CN107579152A - 基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法 - Google Patents

基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法 Download PDF

Info

Publication number
CN107579152A
CN107579152A CN201710666002.8A CN201710666002A CN107579152A CN 107579152 A CN107579152 A CN 107579152A CN 201710666002 A CN201710666002 A CN 201710666002A CN 107579152 A CN107579152 A CN 107579152A
Authority
CN
China
Prior art keywords
bife
vdf
state storage
trfe
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710666002.8A
Other languages
English (en)
Inventor
毛巍威
李兴鳌
王兴福
楚亮
张健
薛洪涛
束华中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710666002.8A priority Critical patent/CN107579152A/zh
Publication of CN107579152A publication Critical patent/CN107579152A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明公开了基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法。所述存储器件由衬底、底电极、多态存储层和顶电极组成,器件单元为三明治结构,多态存储层采用10%镍掺杂的铁酸铋BiFe0.9Ni0.1O3和聚偏二氟乙烯‑三氟乙烯共聚物P(VDF‑TRrE)的复合薄膜。具体制备方法为,采用水热法制备均匀的BiFe0.9Ni0.1O3纳米颗粒,然后与P(VDF‑TRrE)溶液混合;再选用FTO导电玻璃为衬底,FTO为底电极,采用刮涂法制备BiFe0.9Ni0.1O3/P(VDF‑TrFE)复合薄膜;最后,用真空蒸镀顶电极。这样得到基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)复合薄膜的多态存储器件,该存储器件可以表现出两个磁化态和两个极化态,分别代表四种信息记录状态。

Description

基于BiFe0.9Ni0.1O3/P(VDF-TrFE)的多态存储器件及制备方法
技术领域
本发明具体是一种基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器件及其制备方法,属于信息存储技术领域。
背景技术
多铁性材料是指同时具有铁电性、铁磁性和铁弹性中两者或两者以上的性能,在现实中研究最多的还是铁电和铁磁共存的铁磁电材料,也包括反铁电性和反铁磁性。这种铁电性和铁磁性的共存使得多铁性材料具有独特的磁电耦合效应,即电场可以诱导磁化,同时磁场也可以诱发极化。这种磁和电的相互控制在信息存储、自旋电子器件、新型多功能器件等方面都有其重要的应用前景。比如利用多铁性材料中同时具有电有序、磁有序等多种可能的铁有序状态,在单个存储器件中实现多状态逻辑,这更能满足新型存储技术所要求的容量更大和体积更小。
铁酸铋(BiFeO3)是一种典型的多铁性材料,具有远高于室温的反铁磁奈尔温度(1103K)和铁电居里温度(643K)。作为室温单相多铁性材料,铁酸铋不但具有优越的铁电、铁磁特性,同时由于电、磁、应变之间的耦合作用,可以实现用电场控制磁化以及磁场控制极化,是研究新型多态磁电存储器件的首选材料。不过,BiFeO3的室温铁磁性和铁电性较弱,我们通过3d过渡金属Ni掺杂可以有效的提高其铁磁性。而聚偏二氟乙烯-三氟乙烯共聚物P(VDF-TrFE)是一种新型高分子压电材料,通过将BiFeO3与P(VDF-TrFE)复合可以提高BiFeO3的铁电性,从而获得室温下良好的铁磁铁电性能,在此基础上设计出的新型多态存储器件,可以替代市场上的多种存储器,具有极大的应用潜力和商业前景。
发明内容
技术问题:本发明要解决的问题在于提供一种基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器件及其制备方法。BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜在外磁场和外电场的控制下,可以表现出两个磁化态和两个极化态,分别用来代表四种信息记录状态,利用这种特性,制作出全新的基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器件。
技术方案:本发明基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器件及其制备方法具体为:
基于多态存储层的多态存储器件的基本结构主要分为四层,依次包括衬底、底电极、多态存储层和顶电极;衬底1、底电极2、多态存储层3和顶电极4;所述衬底1为玻璃,所述底电极2为FTO,顶电极4材料为Ag或者Au,所述多态存储层3为BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜,在室温下能同时表现出良好的铁磁性和铁电性。所述的多态存储器件可以表现出四种信息记录状态,即两个磁化态和两个极化态。
所述BiFe0.9Ni0.1O3/P(VDF-TrFE)复合材料,由BiFe0.9Ni0.1O3纳米颗粒和P(VDF-TrFE)以1,3-二甲基-2-咪唑啉酮(DMI)为溶剂,按体积比5:1复合,采用刮涂法制备,其所述的BiFe0.9Ni0.1O3为水热法制备的纳米颗粒,制备方法如下:
(1)以Bi(NO3)3·5H2O、FeCl3·6H2O和NiCl2·6H2O分别为Bi源、Fe源和Ni源,以100mL乙二醇为溶剂,制备0.05mol的前驱溶液;
(2)在前驱溶液逐滴滴入2mol/L的NaOH溶液,获得沉淀物;搅拌12个小时后,将沉淀物反复离心清洗至中性,即为反应前驱体;
(3)水热反应的表面活性剂为十二烷基苯磺酸钠(SDBS),反应时间为60小时。
附图说明
图1是本发明的结构原理图。
图2(a)是本发明器件的磁滞回线;图2(b)是本发明器件的电滞回线。
具体实施方式
下面具体描述本发明的具体实施,本发明多态存储器件的基本结构主要分为四层,如图1所示,依次包括衬底1、底电极2、多态存储层3和顶电极4。其中,衬底1为FTO玻璃,底电极2为FTO,多态存储层3为BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜,顶电极4为Ag或者Au。
上述的基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器件室温下同时具有良好的铁磁性和铁电性,如图2所示,其剩余磁化强度为17.4emu/cm3,矫顽力为250.1Oe;剩余极化强度为20.8μc/cm2,矫顽场为33.7kV/cm。如图2(a)所示,在外磁场的作用下可以表现出“+M”和“-M”两个磁化状态;如图2(b)所示,在外电场的作用下可以表现出“+P”和“-P”两个极化状态。这四个状态可以用来分别代表四种信息记录状态。
本发明中BiFe0.9Ni0.1O3纳米颗粒采用水热法制备,具体制备方法如下:
(1)将0.05mol的Bi(NO3)3·5H2O、FeCl3·6H2O、NiCl2·6H2O溶于100mL乙二醇,充分搅拌直至获得澄清前驱溶液;
(2)配置2mol/L的NaOH溶液,在磁力搅拌器的搅拌下,缓慢的将NaOH溶液逐滴滴入乙二醇前驱溶液中,直至金属离子完全沉淀。搅拌12个小时后,将沉淀物反复离心清洗至中性;
(3)称量0.44g的NaOH溶于35mL去离子水中,将所得的清洗的沉淀物放入该NaOH溶液中,超声30分钟后,加入0.5g十二烷基苯磺酸钠(SDBS),再搅拌2小时后将溶液置入45mL水热反应釜中,160摄氏度反应60小时。
(4)将反应产物取出,经过多次离心清洗后,置于70度干燥箱烘干24小时,即制备出所需的BiFe0.9Ni0.1O3纳米颗粒。
本发明中基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器件,其具体制备方法如下:
(1)按体积比5:1计算称量BiFe0.9Ni0.1O3和P(VDF-TrFE);
(2)将称量好的BiFe0.9Ni0.1O3溶于10mL的1,3-二甲基-2-咪唑啉酮(DMI)溶液中,超声分散1小时。再加入P(VDF-TrFE),超声1小时;
(3)将乙基纤维素和松油醇以1:2比例溶于20mL乙醇中,在磁力搅拌机上搅拌1小时后,将第二步中的溶液缓慢倒入,搅拌24小时,获得BiFe0.9Ni0.1O3/P(VDF-TrFE)复合物浆料。
(4)用刮刀将第三步中获得的浆料均匀刮涂在FTO玻璃上,置入80度干燥箱中,干燥24小时,即制备出BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜。
(5)在BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜上放置掩膜版,利用真空蒸镀的方法,蒸镀Ag或者Au电极。这样即制备出基于BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜的多态存储器。

Claims (2)

1.基于BiFe0.9Ni0.1O3/P(VDF-TrFE)的多态存储器件,其特征在于,包括四层,依次是:衬底(1)、底电极(2)、多态存储层(3)和顶电极(4);所述衬底(1)为玻璃,所述底电极(2)为FTO,顶电极(4)材料为Ag或者Au,所述多态存储层(3)为BiFe0.9Ni0.1O3/P(VDF-TrFE)复合薄膜,在室温下能同时表现出良好的铁磁性和铁电性;所述的多态存储器件可以表现出四种信息记录状态,即两个磁化态和两个极化态。
2.根据权利要求1所述的多态存储器件的制备方法,其特征在于,所述BiFe0.9Ni0.1O3/P(VDF-TrFE)复合材料,由BiFe0.9Ni0.1O3纳米颗粒和P(VDF-TrFE)以1,3-二甲基-2-咪唑啉酮(DMI)为溶剂,按体积比5:1复合,采用刮涂法制备,其所述的BiFe0.9Ni0.1O3为水热法制备的纳米颗粒,制备方法如下:
(1)以Bi(NO3)3·5H2O、FeCl3·6H2O和NiCl2·6H2O分别为Bi源、Fe源和Ni源,以100 mL乙二醇为溶剂,制备0.05 mol的前驱溶液;
(2)在前驱溶液逐滴滴入2 mol/L的NaOH溶液,获得沉淀物;搅拌12个小时后,将沉淀物反复离心清洗至中性,即为反应前驱体;
(3)水热反应的表面活性剂为十二烷基苯磺酸钠(SDBS),反应环境为0.3~0.4 mol/L的NaOH溶液,反应温度为160摄氏度,反应时间为60小时。
CN201710666002.8A 2017-08-04 2017-08-04 基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法 Pending CN107579152A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710666002.8A CN107579152A (zh) 2017-08-04 2017-08-04 基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710666002.8A CN107579152A (zh) 2017-08-04 2017-08-04 基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法

Publications (1)

Publication Number Publication Date
CN107579152A true CN107579152A (zh) 2018-01-12

Family

ID=61035736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710666002.8A Pending CN107579152A (zh) 2017-08-04 2017-08-04 基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法

Country Status (1)

Country Link
CN (1) CN107579152A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662470A (zh) * 2020-04-23 2020-09-15 湖北大学 一种耐疲劳铁酸钴/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587936A (zh) * 2009-06-10 2009-11-25 中国科学院宁波材料技术与工程研究所 基于铁酸铋薄膜体系的电阻式随机存储器及其制备方法
CN104078564A (zh) * 2014-07-04 2014-10-01 南京邮电大学 一种基于掺杂铁酸铋的阻变存储器及其制备方法
CN106111482A (zh) * 2016-08-09 2016-11-16 南京邮电大学 一种刮涂制备铁酸铋薄膜的方法
CN106893236A (zh) * 2017-03-01 2017-06-27 东北大学秦皇岛分校 一种铁酸铋有机-无机复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587936A (zh) * 2009-06-10 2009-11-25 中国科学院宁波材料技术与工程研究所 基于铁酸铋薄膜体系的电阻式随机存储器及其制备方法
CN104078564A (zh) * 2014-07-04 2014-10-01 南京邮电大学 一种基于掺杂铁酸铋的阻变存储器及其制备方法
CN106111482A (zh) * 2016-08-09 2016-11-16 南京邮电大学 一种刮涂制备铁酸铋薄膜的方法
CN106893236A (zh) * 2017-03-01 2017-06-27 东北大学秦皇岛分校 一种铁酸铋有机-无机复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.J. YOU等: "Enhanced electrical properties of composite nanostructures using BiFeO3 nanotubes and ferroelectric copolymers", 《MATERIALS LETTERS》 *
苗鸿雁等: "水热法制备B iFeO3 粉体", 《精细化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662470A (zh) * 2020-04-23 2020-09-15 湖北大学 一种耐疲劳铁酸钴/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法
CN111662470B (zh) * 2020-04-23 2023-08-15 湖北大学 一种耐疲劳铁酸钴/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Molinari et al. Voltage‐control of magnetism in all‐solid‐state and solid/liquid magnetoelectric composites
Chen et al. Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films
Gao et al. Electric field–induced magnetization rotation in magnetoelectric multiferroic fluids
Kambale et al. Current status of magnetoelectric composite thin/thick films
Ortega et al. Multifunctional magnetoelectric materials for device applications
Buscaglia et al. Fe2O3@ BaTiO3 core− shell particles as reactive precursors for the preparation of multifunctional composites containing different magnetic phases
Chen et al. Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films
Kumar et al. Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges
Guo et al. Giant magnetodielectric effect in 0− 3 Ni0. 5Zn0. 5Fe2O4-poly (vinylidene-fluoride) nanocomposite films
Wang et al. Colossal magnetoelectric effect in core–shell magnetoelectric nanoparticles
Peng et al. Electrical, magnetic, and direct and converse magnetoelectric properties of (1− x) Pb (Zr0. 52Ti0. 48) O3−(x) CoFe2O4 (PZT–CFO) magnetoelectric composites
Cheng et al. Interface strain-induced multiferroicity in a SmFeO3 film
US9276192B2 (en) Magnetoelectric composites
Gupta et al. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application
Meher et al. Multiferroics and magnetoelectrics: A comparison between some chromites and cobaltites
Katayama et al. Ferrimagnetism and ferroelectricity in Cr-substituted GaFeO3 epitaxial films
Liu et al. Electric-field control of magnetism in Co40Fe40B20/(1-x) Pb (Mg1/3Nb2/3) O3-xPbTiO3 multiferroic heterostructures with different ferroelectric phases
Palneedi et al. Enhanced self-biased magnetoelectric coupling in laser-annealed Pb (Zr, Ti) O3 thick film deposited on Ni foil
Tang et al. Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition
Bai et al. Enhancement of polarization in ferroelectric films via the incorporation of gold nanoparticles
Patel et al. Increased magnetoelectric coupling in porous nanocomposites of CoFe2O4 and BiFeO3 with residual porosity for switchable magnetic devices
CN107579152A (zh) 基于BiFe0.9Ni0.1O3/P(VDF‑TrFE)的多态存储器件及制备方法
Thirumalasetty et al. Strategic design and analysis of energy storage and me applications of low temperature hybrid microwave sintered electroceramic composites
Liu et al. Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers
Feng et al. Unusual Behaviors of Electric-Field Control of Magnetism in Multiferroic Heterostructures via Multifactor Cooperation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180112

WD01 Invention patent application deemed withdrawn after publication