of MEMS gyro, is returned to, the vibration displacement of mass is detected to gyro and speed is tracked Control.
The beneficial effects of the invention are as follows:This method designs interference observer first, and interference is estimated and compensated, is reduced Sliding formwork is buffeted;Simultaneously according to fuzzy prediction error and tracking error, the compound adaptive rule rule of design fuzzy logic weights, repair The weight coefficient of positive fuzzy logic, realizes unknown dynamic (dynamical) effective dynamic estimation.The present invention considers that prediction error and tracking miss Difference, the Hybrid Learning more new law of fuzzy logic weights is designed, correct the weight coefficient of fuzzy logic, realizing unknown dynamic (dynamical) has Imitate dynamic estimation.With reference to sliding mode control theory, dynamic (dynamical) feedforward compensation unknown to MEMS gyro is realized, further improves MEMS The control accuracy of gyroscope.Interference observer is designed, interference is compensated in sliding formwork control, is buffeted so as to reduce sliding formwork, Practicality is good.
The present invention is elaborated with reference to the accompanying drawings and detailed description.
Brief description of the drawings
Fig. 1 is the flow chart of the MEMS gyroscope Hybrid Learning control method of the invention based on interference observer.
Embodiment
Reference picture 1.MEMS gyroscope Hybrid Learning control method of the invention based on interference observer comprises the following steps that:
(a) kinetic model of the MEMS gyroscope of consideration quadrature error is:
Wherein, m is the quality of detection mass;ΩzFor gyro input angular velocity;For electrostatic drive power; x*It is acceleration of the MEMS gyroscope detection mass along drive shaft, speed and displacement respectively;y*It is detection respectively Acceleration of the mass along detection axle, speed and displacement;dxx, dyyIt is damped coefficient;kxx, kyyIt is stiffness coefficient;dxyIt is damping The coefficient of coup, kxyIt is stiffness coupling coefficient.
To improve the Analysis on Mechanism degree of accuracy, nondimensionalization processing is carried out to MEMS gyro kinetic model.Take nondimensionalization Time t*oT, then formula (1) both sides simultaneously divided by reference frequency squareReference length q0With detection mass matter M is measured, the nondimensionalization model that can obtain MEMS gyro is
Wherein,
Redefining relevant system parameters is
Then the nondimensionalization model of MEMS gyro can abbreviation be
Make A=2S-D, B=Ω2- K, parameter fluctuation caused by considering environmental factor and non-modeling factors and outside are dry Disturb, then formula (4) is represented by
The model is by state variable q=[x y]TWith control input u=[ux uy]TComposition.Wherein, wherein, x, y are respectively Mass is detected after nondimensionalization along drive shaft and the moving displacement of detection axle;ux uyRepresent that nondimensionalization is after-applied respectively driving The power of moving axis and detection axle;A, B, C are the parameters of model, and its value is relevant with the structural parameters and dynamics of gyroscope;P The unknown dynamics for not knowing to bring for model parameter, andΔ A, Δ B be environmental factor and do not model because Unknown parameter fluctuation caused by element;D (t) is external disturbance.
According to the oscillatory type silicon micromechanical gyro of certain model, it is m=0.57 × 10 to choose each parameter of gyro-7Kg, q0= [10-6 10-6]TM, ω0=1kHz, Ωz=5.0rad/s, kxx=80.98N/m, kyy=71.62N/m, kxy=0.05N/m, dxx =0.429 × 10-6Ns/m, dyy=0.0429 × 10-6Ns/m, dxy=0.0429 × 10-6Ns/m, then it can be calculatedChoose external disturbance
(b) the uncertain unknown dynamics brought of fuzzy logic dynamic estimation model parameter is utilized.
Construct fuzzy logic systemApproachThe fuzzy logic system is retouched by M bar IF-THEN sentences State, wherein the i-th rule has following form:
Using the average defuzzifier in product inference machine, monodrome fuzzy device and center, the output of fuzzy system is
Wherein, XinIt is the input vector of fuzzy logic system, and For the weights of fuzzy logic Matrix;θ(Xin) it is M=44The fuzzy base vector of=256 dimensions, its i-th of element are
Wherein,It is respectivelyxi, yiTo domain A1i, A2i, A3i, A4iDegree of membership, WithExemplified by, membership function may be designed as following Gaussian function:
Wherein,σiIt is center and the standard deviation of the Gaussian function respectively.xmi, ymiRespectively [- 20 20], [- 0.24 0.24], [- 10 10], any value between [- 0.12 0.12], σi=1.
Define optimal estimation parameter w*For
Wherein, ψ is w set.
Therefore, the indeterminate of kinetic model is represented by
Wherein, ε is the approximate error of fuzzy system.
And the evaluated error of indeterminate is
Wherein,And
(c) design interference observer is estimated and compensates external disturbance.
Designing interference observer is
Wherein,For external disturbance d (t) estimate;L is positive definite matrix, and value isZ is middle anaplasia Amount.
Define interference observer evaluated error be
Therefore have
(d) sliding formwork control is introduced, realizes unknown dynamic (dynamical) feedforward compensation, and provide the Hybrid Learning of neural network weight Rule.
The dynamics reference model for establishing MEMS gyro is
Wherein,qdTo refer to vibration displacement signal,For qdTwo Order derivative;Ax, AyMass is respectively detected along drive shaft and the reference amplitude of detection shaft vibration, and Ax=10 μm, Ay=0.12 μm;ωx, ωyMass is respectively detected along drive shaft and the reference angular frequency of detection shaft vibration, and ωx=2000rad/s, ωy=2000rad/s.
Building tracking error is
E=q-qd (15)
Define sliding-mode surface
Wherein,β meets Hurwitz conditions, and value isThen
Sliding mode controller may be designed as
Wherein, K0For positive definite matrix, value is
Controller formula (18) is substituted into formula (17), had
Definition And define new signal
Define modeling errorTo predict error.In order that closed-loop system ensure s andConvergence, consider pre- Survey error and sliding formwork function, the Hybrid Learning more new law of fuzzy logic weight matrix may be designed as
Wherein, λ,For positive definite matrix, value is
(e) according to obtained interference observer (12), controller formula (18) and Hybrid Learning weight more new law formula (21), return The kinetic simulation pattern (5) of MEMS gyro is returned to, the vibration displacement of mass is detected to gyro and speed is tracked control.
Unspecified part of the present invention belongs to art personnel's common knowledge.

Claims (1)

1. a kind of MEMS gyroscope Hybrid Learning control method based on interference observer, it is characterised in that comprise the following steps:
(a) kinetic model of the MEMS gyroscope of consideration quadrature error is:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>f</mi> <mi>x</mi> <mo>*</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>f</mi> <mi>y</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>m</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>m&amp;Omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>d</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>m&amp;Omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>d</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>m&amp;Omega;</mi> <mi>z</mi> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>m&amp;Omega;</mi> <mi>z</mi> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>x</mi> <mo>*</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>*</mo> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, m is the quality of detection mass;ΩzFor gyro input angular velocity;For electrostatic drive power; x* It is acceleration of the MEMS gyroscope detection mass along drive shaft, speed and displacement respectively;y*It is detection quality respectively Acceleration of the block along detection axle, speed and displacement;dxx, dyyIt is damped coefficient;kxx, kyyIt is stiffness coefficient;dxyIt is damping couple Coefficient, kxyIt is stiffness coupling coefficient;
To improve the Analysis on Mechanism degree of accuracy, nondimensionalization processing is carried out to MEMS gyro kinetic model;Take nondimensionalization time t*oT, then formula (1) both sides simultaneously divided by reference frequency squareReference length q0With detection mass quality m, obtain Nondimensionalization model to MEMS gyro is
<mrow> <mfrac> <msup> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <msup> <mi>D</mi> <mo>*</mo> </msup> <mrow> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mfrac> <msup> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mn>2</mn> <mfrac> <msup> <mi>S</mi> <mo>*</mo> </msup> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mfrac> <mfrac> <msup> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>*</mo> </msup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msup> <mi>&amp;Omega;</mi> <mn>2</mn> </msup> <msubsup> <mi>&amp;omega;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mfrac> <mfrac> <msup> <mi>q</mi> <mo>*</mo> </msup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mfrac> <mo>+</mo> <mfrac> <msup> <mi>K</mi> <mo>*</mo> </msup> <mrow> <msubsup> <mi>m&amp;omega;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mfrac> <msup> <mi>q</mi> <mo>*</mo> </msup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <msup> <mi>f</mi> <mo>*</mo> </msup> <mrow> <msubsup> <mi>m&amp;omega;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
Redefining relevant system parameters is
<mrow> <mi>q</mi> <mo>=</mo> <mfrac> <msup> <mi>q</mi> <mo>*</mo> </msup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mfrac> <mo>,</mo> <mi>f</mi> <mo>=</mo> <mfrac> <msup> <mi>f</mi> <mo>*</mo> </msup> <mrow> <msubsup> <mi>m&amp;omega;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>q</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>=</mo> <mfrac> <msub> <mi>&amp;Omega;</mi> <mi>z</mi> </msub> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mfrac> <mo>,</mo> <mi>D</mi> <mo>=</mo> <mfrac> <msup> <mi>D</mi> <mo>*</mo> </msup> <mrow> <msub> <mi>m&amp;omega;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <mi>K</mi> <mo>=</mo> <mfrac> <msup> <mi>K</mi> <mo>*</mo> </msup> <mrow> <msubsup> <mi>m&amp;omega;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>,</mo> <mi>S</mi> <mo>=</mo> <mo>-</mo> <mfrac> <msup> <mi>S</mi> <mo>*</mo> </msup> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Then the nondimensionalization model abbreviation of MEMS gyro is
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mrow> <mo>(</mo> <msup> <mi>&amp;Omega;</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>q</mi> <mo>+</mo> <mi>f</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Make A=2S-D, B=Ω2- K, consider parameter fluctuation and external disturbance caused by environmental factor and non-modeling factors, then formula (4) it is expressed as
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>q</mi> <mo>+</mo> <mi>C</mi> <mi>u</mi> <mo>+</mo> <mi>P</mi> <mo>+</mo> <mi>d</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
The model is by state variable q=[x y]TWith control input u=[ux uy]TComposition;Wherein, after x, y are respectively nondimensionalization Mass is detected along drive shaft and the moving displacement of detection axle;ux, uyRepresent that nondimensionalization is after-applied in drive shaft and detection respectively The power of axle;A, B, C are the parameters of model, and its value is relevant with the structural parameters and dynamics of gyroscope;P is model parameter The uncertain unknown dynamics brought, andΔ A, Δ B be caused by environmental factor and non-modeling factors not The parameter fluctuation known;D (t) is external disturbance;
(b) fuzzy logic system is constructedApproachThe fuzzy logic system is retouched by M bar IF-THEN sentences State, wherein the i-th rule has following form:
<mrow> <mi>R</mi> <mi>u</mi> <mi>l</mi> <mi>e</mi> <mi> </mi> <mi>i</mi> <mo>:</mo> <mi>I</mi> <mi>F</mi> <mi> </mi> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mi>i</mi> <mi>s</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi> </mi> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mi>i</mi> <mi>s</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi> </mi> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>i</mi> <mi>s</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi> </mi> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>i</mi> <mi>s</mi> <mi> </mi> <msub> <mi>A</mi> <mrow> <mn>4</mn> <mi>i</mi> </mrow> </msub> </mrow>
<mrow> <mi>T</mi> <mi>H</mi> <mi>E</mi> <mi>N</mi> <mi> </mi> <mover> <mi>P</mi> <mo>^</mo> </mover> <msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mi>i</mi> <mi>s</mi> <mi> </mi> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>M</mi> </mrow>
Using the average defuzzifier in product inference machine, monodrome fuzzy device and center, the output of fuzzy system is
<mrow> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein, XinIt is the input vector of fuzzy logic system, and For the weights square of fuzzy logic Battle array;θ(Xin) it is the fuzzy base vector of M dimensions;I-th of element of fuzzy base vector be
<mrow> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>3</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>4</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>3</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>4</mn> <mi>i</mi> </mrow> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein,It is respectivelyxi, yiTo domain A1i, A2i, A3i, A4iDegree of membership,'s Membership function is designed as following Gaussian function:
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>A</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Wherein,σiIt is center and the standard deviation of the Gaussian function respectively;
Define optimal estimation parameter w*For
<mrow> <munder> <msup> <mi>w</mi> <mo>*</mo> </msup> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>&amp;psi;</mi> </mrow> </munder> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <mrow> <mn>2</mn> <mo>&amp;times;</mo> <mn>2</mn> </mrow> </msup> </mrow> </munder> <mo>&amp;lsqb;</mo> <mi>sup</mi> <mo>|</mo> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>P</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ψ is w set;
Therefore, the indeterminate of kinetic model is expressed as
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>w</mi> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mi>&amp;epsiv;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ε is the approximate error of fuzzy system;
And the evaluated error of indeterminate is
<mrow> <mover> <mi>P</mi> <mo>~</mo> </mover> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>|</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>w</mi> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mi>&amp;epsiv;</mi> <mo>-</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>=</mo> <msup> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mi>&amp;epsiv;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein,And
(c) design interference observer is
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>q</mi> <mo>+</mo> <mi>C</mi> <mi>u</mi> <mo>+</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mover> <mi>d</mi> <mo>^</mo> </mover> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
Wherein,For external disturbance d (t) estimate;L is positive definite matrix;Z is intermediate variable;
Define interference observer evaluated error be
<mrow> <mover> <mi>d</mi> <mo>~</mo> </mover> <mo>=</mo> <mi>d</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Therefore have
(d) the dynamics reference model for establishing MEMS gyro is
<mrow> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>d</mi> </msub> <msub> <mi>q</mi> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Wherein,qdTo refer to vibration displacement signal,For qdSecond order lead Number;Ax, AyMass is respectively detected along drive shaft and the reference amplitude of detection shaft vibration;ωx, ωyRespectively detect mass Along drive shaft and the reference angular frequency of detection shaft vibration;
Building tracking error is
E=q-qd (15)
Define sliding-mode surface
<mrow> <mi>s</mi> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>&amp;beta;</mi> <mi>e</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
Wherein,β meets Hurwitz conditions;Then
<mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>&amp;beta;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>q</mi> <mo>+</mo> <mi>C</mi> <mi>u</mi> <mo>+</mo> <mi>P</mi> <mo>+</mo> <mi>d</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mi>&amp;beta;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Sliding mode controller design is
<mrow> <mi>u</mi> <mo>=</mo> <mo>-</mo> <msup> <mi>C</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;lsqb;</mo> <mi>A</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>q</mi> <mo>+</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mi>&amp;beta;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Wherein, K0For positive definite matrix;
Sliding mode controller formula (18) is substituted into formula (17), had
<mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>q</mi> <mo>-</mo> <mo>&amp;lsqb;</mo> <mi>A</mi> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <mi>B</mi> <mi>q</mi> <mo>+</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mi>&amp;beta;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>P</mi> <mo>+</mo> <mi>d</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>+</mo> <mi>&amp;beta;</mi> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mover> <mi>d</mi> <mo>~</mo> </mover> <mo>+</mo> <mi>&amp;epsiv;</mi> <mo>-</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mi>s</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
DefinitionAnd define new signal
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>q</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mi>d</mi> </msub> </mrow> <mi>t</mi> </msubsup> <msub> <mi>C</mi> <msub> <mi>q</mi> <mn>0</mn> </msub> </msub> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mi>d</mi> </msub> </mrow> <mi>t</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mi>d</mi> </msub> </mrow> <mi>t</mi> </msubsup> <mrow> <mo>(</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mi>&amp;theta;</mi> <mo>+</mo> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
Define modeling errorTo predict error;In order that closed-loop system ensure s andConvergence, consider prediction miss Difference and sliding formwork function, the Hybrid Learning more new law of fuzzy logic weight matrix are designed as
Wherein, λ,For positive definite matrix;
(e) according to obtained interference observer (12), sliding mode controller formula (18) and Hybrid Learning weight more new law formula (21), return The kinetic simulation pattern (5) of MEMS gyro is returned to, the vibration displacement of mass is detected to gyro and speed is tracked control.
CN201711073630.1A 2017-11-05 2017-11-05 MEMS gyroscope Hybrid Learning control method based on interference observer Active CN107607103B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711073630.1A CN107607103B (en) 2017-11-05 2017-11-05 MEMS gyroscope Hybrid Learning control method based on interference observer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711073630.1A CN107607103B (en) 2017-11-05 2017-11-05 MEMS gyroscope Hybrid Learning control method based on interference observer

Publications (2)

Publication Number Publication Date
CN107607103A true CN107607103A (en) 2018-01-19
CN107607103B CN107607103B (en) 2019-09-24

Family

ID=61085033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711073630.1A Active CN107607103B (en) 2017-11-05 2017-11-05 MEMS gyroscope Hybrid Learning control method based on interference observer

Country Status (1)

Country Link
CN (1) CN107607103B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389528A (en) * 2019-07-18 2019-10-29 西北工业大学 Data-driven MEMS gyroscope drive control method based on disturbance observation
CN110389530A (en) * 2019-07-18 2019-10-29 西北工业大学 MEMS gyroscope parameter identification drive control method based on data screening
CN110440778A (en) * 2019-07-25 2019-11-12 中北大学 A kind of MEMS gyroscope non-overshoot guaranteed cost fuzzy wavelet nerve control method
CN111025915A (en) * 2019-12-31 2020-04-17 南通大学 Z-axis gyroscope neural network sliding mode control method based on disturbance observer
CN111750897A (en) * 2020-07-03 2020-10-09 南京晓庄学院 Yaw rate gyroscope deviation estimation method based on Longbeige observer
CN111766781A (en) * 2020-05-06 2020-10-13 东北电力大学 Multi-machine electric power system self-adaptive dynamic surface controller based on composite learning and DOB
CN112596533A (en) * 2020-11-30 2021-04-02 中航机载系统共性技术有限公司 MEMS gyroscope data driving high-precision active disturbance rejection control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821722A (en) * 2006-03-27 2006-08-23 北京航空航天大学 Decoupling detecting device for gyroscope scale factor and input shaft default angle
CN101158588A (en) * 2007-11-16 2008-04-09 北京航空航天大学 MEMS gyroscopes error compensation method for micro satellite based on integration nerval net
US20130099836A1 (en) * 2011-10-25 2013-04-25 Invensense, Inc. Gyroscope with phase and duty-cycle locked loop
CN103616818A (en) * 2013-11-14 2014-03-05 河海大学常州校区 Self-adaptive fuzzy neural global rapid terminal sliding-mode control method for micro gyroscope
CN103900610A (en) * 2014-03-28 2014-07-02 哈尔滨工程大学 MEMS (Micro-electromechanical Systems) gyroscope random error predication method based on grey wavelet neural network
CN104281056A (en) * 2014-09-18 2015-01-14 河海大学常州校区 MEMS gyroscope robust self-adaptation control method based on neural network upper bound learning
CN105045097A (en) * 2015-05-26 2015-11-11 河海大学常州校区 Inversing global SMFC (sliding mode fuzzy control) method for micro-gyroscope based on neural network
US20170199035A1 (en) * 2015-12-09 2017-07-13 Invensense, Inc. MEMS Gyroscope Amplitude Control via Quadrature
CN107289969A (en) * 2016-04-01 2017-10-24 南京理工大学 A kind of MEMS inertial sensor automatic batch scaling method and system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821722A (en) * 2006-03-27 2006-08-23 北京航空航天大学 Decoupling detecting device for gyroscope scale factor and input shaft default angle
CN101158588A (en) * 2007-11-16 2008-04-09 北京航空航天大学 MEMS gyroscopes error compensation method for micro satellite based on integration nerval net
US20130099836A1 (en) * 2011-10-25 2013-04-25 Invensense, Inc. Gyroscope with phase and duty-cycle locked loop
CN103616818A (en) * 2013-11-14 2014-03-05 河海大学常州校区 Self-adaptive fuzzy neural global rapid terminal sliding-mode control method for micro gyroscope
CN103900610A (en) * 2014-03-28 2014-07-02 哈尔滨工程大学 MEMS (Micro-electromechanical Systems) gyroscope random error predication method based on grey wavelet neural network
CN104281056A (en) * 2014-09-18 2015-01-14 河海大学常州校区 MEMS gyroscope robust self-adaptation control method based on neural network upper bound learning
CN105045097A (en) * 2015-05-26 2015-11-11 河海大学常州校区 Inversing global SMFC (sliding mode fuzzy control) method for micro-gyroscope based on neural network
US20170199035A1 (en) * 2015-12-09 2017-07-13 Invensense, Inc. MEMS Gyroscope Amplitude Control via Quadrature
CN107289969A (en) * 2016-04-01 2017-10-24 南京理工大学 A kind of MEMS inertial sensor automatic batch scaling method and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEIWANG: "《A Nonsingular Terminal Sliding Mode Approach Using Adaptive Disturbance Observer for Finite-Time Trajectory Tracking of MEMS Triaxial Vibratory Gyroscope》", 《MATHEMATICAL PROBLEMS IN ENGINEERING》 *
王伟: "《三轴微机电系统陀螺仪自适应干扰补偿方法》", 《控制理论与应用》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389528A (en) * 2019-07-18 2019-10-29 西北工业大学 Data-driven MEMS gyroscope drive control method based on disturbance observation
CN110389530A (en) * 2019-07-18 2019-10-29 西北工业大学 MEMS gyroscope parameter identification drive control method based on data screening
CN110389528B (en) * 2019-07-18 2022-04-01 西北工业大学 Data-driven MEMS gyroscope driving control method based on disturbance observation
CN110389530B (en) * 2019-07-18 2022-05-17 西北工业大学 MEMS gyroscope parameter identification drive control method based on data screening
CN110440778A (en) * 2019-07-25 2019-11-12 中北大学 A kind of MEMS gyroscope non-overshoot guaranteed cost fuzzy wavelet nerve control method
CN110440778B (en) * 2019-07-25 2022-10-04 中北大学 MEMS gyroscope non-overshoot protection performance fuzzy wavelet neural control method
CN111025915A (en) * 2019-12-31 2020-04-17 南通大学 Z-axis gyroscope neural network sliding mode control method based on disturbance observer
CN111766781A (en) * 2020-05-06 2020-10-13 东北电力大学 Multi-machine electric power system self-adaptive dynamic surface controller based on composite learning and DOB
CN111750897A (en) * 2020-07-03 2020-10-09 南京晓庄学院 Yaw rate gyroscope deviation estimation method based on Longbeige observer
CN112596533A (en) * 2020-11-30 2021-04-02 中航机载系统共性技术有限公司 MEMS gyroscope data driving high-precision active disturbance rejection control method

Also Published As

Publication number Publication date
CN107607103B (en) 2019-09-24

Similar Documents

Publication Publication Date Title
CN107607103A (en) MEMS gyroscope Hybrid Learning control method based on interference observer
CN107607101A (en) MEMS gyro sliding-mode control based on interference observer
CN107678282B (en) Consider the MEMS gyro intelligent control method of unknown dynamics and external disturbance
CN107607102A (en) MEMS gyro sliding formwork based on interference observer buffets suppressing method
CN103116275B (en) Based on the gyroscope Robust Neural Network Control system and method that sliding formwork compensates
CN108897226B (en) The nonsingular sliding-mode control of MEMS gyroscope default capabilities based on interference observer
CN102636995B (en) Method for controlling micro gyro based on radial basis function (RBF) neural network sliding mode
CN104950678B (en) A kind of Neural Network Inversion control method of flexible mechanical arm system
CN102298315B (en) Adaptive control system based on radial basis function (RBF) neural network sliding mode control for micro-electromechanical system (MEMS) gyroscope
CN104199295B (en) Electromechanical servo system friction compensation and variable structure control method based on neural network
CN102385342B (en) Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion
CN104281056A (en) MEMS gyroscope robust self-adaptation control method based on neural network upper bound learning
CN107608217A (en) MEMS gyroscope modified fuzzy sliding mode controlling method based on Hybrid Learning
Wang et al. Robust adaptive sliding mode control of MEMS gyroscope using T–S fuzzy model
CN104730922B (en) Servo-drive system linear Feedback Control and POLE PLACEMENT USING based on extended state observer determine parametric technique
CN104122794A (en) Self-adaption fuzzy neural compensating nonsingular terminal sliding mode control method of micro gyroscope
CN105929694A (en) Adaptive neural network nonsingular terminal sliding mode control method for micro gyroscope
CN102411302A (en) Control method of MEMS (micro-electromechanical system) micro-gyroscope based on direct self-adaptive fuzzy control
CN110389528A (en) Data-driven MEMS gyroscope drive control method based on disturbance observation
CN104503246A (en) Indirect adaptive neural network sliding-mode control method for micro-gyroscope system
CN104407514B (en) Gyroscope back stepping control method based on neutral net state observer
Gao et al. Neural adaptive coordination control of multiple trains under bidirectional communication topology
CN111649906B (en) Sliding film following control method of oil receiving machine model supporting device for wind tunnel test
Li et al. Reinforcement learning control method for real‐time hybrid simulation based on deep deterministic policy gradient algorithm
CN104199291A (en) Dissipative structure theory based TORA (Translation oscillators with a rotating actuator) system self-adaption control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant