CN107591797A - A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot - Google Patents

A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot Download PDF

Info

Publication number
CN107591797A
CN107591797A CN201710715984.5A CN201710715984A CN107591797A CN 107591797 A CN107591797 A CN 107591797A CN 201710715984 A CN201710715984 A CN 201710715984A CN 107591797 A CN107591797 A CN 107591797A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
node
sofe switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710715984.5A
Other languages
Chinese (zh)
Inventor
赵金利
李雨薇
王成山
李鹏
宋关羽
冀浩然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710715984.5A priority Critical patent/CN107591797A/en
Publication of CN107591797A publication Critical patent/CN107591797A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Secondary Cells (AREA)

Abstract

A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot:According to selected active distribution system, active distribution system structure and parameter are inputted;According to active distribution system structure and parameter, consider that distributed power source is contributed and the temporal characteristicses of load, the collection for establishing active power distribution network intelligence Sofe Switch neutralizes and jointly controls strategy on the spot and adjust model;Object function in model and nonlinear restriction are linearized or second order cone conversion, so that the neutralization that integrates of active power distribution network intelligence Sofe Switch jointly controls strategy and adjusts model conversation as second order Based On The Conic Model on the spot;Calculating solution is carried out to second order Based On The Conic Model using Second-order cone programming algorithm to obtain:The collection of intelligent Sofe Switch neutralizes the relevant parameter for jointly controlling strategy on the spot, the voltage's distribiuting situation in system, active the regulation situation and reactive-load compensation situation of intelligent Sofe Switch.The present invention is to consider the randomness and fluctuation of distributed power source and load, and the collection for establishing active power distribution network intelligence Sofe Switch neutralizes and jointly controls strategy on the spot and adjust model.

Description

A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot
Technical field
The present invention relates to a kind of operation control strategy of intelligent Sofe Switch.More particularly to a kind of concentration of intelligent Sofe Switch Jointly control tactful setting method on the spot.
Background technology
Highest attention to the energy and environment causes the development of power distribution network to be faced with new pressure and challenge, these pressure with Challenge is also the important opportunity for promoting conventional electrical distribution net to develop to active power distribution network simultaneously.In recent years, including photovoltaic Permeability is or not distributed power source (Distributed Generation, DG) including (Photovoltaic, PV), blower fan etc. Disconnected raising makes active power distribution network face a series of new problems, such as bi-directional current, voltage out-of-limit, network congestion, and wherein voltage is got over Limit situation is especially prominent.In conventional electrical distribution system, its regulating measure is limited, tight in particular for the control device of primary system Weight is deficient, and existing weaponry and equipment is the regulation for reactive power mostly, such as capacitor bank, SVC.But in distribution In net, the active relation between reactive power intercouples, and influence of the active power to voltage's distribiuting is equally notable.Cause This, is difficult merely to eliminate voltage out-of-limit problem by Reactive-power control particularly with the power distribution network of the distributed power source containing high permeability. Intelligent Sofe Switch (soft open point, SOP) is a kind of base of the traditional interconnection switch of substitution derived under above-mentioned background In the new distribution device of Power Electronic Technique.Intelligent Sofe Switch can realize the Joint regulation of active power and reactive power, And Power Control is simple, reliable, so as to successfully manage a series of problems including voltage out-of-limit.
At present, intelligent Sofe Switch mainly realizes that its operation controls using centerized fusion strategy.Centerized fusion strategy The controllable resources such as intelligent Sofe Switch, distributed power source are carried out with global optimization using global information, but excessive data volume can band Come heavy communication and data processing load, increase time delay;In addition, sometimes for privacy and secure context consideration and It is difficult to obtain global details, now uses centerized fusion by unsuitable.And control rely solely on local measurement on the spot Information, although global optimum can not be realized, the information interchange between node or long-range measurement are not needed, so as to reduce communication Data volume, reduce the dimension of control variable;Also, when distributed power generation fluctuation is larger, control strategy can be rapid on the spot Response, so as to quickly suppress fluctuation.
Research on intelligent Sofe Switch running optimizatin problem at present, it is the centralized Control plan for its horsepower output mostly Slightly deploy.But the spy that the idle output in view of intelligent two current transformers of Sofe Switch is independent of each other by the isolation of DC link Point, its active and reactive output can be concentrated respectively, be controlled on the spot, realize the concentration of intelligent Sofe Switch with combining control on the spot System, so as to realize global optimum as far as possible on the premise of computation burden is reduced.
Because the running optimizatin of intelligent Sofe Switch has very strong temporal aspect, it is therefore necessary to be with the active distribution of sequential The collection neutralization for netting intelligent Sofe Switch jointly controls the tactful solution basis for adjusting model as optimization problem on the spot.The model mathematics Substantially it is mixed integer nonlinear programming problem, larger challenge is brought to solution is calculated.Therefore, it is necessary to which one kind can be asked quickly The model and algorithm of above-mentioned mixed integer nonlinear programming problem are solved, is neutralized to solve the collection of active power distribution network intelligence Sofe Switch Jointly control strategy on the spot and adjust model, jointly control strategy, including intelligence on the spot so as to make the collection of intelligent Sofe Switch and neutralize The active centralized Control strategy of energy Sofe Switch and on the spot voltage & var control strategy.
The content of the invention
The technical problem to be solved by the invention is to provide a kind of collection for establishing active power distribution network intelligence Sofe Switch to neutralize just Ground jointly controls strategy and adjusts model, and the collection for formulating intelligent Sofe Switch neutralizes the collection for the intelligent Sofe Switch for jointly controlling strategy on the spot Neutralization jointly controls tactful setting method on the spot.
The technical solution adopted in the present invention is:A kind of collection of intelligent Sofe Switch neutralizes jointly controls the strategy side of adjusting on the spot Method, comprise the following steps:
1) according to selected active distribution system, incoming line parameter, load level, network topology annexation, system The constraint of safe operation voltage and branch current limitation, the on-position of distributed power source and capacity, distributed power source and load At the beginning of day operation Predicting Performance Characteristics curve, on-position, capacity and the parameter of intelligent Sofe Switch, system reference voltage and reference power Value;
2) according to active distribution system structure and parameter, consider the temporal characteristicses that distributed power source is contributed with load, establish The collection neutralization of active power distribution network intelligence Sofe Switch jointly controls strategy and adjusts model on the spot, including:Root node is chosen to save for balance Point, active distribution system loss and the minimum object function of voltage deviation sum are set, considers system load flow constraint, system respectively Safe operation constraint, the operation of intelligent Sofe Switch and capacity-constrained;
3) object function in the step 2) model and nonlinear restriction are linearized or second order cone is changed, so as to The neutralization that integrates of active power distribution network intelligence Sofe Switch is set to jointly control strategy on the spot and adjust model conversation as second order Based On The Conic Model;
4) calculating solution is carried out to second order Based On The Conic Model using Second-order cone programming algorithm to obtain:The collection of intelligent Sofe Switch neutralizes just Ground jointly controls the relevant parameter of strategy, the voltage's distribiuting situation in system, the active regulation situation of intelligent Sofe Switch and idle Compensation situation;
5) solving result of step 4) is exported.
In step 2):
(1) loss of active distribution system and the minimum object function of voltage deviation sum described in are expressed as
Min f=α fL+βfV (1)
In formula, α and β are respectively system loss fLWith system voltage deviation situation fVWeight coefficient, wherein, system loss fLWith system voltage deviation situation fVExpression formula it is as follows:
In formula, NTAnd NNDiscontinuity surface number and system node sum when respectively;ΩbFor system branch set;Vt,iFor the t periods The voltage magnitude of node i;RijFor branch road ij resistance, It,ijNode j current amplitude is flowed to for t period node is;For The active loss value of intelligent Sofe Switch in t period node is;For Vt,iExpectation voltage range, work as Vt,iNot herein During section, object function fVFor reducing voltage deviation;
(2) the system load flow constraint representation described in is
In formula, ΩbFor the set of all branch roads in system;Pt,ijNode j active power is flowed to for t period node is, Qt,ijNode j reactive power is flowed to for t period node is;Pt,ikNode k active power, Q are flowed to for t period node ist,ikFor T period node is flow to node k reactive power;RijFor branch road ij resistance, XijFor branch road ij reactance;It,ijFor the t periods Point i flows to node j current amplitude;Vt,iFor the voltage magnitude of t period node is, Vt,jFor t period nodes j voltage magnitude; Pt,iFor the active power sum injected in t period node is,It is distributed respectively in t period node is The active power of power supply injection, the active power of intelligent Sofe Switch injection, the active power of load consumption, Qt,iFor t period nodes The reactive power sum injected on i,What distributed power source injected respectively in t period node is is idle Power, the reactive power of intelligent Sofe Switch injection, the reactive power of load consumption;
(3) the active centralized Control constraint representation of intelligent Sofe Switch described in is
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;WithThe respectively active loss value of the upper intelligent Sofe Switch of t periods node i, j;WithRespectively t periods node i, j The active loss coefficient of upper intelligent Sofe Switch;WithThe respectively nothing of the upper intelligent Sofe Switch injection of t periods node i, j Work(power;
(4) voltage & var control constraint representation is the intelligent Sofe Switch described on the spot
In formula,WithThe reactive power that respectively the upper intelligent Sofe Switch of t periods node i, j injects is most Big value;With g (Vt,j) expression formula of intelligent Sofe Switch voltage & var control strategy on the spot is collectively formed,And g (Vt,j) it is respectively present regulation dead bandWithNow reactive power caused by intelligent Sofe Switch For 0var;Following formula respectively constitutesWith g (Vt,j):
Step 3) includes:
(1) U is used2,t,iAnd I2,t,ijReplace the quadratic term in object function, system load flow constraint and system operation constraintWithBy object function and system load flow constraint linearisation:
(Vmin)2≤U2,t,i≤(Vmax)2 (20)
I2,t,ij≤(Imax)2 (21)
In formula, ΩbFor the set of branch road;Pt,ijNode j active power, Q are flowed to for t period node ist,ijFor the t periods Point i flows to node j reactive power;Pt,ikNode k active power, Q are flowed to for t period node ist,ikFor t period node i streams To node k reactive power;RijFor branch road ij resistance, XijFor branch road ij reactance;Pt,iFor what is injected in t period node is Active power sum, Qt,iFor the reactive power sum injected in t period node is,Respectively t period node is Reactive power, the reactive power of load consumption of upper distributed power source injection;For intelligent Sofe Switch in t period node is Active loss value;VmaxAnd VminFor system maximum allowable voltage and minimum allowable magnitude of voltage;ImaxFor branch road maximum allowed current Value;NTAnd NNDiscontinuity surface number and system node sum when respectively;For Vt,iExpectation voltage minimum value,For Vt,i Expectation voltage maximum;
(2) object function fVIn contain absolute value term | U2,t,i- 1 |, introduce auxiliary variable At,i, and increase constraint:
At,i≥0 (27);
(3) expression formula of intelligent Sofe Switch voltage & var control strategy on the spotWith g (Vt,j) it is non-linear expression Formula, using piece-wise linearization realization pairWith g (Vt,j) exact linearization method;By introducing auxiliary variable at,i,nN=1, 2,…,6、dt,i,nN=1,2 ..., 5 and at,j,nN=1,2 ..., 6, dt,j,nN=1,2 ..., 5, using line segment come approximateWith g (Vt,j) defined in curve, it is as follows:
at,i,1≤dt,i,1,at,i,6≤dt,i,5 (30)
at,i,n≤dt,i,n+dt,i,n-1, n=2,3,4,5 (31)
at,i,n≥0,dt,i,n∈{0,1} (32)
In formula, at,i,nN=1,2 ..., 6 be continuous variable, dt,i,nN=1,2 ..., 5 be integer variable;WithRespectivelyThe minimum value and maximum in curve adjustment dead band;
g(Vt,j)=at,j,1+at,j,2-at,j,5-at,j,6 (34)
at,j,1≤dt,j,1,at,j,6≤dt,j,5 (36)
at,j,n≤dt,j,n+dt,j,n-1, n=2,3,4,5 (37)
at,j,n≥0,dt,j,n∈{0,1} (38)
In formula, aT, j, nN=1,2 ..., 6 be continuous variable, dT, j, nN=1,2 ..., 5 be integer variable;WithRespectively g (Vt,j) curve adjustment dead band minimum value and maximum;
Introduce auxiliary integer variable ci,1、ci,2And cj,1、cj,2Respectively by non-linear product term WithLinearisation, thenWithPoint It is not expressed as:
ci,1≤ci,2 (42)
cj,1≤cj,2 (45)
at,i,3ci,1、at,i,4ci,2And at,j,3cj,1、at,j,4cj,2Non-linear product term is remained, therefore introduces binary system and becomes Measure li,1,m、li,2,mAnd lj,1,m、lj,2,mM=0,1 ..., 4 represent at,i,3ci,1、at,i,4ci,2And at,j,3cj,1、at,j,4cj,2
Introduce auxiliary variable wt,i,1,m=at,i,3li,1,m、wt,i,2,m=at,i,4li,2,mAnd wt,j,1,m=at,j,3lj,1,m、 wt,j,2,m=at,j,4lj,2,m, and it is 1000 to take M, and increase following constrain:
at,i,3-(1i,1,m)M≤wt,i,1,m≤at,i,3 (50)
0≤wt,i,1,m≤li,1,mM (51)
at,i,4-(1-li,2,m)M≤wt,i,2,m≤at,i,4 (52)
0≤wt,i,2,m≤li,2,mM (53)
at,j,3-(1-lj,1,m)M≤wt,j,1,m≤at,j,3 (54)
0≤wt,j,1,m≤lj,1,mM (55)
at,j,4-(1-lj,2,m)M≤wt,j,2,m≤at,j,4 (56)
0≤wt,j,2,m≤lj,2,mM (57)
(4) the loss constraints of intelligent Sofe Switch is subjected to convex relaxation, and then obtains rotating cone constraint formula:
(5) by constraint equationLinearized, using U2,t,iAnd I2,t,ijReplace quadratic termWith
Convex relaxation is further carried out, obtains second order cone constraint formula:
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;WithThe respectively active loss value of the upper intelligent Sofe Switch of t periods node i, j;WithRespectively t periods node i, j The active loss coefficient of upper intelligent Sofe Switch;WithRespectively the upper intelligent Sofe Switch injection of t periods node i, j is idle Power,WithRespectively the t periods are connected on the access appearance of the intelligent Sofe Switch both ends transverter between node i and node j Amount.
A kind of collection of intelligent Sofe Switch of the present invention neutralizes jointly controls tactful setting method on the spot, continuous based on solving Intelligent Sofe Switch collection under time series neutralizes the problem of tuning for jointly controlling strategy on the spot, takes into full account distributed power source and bears The randomness and fluctuation of lotus, the collection for establishing active power distribution network intelligence Sofe Switch neutralize and jointly control strategy on the spot and adjust model, Solved using Second-order cone programming method, the collection neutralization for obtaining intelligent Sofe Switch jointly controls strategy on the spot.
Brief description of the drawings
Fig. 1 is that the collection neutralization of the intelligent Sofe Switch of the present invention jointly controls tactful setting method flow chart on the spot;
Fig. 2 is improved PG&E69 nodes example structure chart;
Fig. 3 is distributed power source and load operation Predicting Performance Characteristics curve;
Fig. 4 a are the voltage & var control strategies on the spot of the current transformer at node 27 of intelligent Sofe Switch 1 after adjusting;
Fig. 4 b are the voltage & var control strategies on the spot of the current transformer at node 54 of intelligent Sofe Switch 1 after adjusting;
Fig. 4 c are the voltage & var control strategies on the spot of the current transformer at node 35 of intelligent Sofe Switch 2 after adjusting;
Fig. 4 d are the voltage & var control strategies on the spot of the current transformer at node 48 of intelligent Sofe Switch 2 after adjusting;
Fig. 5 a are the active transmission situations of intelligent Sofe Switch 1 under scheme II;
Fig. 5 b are the active transmission situations of intelligent Sofe Switch 2 under scheme II;
Fig. 6 a are the reactive-load compensation situations of intelligent Sofe Switch 1 under scheme II;
Fig. 6 b are the reactive-load compensation situations of intelligent Sofe Switch 2 under scheme II;
Fig. 7 a are the voltage's distribiuting situations at node 35 before and after optimizing;
Fig. 7 b are the voltage's distribiuting situations at node 54 before and after optimizing.
Embodiment
A kind of collection of intelligent Sofe Switch of the present invention is neutralized with reference to embodiment and accompanying drawing and jointly controls strategy on the spot Setting method is described in detail.
As shown in figure 1, a kind of collection of intelligent Sofe Switch of the present invention neutralizes jointly controls tactful setting method on the spot, including Following steps:
1) according to selected active distribution system, incoming line parameter, load level, network topology annexation, system The constraint of safe operation voltage and branch current limitation, the on-position of distributed power source and capacity, distributed power source and load At the beginning of day operation Predicting Performance Characteristics curve, on-position, capacity and the parameter of intelligent Sofe Switch, system reference voltage and reference power Value;
2) according to step 1) provide active distribution system structure and parameter, consider distributed power source contribute and load when Sequence characteristic, the collection for establishing active power distribution network intelligence Sofe Switch neutralize and jointly control strategy on the spot and adjust model, including:Choose root section Point is balance nodes, sets active distribution system loss and the minimum object function of voltage deviation sum, considers system tide respectively Stream constraint, system safety operation constraint, the operation of intelligent Sofe Switch and capacity-constrained;Wherein:
(1) loss of active distribution system and the minimum object function of voltage deviation sum described in are expressed as
Min f=α fL+βfV (1)
In formula, α and β are respectively system loss fLWith system voltage deviation situation fVWeight coefficient, wherein, system loss fLWith system voltage deviation situation fVExpression formula it is as follows:
In formula, NTAnd NNDiscontinuity surface number and system node sum when respectively;ΩbFor system branch set;Vt,iFor the t periods The voltage magnitude of node i;RijFor branch road ij resistance, It,ijNode j current amplitude is flowed to for t period node is;For The active loss value of intelligent Sofe Switch in t period node is;For Vt,iExpectation voltage range, work as Vt,iNot herein During section, object function fVFor reducing voltage deviation;
(2) the system load flow constraint representation described in is
In formula, ΩbFor the set of all branch roads in system;Pt,ijNode j active power is flowed to for t period node is, Qt,ijNode j reactive power is flowed to for t period node is;Pt,ikNode k active power, Q are flowed to for t period node ist,ikFor T period node is flow to node k reactive power;RijFor branch road ij resistance, XijFor branch road ij reactance;It,ijFor the t periods Point i flows to node j current amplitude;Vt,iFor the voltage magnitude of t period node is, Vt,jFor t period nodes j voltage magnitude; Pt,iFor the active power sum injected in t period node is,It is distributed respectively in t period node is The active power of power supply injection, the active power of intelligent Sofe Switch injection, the active power of load consumption, Qt,iFor t period nodes The reactive power sum injected on i,What distributed power source injected respectively in t period node is is idle Power, the reactive power of intelligent Sofe Switch injection, the reactive power of load consumption;
(3) the system safety operation constraint representation described in is
In formula, VmaxAnd VminFor system maximum allowable voltage and minimum allowable magnitude of voltage;Vt,iFor the electricity of t period node is Pressure amplitude value;It,ijNode j current amplitude is flowed to for t period node is;ImaxFor branch road maximum allowed current value;
(4) the intelligent Sofe Switch described in runs constraint representation
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;WithThe respectively reactive power of the upper intelligent Sofe Switch injection of t periods node i, j;WithRespectively the t periods are connected on section The access capacity of intelligent Sofe Switch both ends transverter between point i and node j;WithThe respectively t periods The active power maximum of the upper intelligent Sofe Switch injections of point i, j;WithRespectively t periods node i, the upper intelligence of j The reactive power maximum of energy Sofe Switch injection;
(5) the active centralized Control constraint representation of intelligent Sofe Switch described in is
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;WithThe respectively active loss value of the upper intelligent Sofe Switch of t periods node i, j;WithRespectively t periods node i, j The active loss coefficient of upper intelligent Sofe Switch;WithThe respectively nothing of the upper intelligent Sofe Switch injection of t periods node i, j Work(power;
(6) voltage & var control constraint representation is the intelligent Sofe Switch described on the spot
In formula,WithThe reactive power that respectively the upper intelligent Sofe Switch of t periods node i, j injects is most Big value;With g (Vt,j) expression formula of intelligent Sofe Switch voltage & var control strategy on the spot is collectively formed,And g (Vt,j) it is respectively present regulation dead bandWithNow reactive power caused by intelligent Sofe Switch For 0var;Following formula respectively constitutesWith g (Vt,j):
3) object function in the step 2) model and nonlinear restriction are linearized or second order cone is changed, so as to The neutralization that integrates of active power distribution network intelligence Sofe Switch is set to jointly control strategy on the spot and adjust model conversation as second order Based On The Conic Model;Including:
(1) U is used2,t,iAnd I2,t,ijReplace the quadratic term in object function, system load flow constraint and system operation constraintWithBy object function, system load flow constraint and system operation constraint linearisation:
(Vmin)2≤U2,t,i≤(Vmax)2 (28)
I2,t,ij≤(Imax)2 (29)
In formula, ΩbFor the set of branch road;Pt,ijNode j active power, Q are flowed to for t period node ist,ijFor the t periods Point i flows to node j reactive power;Pt,ikNode k active power, Q are flowed to for t period node ist,ikFor t period node i streams To node k reactive power;RijFor branch road ij resistance, XijFor branch road ij reactance;Pt,iFor what is injected in t period node is Active power sum, Qt,iFor the reactive power sum injected in t period node is,Respectively t period node is Reactive power, the reactive power of load consumption of upper distributed power source injection;For intelligent Sofe Switch in t period node is Active loss value;VmaxAnd VminFor system maximum allowable voltage and minimum allowable magnitude of voltage;ImaxFor branch road maximum allowed current Value;NTAnd NNDiscontinuity surface number and system node sum when respectively;For Vt,iExpectation voltage minimum value,For Vt,i Expectation voltage maximum;
(2) object function fVIn contain absolute value term | U2,t,i- 1 |, introduce auxiliary variable At,i, and increase constraint:
At,i≥0 (35);
(3) expression formula of intelligent Sofe Switch voltage & var control strategy on the spotWith g (Vt,j) it is non-linear expressions, Using piece-wise linearization realization pairWith g (Vt,j) exact linearization method;By introducing auxiliary variable at,i,nN=1, 2,…,6、dt,i,nN=1,2 ..., 5 and at,j,nN=1,2 ..., 6, dt,j,nN=1,2 ..., 5, using line segment come approximateWith g (Vt,j) defined in curve, it is as follows:
at,i,1≤dt,i,1,at,i,6≤dt,i,5 (38)
at,i,n≤dt,i,n+dt,i,n-1, n=2,3,4,5 (39)
at,i,n≥0,dt,i,n∈{0,1} (40)
In formula, at,i,nN=1,2 ..., 6 be continuous variable, dt,i,nN=1,2 ..., 5 be integer variable;WithRespectivelyThe minimum value and maximum in curve adjustment dead band;
g(Vt,j)=at,j,1+at,j,2-at,j,5-at,j,6 (42)
at,j,1≤dt,j,1,at,j,6≤dt,j,5 (44)
at,j,n≤dt,j,n+dt,j,n-1, n=2,3,4,5 (45)
at,j,n≥0,dt,j,n∈{0,1} (46)
In formula, aT, j, nN=1,2 ..., 6 be continuous variable, dT, j, nN=1,2 ..., 5 be integer variable;WithRespectively g (Vt,j) curve adjustment dead band minimum value and maximum;
Introduce auxiliary integer variable ci,1、ci,2And cj,1、cj,2Respectively by non-linear product term WithLinearisation, thenWithPoint It is not expressed as:
ci,1≤ci,2 (50)
cj,1≤cj,2 (53)
at,i,3ci,1、at,i,4ci,2And at,j,3cj,1、at,j,4cj,2Non-linear product term is remained, therefore introduces binary system and becomes Measure li,1,m、li,2,mAnd lj,1,m、lj,2,mM=0,1 ..., 4 represent at,i,3ci,1、at,i,4ci,2And at,j,3cj,1、at,j,4cj,2
Introduce auxiliary variable wt,i,1,m=at,i,3li,1,m、wt,i,2,m=at,i,4li,2,mAnd wt,j,1,m=at,j,3lj,1,m、 wt,j,2,m=at,j,4lj,2,m, and it is 1000 to take M, and increase following constrain:
at,i,3-(1-li,1,m)M≤wt,i,1,m≤at,i,3 (58)
0≤wt,i,1,m≤li,1,mM (59)
at,i,4-(1-li,2,m)M≤wt,i,2,m≤at,i,4 (60)
0≤wt,i,2,m≤li,2,mM (61)
at,j,3-(1-lj,1,m)M≤wt,j,1,m≤at,j,3 (62)
0≤wt,j,1,m≤lj,1,mM (63)
at,j,4-(1-lj,2,m)M≤wt,j,2,m≤at,j,4 (64)
0≤wt,j,2,m≤lj,2,mM (65)
(4) the loss constraints of intelligent Sofe Switch is subjected to convex relaxation, and then obtains rotating cone constraint formula:
(5) by constraint equationLinearized, using U2, t, iAnd I2,t,ijReplace quadratic termWith
Convex relaxation is further carried out, obtains second order cone constraint formula:
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;WithThe respectively active loss value of the upper intelligent Sofe Switch of t periods node i, j;WithRespectively t periods node i, j The active loss coefficient of upper intelligent Sofe Switch;WithRespectively the upper intelligent Sofe Switch injection of t periods node i, j is idle Power,WithRespectively the t periods are connected on the access appearance of the intelligent Sofe Switch both ends transverter between node i and node j Amount.
4) calculating solution is carried out to second order Based On The Conic Model using Second-order cone programming algorithm to obtain:The collection of intelligent Sofe Switch neutralizes just Ground jointly controls the relevant parameter of strategy, the voltage's distribiuting situation in system, the active regulation situation of intelligent Sofe Switch and idle Compensation situation;
5) solving result of step 4) is exported.
A kind of collection of intelligent Sofe Switch of the present invention neutralizes jointly controls tactful setting method on the spot, realizes active distribution The collection for netting intelligent Sofe Switch neutralizes the solution for jointly controlling tactful setting method on the spot.
For the example of the present invention, impedance value, the load of circuit element in improved PG&E69 node systems are inputted first Active power a reference value and power factor, the network topology annexation of element, example structure is as shown in Fig. 2 detail parameters are shown in Tables 1 and 2;Node 33,35,52 and 54 is respectively connected to one group of photovoltaic system, and capacity is 1MVA;Set two groups of intelligence Sofe Switch Access between the node 27 and node 54, node 35 and node 48 of power distribution network, capacity is 1MVA, and loss factor is 0.01; The reference voltage of setting system is 12.66kV, reference power 1MVA, and each value in system is carried out into standardization processing;Finally set The safe operation bound for putting each node voltage amplitude (perunit value) is respectively 1.10 and 0.90.Node voltage it is expected traffic coverage For 0.98p.u.-1.02p.u., the weight coefficient of system loss and voltage deviation situation takes 0.7 and 0.3, distributed power source respectively And load operation Predicting Performance Characteristics curve is as shown in Figure 3.
Three kinds of schemes are respectively adopted to be analyzed, scheme I uses intelligent Sofe Switch without using control device, scheme II Collection neutralize and jointly control strategy on the spot, scheme III uses the centralized Control strategy of intelligent Sofe Switch, and simulation result is shown in Table 3.
It is Intel (R) Xeon (R) CPU E5-1620 to perform the computer hardware environment that optimization calculates, and dominant frequency is 3.70GHz, inside save as 32GB;Software environment is the operating systems of Windows 10.
Intelligent Sofe Switch collection neutralizes to be jointly controlled strategy and includes the active centralized Control strategy of intelligent Sofe Switch and on the spot on the spot Voltage power-less strategy.It can be neutralized using prediction data with optimization intelligence Sofe Switch collection and jointly control voltage power-less in strategy on the spot The relevant parameter of control strategy, is shown in Fig. 4.Then intelligent Sofe Switch can neutralize according to collection jointly controls strategy to adjust in real time on the spot Its active transmission quantity and reactive-load compensation amount are saved, sees Fig. 5 and Fig. 6, so as to effectively reduce voltage deviation, via net loss is reduced, sees Table 3 and Fig. 7.As seen from Figure 7, when without using control device, the access of photovoltaic, blower fan distributed power supply can cause play Strong voltage pulsation;Collection is carried out using intelligent Sofe Switch to neutralize on the spot after joint control and regulation, each node voltage of active power distribution network Level has obtained obvious improvement, and close to intelligent Sofe Switch using the effect after centralized Control.
The PG&E69 nodes example load on-position of table 1 and power
The PG&E69 node example line parameter circuit values of table 2
Simulation result under 3 different control strategies of table compares
Control strategy Voltage minimum/p.u. Voltage max/p.u. Network loss/kWh
I. without using control strategy 0.9351 1.0460 1758.7
II. strategy is jointly controlled 0.9694 1.0254 1311.6
III. centralized Control strategy 0.9701 1.0252 1250.5

Claims (3)

1. a kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot, it is characterised in that comprises the following steps:
1) according to selected active distribution system, incoming line parameter, load level, network topology annexation, system safety Working voltage constrains and branch current limitation, the on-position of distributed power source and capacity, the day fortune of distributed power source and load The initial value of row Predicting Performance Characteristics curve, on-position, capacity and the parameter of intelligent Sofe Switch, system reference voltage and reference power;
2) according to active distribution system structure and parameter, consider the temporal characteristicses that distributed power source is contributed with load, establish active The collection neutralization of power distribution network intelligence Sofe Switch jointly controls strategy and adjusts model on the spot, including:Selection root node is balance nodes, if Fixed active distribution system loss and the minimum object function of voltage deviation sum, consider system load flow constraint, system safety respectively Operation constraint, the operation of intelligent Sofe Switch and capacity-constrained;
3) object function in the step 2) model and nonlinear restriction are linearized or second order cone is changed, so that having The neutralization that integrates of source power distribution network intelligence Sofe Switch jointly controls strategy and adjusts model conversation as second order Based On The Conic Model on the spot;
4) calculating solution is carried out to second order Based On The Conic Model using Second-order cone programming algorithm to obtain:The collection of intelligent Sofe Switch neutralizes to be joined on the spot Close relevant parameter, the voltage's distribiuting situation in system, the active regulation situation of intelligent Sofe Switch and the reactive-load compensation of control strategy Situation;
5) solving result of step 4) is exported.
2. a kind of collection of intelligent Sofe Switch according to claim 1 neutralizes jointly controls tactful setting method on the spot, it is special Sign is, in step 2):
(1) loss of active distribution system and the minimum object function of voltage deviation sum described in are expressed as
Minf=α fL+βfV (1)
In formula, α and β are respectively system loss fLWith system voltage deviation situation fvWeight coefficient, wherein, system loss fLWith System voltage deviation situation fvExpression formula it is as follows:
<mrow> <msub> <mi>f</mi> <mi>L</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>f</mi> <mi>V</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <mo>|</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>1</mn> </mrow> <mo>|</mo> <mo>,</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>max</mi> </msubsup> <mo>|</mo> <mo>|</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>min</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula, NTAnd NNDiscontinuity surface number and system node sum when respectively;ΩbFor system branch set;Vt,iFor t period nodes I voltage magnitude;RijFor branch road ij resistance, It,ijNode j current amplitude is flowed to for t period node is;For the t periods The active loss value of intelligent Sofe Switch in node i;For Vt,iExpectation voltage range, work as Vt,iNot in this section When, object function fVFor reducing voltage deviation;
(2) the system load flow constraint representation described in is
<mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>I</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>D</mi> <mi>G</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mi>O</mi> <mi>A</mi> <mi>D</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>D</mi> <mi>G</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mi>O</mi> <mi>A</mi> <mi>D</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
In formula, ΩbFor the set of all branch roads in system;Pt,ijNode j active power, Q are flowed to for t period node ist,ijFor t Period node i flows to node j reactive power;Pt,ikNode k active power, Q are flowed to for t period node ist,ikFor the t periods Point i flows to node k reactive power;RijFor branch road ij resistance, XijFor branch road ij reactance;It,ijFlowed to for t periods node i Node j current amplitude;Vt,iFor the voltage magnitude of t period node is, Vt,jFor t period nodes j voltage magnitude;Pt,iFor t when The active power sum injected on Duan Jiediani,Distributed power source injects respectively in t period node is Active power, intelligent Sofe Switch injection active power, load consumption active power, Qt,iTo be injected in t period node is Reactive power sum,Reactive power, the intelligence of distributed power source injection respectively in t period node is Reactive power, the reactive power of load consumption of energy Sofe Switch injection;
(3) the active centralized Control constraint representation of intelligent Sofe Switch described in is
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;With The respectively active loss value of the upper intelligent Sofe Switch of t periods node i, j;WithThe respectively upper intelligence of t periods node i, j The active loss coefficient of Sofe Switch;WithThe respectively reactive power of the upper intelligent Sofe Switch injection of t periods node i, j;
(4) voltage & var control constraint representation is the intelligent Sofe Switch described on the spot
<mrow> <mfrac> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msubsup> <mi>Q</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msubsup> </mfrac> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
In formula,WithThe respectively reactive power maximum of the upper intelligent Sofe Switch injection of t periods node i, j;With g (Vt,j) expression formula of intelligent Sofe Switch voltage & var control strategy on the spot is collectively formed,With g (Vt,j) point Dead band [V Cun not adjustedi Q, min, Vi Q, max] and [Vj Q, min,Vj Q, max], now reactive power caused by intelligent Sofe Switch is 0var;Following formula respectively constitutesWith g (Vt,j):
<mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1.0</mn> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0.8</mn> <mo>,</mo> <mn>0.9</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>0.9</mn> <mo>-</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> </mrow> </mfrac> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mrow> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mo>-</mo> <mn>0.9</mn> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0.9</mn> <mo>,</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>min</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mo>-</mo> <mn>1.1</mn> </mrow> </mfrac> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mrow> <mn>1.1</mn> <mo>-</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>V</mi> <mi>j</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>max</mi> </mrow> </msubsup> <mo>,</mo> <mn>1.1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1.0</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>1.1</mn> <mo>,</mo> <mn>1.2</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
3. a kind of collection of intelligent Sofe Switch according to claim 1 neutralizes jointly controls tactful setting method on the spot, it is special Sign is that step 3) includes:
(1) U is used2,t,iAnd I2,t,ijReplace the quadratic term in object function, system load flow constraint and system operation constraintWithBy object function and system load flow constraint linearisation:
<mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
(Vmin)2≤U2,t,i≤(Vmax)2 (20)
I2,t,ij≤(Imax)2 (21)
<mrow> <msub> <mi>f</mi> <mi>L</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>b</mi> </msub> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>f</mi> <mi>V</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <mo>|</mo> <mrow> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> </mrow> <mo>|</mo> <mo>,</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>|</mo> <mo>|</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>min</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
In formula, ΩbFor the set of branch road;Pt,ijNode j active power, Q are flowed to for t period node ist,ijFor t period node is Flow to node j reactive power;Pt,ikNode k active power, Q are flowed to for t period node ist,ikFlow to and save for t periods node i Point k reactive power;RijFor branch road ij resistance, XijFor branch road ij reactance;Pt,iIt is active to be injected in t period node is Power sum, Qt,iFor the reactive power sum injected in t period node is,Divide respectively in t period node is Reactive power, the reactive power of load consumption of cloth power supply injection;For in t period node is intelligent Sofe Switch it is active Loss value;VmaxAnd VminFor system maximum allowable voltage and minimum allowable magnitude of voltage;ImaxFor branch road maximum allowed current value; NTAnd NNDiscontinuity surface number and system node sum when respectively;For Vt,iExpectation voltage minimum value,For Vt,i's It is expected the maximum of voltage;
(2) object function fvIn contain absolute value term | U2,t,i- 1 |, introduce auxiliary variable At,i, and increase constraint:
<mrow> <msub> <mi>f</mi> <mi>V</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>T</mi> </msub> </msubsup> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>N</mi> </msub> </msubsup> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mi>min</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
At,i≥0 (27);
(3) expression formula of intelligent Sofe Switch voltage & var control strategy on the spotWith g (Vt,j) it is non-linear expressions, use Piece-wise linearization realization pairWith g (Vt,j) exact linearization method;By introducing auxiliary variable at,i,nN=1,2 ..., 6, dt,i,nN=1,2 ..., 5 and at,j,nN=1,2 ..., 6, dt,j,nN=1,2 ..., 5, using line segment come approximateAnd g (Vt,j) defined in curve, it is as follows:
Vt,i=0.8at,i,1+0.9at,i,2+at,i,3Vi Q, min+at,i,4Vi q,max+1.1at,i,5+1.2at,i,6 (29)
at,i,1≤dt,i,1,at,i,6≤dt,i,5 (30)
at,i,n≤dt,i,n+dt,i,n-1, n=2,3,4,5 (31)
at,i,n≥0,dt,i,n∈{0,1} (32)
<mrow> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </msubsup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </msubsup> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow>
In formula, at,i,nN=1,2 ..., 6 be continuous variable, dt,i,nN=1,2 ..., 5 be integer variable;Vi q,minAnd Vi q,maxRespectively ForThe minimum value and maximum in curve adjustment dead band;
g(Vt,j)=at,j,1+at,j,2-at,j,5-at,j,6 (34)
Vt,j=0.8at,j,1+0.9at,j,2+at,j,3Vj q,min+at,j,4Vj q,max+1.1at,j,5+1.2at,j,6 (35)
at,j,1≤dt,j,1,at,j,6≤dt,j,5 (36)
at,j,n≤dt,j,n+dt,j,n-1, n=2,3,4,5 (37)
at,j,n≥0,dt,j,n∈{0,1} (38)
<mrow> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </msubsup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </msubsup> <msub> <mi>d</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>39</mn> <mo>)</mo> </mrow> </mrow>
In formula, at,j,nN=1,2 ..., 6 be continuous variable, dt,j,nN=1,2 ..., 5 be integer variable;Vj q,minAnd Vj q,maxRespectively For g (Vt,j) curve adjustment dead band minimum value and maximum;
Introduce auxiliary integer variable ci,1、ci,2And cj,1、cj,2Respectively by non-linear product term at,i,3Vi q,min、at,i,4Vi q,maxWith at,j,3Vj q,min、at,j,4Vj q,maxLinearize, then at,i,3Vi q,min、at,i,4Vi q,maxAnd at,j,3Vj q,min、at,j,4Vj q,maxTable respectively It is shown as:
at,i,3Vi q,min=0.90at,i,3+0.01at,i,3ci,1,0≤ci,1≤20 (40)
at,i,4Vi q,max=0.90at,i,4+0.01at,i,4ci,2,0≤ci,2≤20 (41)
ci,1≤ci,2 (42)
at,j,3Vj Q, min=0.90at,j,3+0.01at,j,3cj,1,0≤cj,1≤20 (43)
at,j,4Vj q,max=0.90at,j,4+0.01at,j,4cj,2,0≤cj,2≤20 (44)
cj,1≤cj,2 (45)
at,i,3ci,1、at,i,4ci,2And at,j,3cj,1、at,j,4cj,2Non-linear product term is remained, therefore introduces binary variable li,1,m、li,2,mAnd lj,1,m、lj,2,mM=0,1 ..., 4 represent at,i,3ci,1、at,i,4ci,2And at,j,3cj,1、at,j,4cj,2
<mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>46</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>47</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>3</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>48</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mn>4</mn> </msubsup> <msup> <mn>2</mn> <mi>m</mi> </msup> <msub> <mi>a</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mn>4</mn> </mrow> </msub> <msub> <mi>l</mi> <mrow> <mi>j</mi> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>49</mn> <mo>)</mo> </mrow> </mrow>
Introduce auxiliary variable wt,i,1,m=at,i,3li,1,m、wt,i,2,m=at,i,4li,2,mAnd wt,j,1,m=at,j,3lj,1,m、wt,j,2,m= at,j,4lj,2,m, and it is 1000 to take M, and increase following constrain:
at,i,3-(1-li,1,m)M≤wt,i,1,m≤at,i,3 (50)
0≤wt,i,1,m≤li,1,mM (51)
at,i,4-(1-li,2,m)M≤wt,i,2,m≤at,i,4 (52)
0≤wt,i,2,m≤li,2,mM (53)
at,j,3-(1-lj,1,m)M≤wt,j,1,m≤at,j,3 (54)
0≤wt,j,1,m≤lj,1,mM (55)
at,j,4-(1-lj,2,m)M≤wt,j,2,m≤at,j,4 (56)
0≤wt,j,2,m≤lj,2,mM (57)
(4) the loss constraints of intelligent Sofe Switch is subjected to convex relaxation, and then obtains rotating cone constraint formula:
<mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>58</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mfrac> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> <mo>,</mo> <mi>L</mi> </mrow> </msubsup> <mrow> <msqrt> <mn>2</mn> </msqrt> <msubsup> <mi>A</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>59</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>S</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mfrac> <msubsup> <mi>S</mi> <mi>i</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>60</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>2</mn> <mfrac> <msubsup> <mi>S</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mfrac> <msubsup> <mi>S</mi> <mi>j</mi> <mrow> <mi>S</mi> <mi>O</mi> <mi>P</mi> </mrow> </msubsup> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>61</mn> <mo>)</mo> </mrow> </mrow>
(5) by constraint equationLinearized, using U2,t,iAnd I2,t,ijReplace quadratic termWith
<mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>62</mn> <mo>)</mo> </mrow> </mrow>
Convex relaxation is further carried out, obtains second order cone constraint formula:
<mrow> <msub> <mrow> <mo>||</mo> <mtable> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>P</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <msub> <mi>Q</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>||</mo> </mrow> <mn>2</mn> </msub> <mo>&amp;le;</mo> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>U</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>63</mn> <mo>)</mo> </mrow> </mrow>
In formula,WithThe respectively active power of the upper intelligent Sofe Switch injection of t periods node i, j;With The respectively active loss value of the upper intelligent Sofe Switch of t periods node i, j;WithThe respectively upper intelligence of t periods node i, j The active loss coefficient of Sofe Switch;WithThe respectively reactive power of the upper intelligent Sofe Switch injection of t periods node i, j,WithRespectively the t periods are connected on the access capacity of the intelligent Sofe Switch both ends transverter between node i and node j.
CN201710715984.5A 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot Pending CN107591797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710715984.5A CN107591797A (en) 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710715984.5A CN107591797A (en) 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot

Publications (1)

Publication Number Publication Date
CN107591797A true CN107591797A (en) 2018-01-16

Family

ID=61041663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710715984.5A Pending CN107591797A (en) 2017-08-18 2017-08-18 A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot

Country Status (1)

Country Link
CN (1) CN107591797A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470231A (en) * 2018-01-24 2018-08-31 天津大学 Consider the power distribution network distributed energy storage addressing constant volume method of energy-storage system quantization characteristic
CN108767853A (en) * 2018-06-20 2018-11-06 山东大学 Mixed type intelligent soft switch topology structure, control system and control method back-to-back
CN108923418A (en) * 2018-07-10 2018-11-30 华北电力大学(保定) A kind of Poewr control method of three ends intelligence Sofe Switch
CN109004642A (en) * 2018-07-19 2018-12-14 天津大学 For stabilizing the distribution distributed energy storage evaluation method of distributed generation resource power swing
CN109149586A (en) * 2018-09-13 2019-01-04 国网天津市电力公司电力科学研究院 Active power distribution network subregion distributing voltage control method towards intelligent Sofe Switch
CN110289646A (en) * 2019-06-19 2019-09-27 国网天津市电力公司 Intelligent Sofe Switch based on meta-model control strategy optimization method on the spot
CN110690709A (en) * 2019-10-22 2020-01-14 天津大学 Intelligent soft switch interval coordination voltage control method based on sensitivity
CN111654031A (en) * 2020-06-03 2020-09-11 南方电网科学研究院有限责任公司 Intelligent soft switch operation control strategy selection method and device
CN113078678A (en) * 2021-04-13 2021-07-06 湖南大学 DG and SOP active-reactive collaborative planning method and device
CN113270871A (en) * 2020-02-17 2021-08-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Flexible interconnection device capacity configuration optimization method based on power distribution network N-1 safety assessment
CN114362188A (en) * 2022-01-07 2022-04-15 天津大学 Multi-terminal intelligent soft switching voltage control method based on deep reinforcement learning

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719196A (en) * 2016-01-18 2016-06-29 天津大学 Active power distribution network pressure reactive power control method based on intelligent soft normally open point
WO2016109330A1 (en) * 2014-12-30 2016-07-07 Flexgen Power Systems, Inc. Transient power stabilization device with active and reactive power control
CN106329523A (en) * 2016-11-19 2017-01-11 中国南方电网有限责任公司电网技术研究中心 Active power distribution network intelligent soft switch robust optimization modeling method taking uncertainty into consideration
CN106655227A (en) * 2017-01-18 2017-05-10 天津大学 SOP-based active power distribution network feeder load balancing method
CN106786631A (en) * 2017-03-06 2017-05-31 天津大学 Distributed power source voltage & var control strategy setting method on the spot based on cone planning
CN106887852A (en) * 2017-03-06 2017-06-23 天津大学 A kind of batch (-type) distributed power source voltage & var control strategy setting method on the spot
CN106972539A (en) * 2017-05-13 2017-07-21 天津大学 A kind of distributed power source voltage control strategy setting method on the spot based on cone planning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109330A1 (en) * 2014-12-30 2016-07-07 Flexgen Power Systems, Inc. Transient power stabilization device with active and reactive power control
CN105719196A (en) * 2016-01-18 2016-06-29 天津大学 Active power distribution network pressure reactive power control method based on intelligent soft normally open point
CN106329523A (en) * 2016-11-19 2017-01-11 中国南方电网有限责任公司电网技术研究中心 Active power distribution network intelligent soft switch robust optimization modeling method taking uncertainty into consideration
CN106655227A (en) * 2017-01-18 2017-05-10 天津大学 SOP-based active power distribution network feeder load balancing method
CN106786631A (en) * 2017-03-06 2017-05-31 天津大学 Distributed power source voltage & var control strategy setting method on the spot based on cone planning
CN106887852A (en) * 2017-03-06 2017-06-23 天津大学 A kind of batch (-type) distributed power source voltage & var control strategy setting method on the spot
CN106972539A (en) * 2017-05-13 2017-07-21 天津大学 A kind of distributed power source voltage control strategy setting method on the spot based on cone planning

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470231B (en) * 2018-01-24 2021-07-16 天津大学 Power distribution network distributed energy storage site selection and volume fixing method considering energy storage system quantization characteristics
CN108470231A (en) * 2018-01-24 2018-08-31 天津大学 Consider the power distribution network distributed energy storage addressing constant volume method of energy-storage system quantization characteristic
CN108767853A (en) * 2018-06-20 2018-11-06 山东大学 Mixed type intelligent soft switch topology structure, control system and control method back-to-back
CN108923418A (en) * 2018-07-10 2018-11-30 华北电力大学(保定) A kind of Poewr control method of three ends intelligence Sofe Switch
CN109004642A (en) * 2018-07-19 2018-12-14 天津大学 For stabilizing the distribution distributed energy storage evaluation method of distributed generation resource power swing
CN109004642B (en) * 2018-07-19 2022-03-08 天津大学 Distribution network distributed energy storage evaluation method for stabilizing power fluctuation of distributed power supply
CN109149586A (en) * 2018-09-13 2019-01-04 国网天津市电力公司电力科学研究院 Active power distribution network subregion distributing voltage control method towards intelligent Sofe Switch
CN109149586B (en) * 2018-09-13 2021-08-20 国网天津市电力公司电力科学研究院 Active power distribution network partition distributed voltage control method oriented to intelligent soft switch
CN110289646A (en) * 2019-06-19 2019-09-27 国网天津市电力公司 Intelligent Sofe Switch based on meta-model control strategy optimization method on the spot
CN110289646B (en) * 2019-06-19 2022-12-20 国网天津市电力公司 Intelligent soft switch local control strategy optimization method based on meta-model
CN110690709A (en) * 2019-10-22 2020-01-14 天津大学 Intelligent soft switch interval coordination voltage control method based on sensitivity
CN110690709B (en) * 2019-10-22 2023-04-28 天津大学 Intelligent soft switch interval coordination voltage control method based on sensitivity
CN113270871A (en) * 2020-02-17 2021-08-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Flexible interconnection device capacity configuration optimization method based on power distribution network N-1 safety assessment
CN111654031B (en) * 2020-06-03 2022-03-04 南方电网科学研究院有限责任公司 Intelligent soft switch operation control strategy selection method and device
CN111654031A (en) * 2020-06-03 2020-09-11 南方电网科学研究院有限责任公司 Intelligent soft switch operation control strategy selection method and device
CN113078678A (en) * 2021-04-13 2021-07-06 湖南大学 DG and SOP active-reactive collaborative planning method and device
CN114362188A (en) * 2022-01-07 2022-04-15 天津大学 Multi-terminal intelligent soft switching voltage control method based on deep reinforcement learning
CN114362188B (en) * 2022-01-07 2023-06-02 天津大学 Multi-terminal intelligent soft switch voltage control method based on deep reinforcement learning

Similar Documents

Publication Publication Date Title
CN107591797A (en) A kind of collection of intelligent Sofe Switch neutralizes jointly controls tactful setting method on the spot
CN106329523B (en) Consider probabilistic active power distribution network intelligence Sofe Switch robust Optimization Modeling method
CN105119280B (en) Alternating current-direct current mixed structure active power distribution network running optimizatin method based on cone optimization
Xin et al. Cooperative control strategy for multiple photovoltaic generators in distribution networks
CN110504691A (en) It is a kind of meter and VSC control mode alternating current-direct current power distribution network optimal load flow calculation method
CN106887852B (en) A kind of intermittent distributed generation resource voltage &amp; var control strategy setting method on the spot
CN103269069B (en) A kind of method of low voltage power transmission grid reconstruct
CN103701140B (en) Improve the dynamic reactive optimization method for subsequent use of alternating current-direct current electrical network Transient Voltage Stability
CN106786631B (en) Distributed generation resource voltage &amp; var control strategy setting method on the spot based on cone planning
CN106972539B (en) A kind of distributed generation resource voltage control strategy setting method on the spot based on cone planning
CN109149586A (en) Active power distribution network subregion distributing voltage control method towards intelligent Sofe Switch
CN106655177B (en) Distributed generation resource maximum access capability calculation method based on extension Second-order cone programming
CN109728603A (en) Active power distribution network distributed electrical source partition voltage control strategy setting method on the spot
CN108134401A (en) Ac/dc Power Systems multiple target tide optimization and control method
CN108023364A (en) Power distribution network distributed generation resource maximum access capability computational methods based on convex difference planning
CN105870968B (en) A kind of three-phase imbalance reactive voltage control method of meter and system negative sequence voltage
CN105375513B (en) A kind of 110 kilovolts of wind power field automatic voltage controls based on real-time on-line equivalent
CN105226665A (en) The method of busbar voltage daily fluctuation rate is reduced by automatic plant stand cooperation control
CN107248752B (en) high-permeability photovoltaic distributed voltage control method based on network topology identification
CN104779609B (en) A kind of trend cooperative control method for interconnected network
CN107134785A (en) A kind of power transmission network voltage coordinating and optimizing control method for considering Topological expansion
CN104362650B (en) A kind of Method for Reactive Power Optimization in Power for considering cost factor
CN105162144A (en) Linear approximation solution method of voltage and reactive power optimization of distribution network
CN106505608A (en) Meter and the distributed power source calculation of penetration level method of capacity of short circuit constraint
CN106953361B (en) Exchange micro-grid operational control method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180116

RJ01 Rejection of invention patent application after publication