CN107578619A - 基于ic卡数据测定地铁站点公共自行车服务范围的方法 - Google Patents
基于ic卡数据测定地铁站点公共自行车服务范围的方法 Download PDFInfo
- Publication number
- CN107578619A CN107578619A CN201710812260.2A CN201710812260A CN107578619A CN 107578619 A CN107578619 A CN 107578619A CN 201710812260 A CN201710812260 A CN 201710812260A CN 107578619 A CN107578619 A CN 107578619A
- Authority
- CN
- China
- Prior art keywords
- card
- data
- public bicycles
- subway
- station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Devices For Checking Fares Or Tickets At Control Points (AREA)
Abstract
本发明公开了一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,从公共自行车IC卡与地铁IC卡原始数据入手,通过对原始数据进行有效信息提取、预处理、融合、排序、过滤,筛选出可能的换乘数据对,然后针对每张IC卡的可能换乘数据对,计算还车进站时间间隔和出站借车时间间隔以及地铁站点与公共自行车站点之间距离,并确定最大换乘时间间隔与最大换乘距离,识别地铁与公共自行车换乘数据,基于识别出的换乘数据,应用标准差椭圆来测定地铁站点公共自行车的服务范围。本发明能够精确地测定地铁站点公共自行车的服务范围,为公共自行车站点的选址与配置等研究奠定了坚实的基础。
Description
技术领域
本发明属于公共自行车IC卡和地铁IC卡数据挖掘领域,具体涉及一种基于IC卡数据测定地铁站点公共自行车服务范围的方法。
背景技术
轨道交通作为公共交通的一种,能够显著提高城市交通出行运输能力和运输效率。但是,轨道交通不能解决出行的“最后一公里”问题,轨道交通的吸引力也会由于覆盖率不够高而降低。因此,为了引导公共交通出行,缓解交通问题,需要有效的末端交通方式与轨道交通相配合。公共自行车换乘轨道交通一方面借助自行车“门到门”的特性扩大了个体对轨道站点或目的地的选择范围,同时利用轨道的优势规避了地面交通的干扰,极大地提高了个体的出行时间可靠性。整合轨道交通与自行车网络,鼓励并倡导发展自行车接驳公共交通出行模式,让更多的居民采用公共交通方式出行是缓解城市交通拥堵、改善城市环境的关键所在。
然而,将公共自行车站点布设在地铁站旁多大的范围内能够吸引更多的人选择地铁与公共自行车换乘的交通模式成为了困扰公共自行车管理者的技术难题。传统的测定地铁站点公共自行车服务范围的研究方法主要通过问卷调查的方式来获取公共自行车用户的出行信息,不仅在调查时间跨度上有局限性,而且存在调查问卷精度无法保证、调查成本高、得到的调查样本量少等缺陷,难以得出准确的服务范围。
发明内容
发明目的:本发明提出一种基于IC卡数据测定地铁站点公共自行车服务范围的方法。该方法具有较强的实用性与推广价值,为公共自行车换乘轨道交通方面的研究奠定了坚实的基础。
技术方案:一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,包括以下步骤:
(1)获取公共自行车IC卡与地铁IC卡原始数据,并从原始数据中提取有效数据信息;
(2)对公共自行车IC卡和地铁IC卡的有效数据进行预处理,筛除无用数据;
(3)基于不同的换乘行为模式,将预处理之后的IC卡数据分别融合到不同的数据库中,并对数据按卡号进行排序,使得一张IC卡对应着多条刷卡记录,这些刷卡记录以时间先后顺序依次排列;
(4)对融合之后的数据进行过滤,筛选出可能的换乘数据对;
(5)针对每张卡的可能换乘数据对,计算还车进站时间间隔和出站借车时间间隔以及地铁站点与公共自行车站点之间距离,并确定最大换乘时间间隔与最大换乘距离,利用最大换乘时间间隔和最大换乘距离识别出地铁与公共自行车的换乘数据;
(6)基于识别出来的换乘数据,应用标准差椭圆来测定地铁站点公共自行车的服务范围。
步骤(1)中的公共自行车IC卡有效信息包括:刷卡日期、IC卡卡号、借车时间、还车时间、借车站点编号、还车站点编号、借车站点经度、借车站点纬度、还车站点经度、还车站点纬度;所述地铁IC卡有效信息包括:刷卡日期、IC卡卡号、出站时间、进站时间、进站站点编号、出站站点编号、进站站点经度、进站站点纬度、出站站点经度、出站站点纬度。
步骤(2)中对公共自行车IC卡和地铁IC卡有效数据进行预处理包括:
2.1)筛除无效刷卡记录,包括有残缺项的刷卡记录、有逻辑性错误的刷卡记录、用车时间少于2分钟的公共自行车刷卡记录、进出站时间间隔少于5分钟的地铁刷卡记录;
2.2)删除所有的公共自行车专卡的刷卡数据;
2.3)删除仅存在于地铁IC卡数据中以及仅存在于公共自行车IC卡数据中的卡号对应的刷卡数据,保留同一天内同一卡号在地铁IC卡数据中和公共自行车IC卡数据中都出现的刷卡数据。
步骤(3)中换乘行为模式包括出站借车和还车进站两种地铁与公共自行车换乘行为模式,其中,出站借车换乘行为指的是乘客出地铁站后,在一定的换乘时间和距离内,找到公共自行车站点租借公共自行车;还车进站换乘行为指的是乘客将公共自行车还至公共自行车站点,在一定的换乘时间和距离内,找到地铁站点进站乘坐地铁。
步骤(3)中,对IC卡数据进行融合和排序具体包括:
针对出站借车行为模式,选取同一天内的地铁IC卡数据出站信息与公共自行车IC卡数据借车信息,将选取数据融合至出站借车数据库,并对数据进行两轮排序:先按IC卡卡号进行升序排列,然后针对同一卡号的多条记录按照出站时间和借车时间的先后进行升序排序;
针对还车进站行为模式,选取同一天内的公共自行车IC卡数据还车信息与地铁IC卡数据进站信息,将选取数据融合至还车进站数据库,并对数据进行两轮排序:先按IC卡卡号进行升序排列,然后针对同一卡号的多条记录按照还车时间和进站时间的先后进行升序排列。
所述出站信息包括刷卡日期、卡号、出站时间、出站站点编号、出站站点经度、出站站点纬度;所述借车信息包括刷卡日期、卡号、借车时间、借车站点编号、借车站点经度、借车站点纬度;所述还车信息包括刷卡日期、卡号、还车时间、还车站点编号、还车站点经度、还车站点纬度;所述进站信息包括刷卡日期、卡号、进站时间、进站站点编号、进站站点经度、进站站点纬度。
步骤(4)中,可能的换乘数据对指的是:过滤之后的“还车进站”数据库中的数据结构为:同一张卡的刷卡记录的排列顺序为公共自行车还车数据-地铁进站数据-公共自行车还车数据-地铁进站数据这样的形式,每相邻的一对公共自行车还车数据-地铁进站数据称为还车进站数据对;过滤之后的“出站借车”数据库中的数据结构为:同一张卡的刷卡记录的排列顺序为地铁出站数据-公共自行车借车数据-地铁出站数据-公共自行车借车数据这样的形式,每相邻的一对地铁出站数据-公共自行车借车数据称为出站借车数据对;
步骤(5)中,计算地铁站点与公共自行车站点之间的距离使用以下公式:
其中,D为地铁站点与公共自行车站点之间的距离,r为地球的半径,φ1、φ2分别为地铁站点和公共自行车站点的纬度,λ1、λ2分别为地铁站点和公共自行车站点的经度。
步骤(5)中,确定的最大换乘时间间隔为10分钟,最大换乘距离为300米。
步骤(6)中,为得到某个地铁站点对应下的公共自行车服务范围,统计该地铁站点所有识别出的换乘数据。基于识别出的换乘数据,应用标准差椭圆来测定地铁站点公共自行车的换乘服务范围。具体步骤如下:
6.1)确定该地铁站点对应下的产生换乘行为的公共自行车站点个数n,这n个站点经度分别为{j1,j2,…,ji,…,jn},纬度分别为{w1,w2,…,wi,…,wn},由Arcgis投影工具将站点经纬度坐标投影至二维平面,得到n个站点的平面坐标,横轴坐标为{x1,x2,…,xi,…,xn},纵轴坐标为{y1,y2,…,yi,…,yn}。
6.2)基于公共自行车站点的坐标信息,计算标准差椭圆的相关参数,具体包括:
6.2.1)选取服务范围椭圆的标准差等级。
换乘活动分布具有空间正态分布特征,即这些换乘公共自行车站点在接驳中心地铁站处最为密集,而在远离接驳地铁站时会逐渐变得稀疏。为使测定的服务范围更加准确,避免特殊值的干扰,本发明选取95%作为标准差椭圆的标准差等级,即计算标准差椭圆时只选取离接驳地铁站最近的95%的公共自行车站点作为测定样本。
6.2.2)计算标准差椭圆的中心坐标(SDEx,SDEy),计算公式如下:
其中,xi和yi是地铁站点对应下的换乘公共自行车站点i的坐标,为所有与该地铁站对应的换乘公共自行车站点横轴坐标{x1,x2,…,xi,…,xn}的平均值,为所有与该地铁站对应的换乘公共自行车站点纵轴坐标{y1,y2,…,yi,…,yn}的平均值,n为这些公共自行车站点总数。
6.2.3)计算服务范围标准差椭圆的旋转角θ,θ为通过椭圆中心点的纵轴正方向顺时针旋转至椭圆长轴的旋转角,计算公式如下:
其中和是换乘公共自行车站点坐标与平均中心的偏差,
6.2.4)计算标准差椭圆的长轴与短轴长度,计算公式如下
其中,σx为长轴长度,σy为短轴长度,
6.3)计算标准差椭圆面积S,得到服务范围。
根据得到的各项参数,绘制换乘活动标准差椭圆。首先确定椭圆中心点坐标(SDEx,SDEy),随后确定旋转角度θ,最后确定标准差椭圆的长轴长度σx与短轴长度σy,进而确定椭圆短轴的位置,绘制标准差椭圆,得到地铁站点公共自行车换乘活动服务范围与分布方向。
有益效果:目前业内针对地铁站点公共自行车服务范围方面的研究,研究手段比较单一,主要通过问卷调查的方式来获取公共自行车用户的出行信息,不仅在调查时间跨度上有局限性,而且存在调查问卷精度无法保证、调查成本高、得到的调查样本量少等缺陷;对IC卡的数据挖掘也多局限于地铁数据或公共自行车数据单方面的挖掘,没有将两套刷卡数据联合起来进行识别换乘行为。本发明基于IC卡数据,将地铁换乘公共自行车行为具体分为“出站借车”和“还车进站”两种换乘模式,首次运用公共自行车与地铁IC卡数据中的卡号对应关系以及对应卡号下刷卡记录的时空关系进行换乘行为识别,得到换乘的IC卡数据,其样本量大,准确度高,无需大量的人力物力进行问卷调查。基于换乘IC卡数据测定地铁站点的公共自行车服务面积,为公共自行车站点的选址、布设、调度以及共享单车在地铁站点附近的投放地点选址等研究奠定了坚实的基础。
附图说明
图1是本发明方法的流程图;
图2是利用本发明方法测定的公共自行车服务范围示例。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。在本发明的实施例中,采用的IC卡数据由南京市公共自行车公司和南京市地铁公司提供。本实施例中,以2016年3月9日的地铁IC卡数据与公共自行车IC卡数据为例,对本发明的方法作进一步说明。
参照图1,首先,获取公共自行车IC卡和地铁IC卡原始数据,并分别从两类原始数据中提取有效信息。原始数据中,一条完整的公共自行车刷卡记录包含15个部分:刷卡日期、卡号、借车站点名称、借车站点编号、借车站点经度、借车站点纬度、借车时间、借车桩位号、公共自行车车辆编号、还车站点名称、还车站点编号、还车站点经度、还车站点纬度、还车时间、还车桩位号。其中,借、还车站点编号与借、还车站点名称一一对应;根据本发明的需要,提取IC卡有效数据信息,其结构如表1所示:
表1公共自行车IC卡有效信息结构
一条完整的地铁刷卡记录包含13个部分:刷卡日期、卡号、卡种、进站站点名称、进站站点编号、进站站点经度、进站站点纬度、进站时间、出站站点名称、出站站点编号、出站站点经度、出站站点纬度、出站时间。根据本发明的需要,提取IC卡有效数据信息,其结构如表2所示:
表2地铁IC卡有效信息结构
然后,对公共自行车IC卡与地铁IC卡有效数据进行预处理,筛除无用数据,可以排除干扰,提高数据挖掘效率及识别准确度。预处理包括:
1)筛除无效刷卡记录,包括:筛除有残缺项的刷卡记录,例如缺少刷卡时间的记录;筛除有逻辑性错误的刷卡记录,例如还车时间早于借车时间的记录或者出站时间早于进站时间的记录;筛除用车时间少于2分钟的公共自行车刷卡记录,认为这样的记录并没有产生骑行公共自行车行为;筛除进出站时间间隔少于5分钟(地铁站点间的最短到站时间间隔为3分钟,加上进站出站各1分钟)的地铁刷卡记录,认为这样的记录并没有产生乘坐地铁行为。
2)由于目前刷卡使用公共自行车时,刷卡系统支持一卡通卡和非一卡通卡(即公共自行车专卡)两种卡,其中公共自行车一卡通卡指的是可以使用该卡进出地铁站也可以使用该卡租借公共自行车的IC卡;公共自行车专卡指的是只可用来租借公共自行车的IC卡。公共一卡通与非一卡通可由IC卡卡号进行识别,其中以数字9开头的公共自行车IC卡为一卡通,以字母N开头的为公共自行车IC卡为专卡。本发明只针对使用一卡通IC卡进行公共自行车和地铁换乘的行为进行识别,故删去所有的公共自行车专卡的刷卡数据。下文所称公共自行车IC卡和公交IC卡指的都是一卡通IC卡,但是为了区分数据来源,描述时仍然称为公共自行车IC卡和公交IC卡。
3)因为本发明针对换乘行为进行识别,因此删除只在地铁IC卡数据库中或只在公共自行车IC卡数据库中出现的卡号对应的刷卡数据,保留同一天内同一卡号在地铁IC卡数据库中和公共自行车IC卡数据库中都出现的刷卡数据。
接下来,基于不同的换乘行为模式,将预处理之后的IC卡数据融合到不同的数据库中。公共自行车与地铁换乘方式分两种,一种方式是“出站借车”:乘客出地铁站后,在一定的换乘时间和距离内,找到公共自行车站点租借公共自行车;另一种方式是“还车进站”:乘客将公共自行车还至公共自行车站点,在一定的换乘时间和距离内,找到地铁站点进站乘坐地铁。本发明通过对以上刷卡数据的分析和整合,识别出相应的换乘行为。选取同一天内的地铁IC卡数据出站信息(包括刷卡日期、卡号、出站时间、出站站点编号、出站站点经度、出站站点纬度)与公共自行车IC卡数据借车信息(包括刷卡日期、卡号、借车时间、借车站点编号、借车站点经度、借车站点纬度),将两类数据融合至出站借车数据库,并对数据进行两轮排序:先按IC卡卡号进行升序排列,然后针对同一卡号的多条记录按照出站时间和借车时间的先后进行升序排序,得到融合后的出站借车数据库,其结构如表3所示:
表3融合之后的出站借车数据库结构
注:“-”表示该单元格对应项目不存在数据。
表3中,刷卡类型为“地铁”,表示该条数据来自地铁IC卡刷卡数据,刷卡类型为“公共自行车”表示该条数据来自公共自行车IC卡刷卡数据。当刷卡类型为地铁时,对应的站点经度和站点纬度分别表示地铁出站站点的经度和纬度;当刷卡类型为公共自行车时,对应的站点经度和站点纬度分别表示借车站点的经度和纬度。以下针对出站借车的数据结构表中相同字段含义相同,不再赘述。
类似地,选取同一天内的公共自行车IC卡数据还车信息(包括刷卡日期、卡号、还车时间、还车站点编号、还车站点经度、还车站点纬度)与地铁IC卡数据进站信息(包括刷卡日期、卡号、进站时间、进站站点编号、进站站点经度、进站站点纬度),将两类数据融合至还车进站数据库,并进行两轮排序:先按IC卡卡号进行升序排列,然后针对同一卡号的多条记录按照还车时间和进站时间的先后进行升序排列,得到融合后的还车进站数据库,其结构如表4所示:
表4融合之后的还车进站数据库结构
注:“-”表示该单元格对应项目不存在数据。
表4中,刷卡类型的含义同表3。当刷卡类型为地铁时,对应的站点经度和站点纬度分别表示地铁进站站点的经度和纬度;当刷卡类型为公共自行车时,对应的站点经度和站点纬度分别表示还车站点的经度和纬度。以下针对还车进站的数据结构表中相同字段含义相同,不再赘述。
经过以上处理并且从表3和表4可以看出,一个卡号对应着多条刷卡记录,这些刷卡记录以时间先后顺序依次排列。下面对数据进行过滤,筛选出可能的换乘数据对,即同一张卡的刷卡类型为先地铁后公共自行车或者先公共自行车后地铁,如针对出站借车行为,同一张卡的刷卡记录为“地铁出站数据-公共自行车借车数据-地铁出站数据-公共自行车借车数据”顺序排列的形式,每相邻的一对地铁出站数据-公共自行车借车数据称为出站借车数据对;针对还车进站行为,同一张卡的刷卡记录为“公共自行车还车数据-地铁进站数据-公共自行车还车数据-地铁进站数据”顺序排列的形式,每相邻的一对公共自行车还车数据-地铁进站数据称为还车进站数据对。具体地,针对融合之后的出站借车数据库的数据,首先取前两条记录,判断其组合形式是否为“地铁出站数据-公共自行车借车数据”,如果是,则保留两条记录,继续下一对记录的判断;如果不是,有三种情况,分别是“地铁出站数据-地铁出站数据”组合形式、“公共自行车借车数据-地铁出站数据”组合形式以及“公共自行车借车数据-公共自行车借车数据”组合形式,针对前两种形式,删除第一条记录,继续取新的前两条记录进行判断,对于第三种形式,删除两条记录,继续至下一对记录进行判断。直到针对一个卡号的所有刷卡记录都已经过上述判断。如果刷卡记录是奇数次,最后一次判断时只有一条记录,则删除该条记录。最终得到“地铁出站数据-公共自行车借车数据-地铁出站数据-公共自行车借车数据”的形式,其结构如表5所示:
表5过滤之后的出站借车数据库结构
注:“-”表示该单元格对应项目不存在数据。
类似地,将融合之后的还车进站数据库的数据过滤成“公共自行车借车数据-地铁进站数据-公共自行车借车数据-地铁进站数据”的形式,其结构如表6所示:
表6过滤之后的还车进站数据库结构
注:“-”表示该单元格对应项目不存在数据。
根据地铁站点与公共自行车站点的经纬度信息,利用公式(1)可以算出地铁站点与公共自行车站点之间的距离。
其中,D为地铁站点与公共自行车站点之间的距离,r为地球的半径(6378.137km),φ1、φ2分别为地铁站点和公共自行车站点的纬度,λ1、λ2分别为地铁站点和公共自行车站点的经度。
根据刷卡时间算出出站行为与借车行为之间的出站借车时间间隔T出站借车,如公
式(2)所示:
T出站借车=T借车-T出站 (2)
其中,T借车为表5中的借车时间,T出站为表5中的出站时间。
计算还车行为与进站行为之间的还车进站时间间隔T还车进站,如公式(3)所示:
T还车进站=T进站-T还车 (3)
其中,T进站为表6中的进站时间,T还车为表6中的还车时间。
将计算得到的地铁站点与公共自行车站点之间的距离以及出站借车时间间隔添加到表5,形成新的出站借车数据结构,如表7所示:
表7计算出T出站借车与站点之间距离之后的出站借车数据库结构
注:“-”表示该单元格对应项目不存在数据。
将计算得到的地铁站点与公共自行车站点之间的距离以及还车进站时间间隔添加到表6,形成新的还车进站数据结构,如表8所示:
表8计算出T还车进站与站点之间距离之后的还车进站数据库结构
注:“-”表示该单元格对应项目不存在数据。
针对每张卡的可能换乘数据对计算还车进站时间间隔和出站借车时间间隔以及站点之间距离,并统计两种换乘模式下的时间间隔分布与站点距离分布。根据时间间隔累计分布得出:91.64%的出站借车时间间隔在10分钟之内,90.77%的出站站点与借车站点之间距离在300米之内;96.40%的还车进站时间间隔在10分钟之内,93.79%的还车站点与进站站点之间距离在300米之内。因此,本发明中的最大换乘时间间隔取10分钟,最大换乘距离取300米。若出站借车换乘行为或还车进站换乘行为同时满足本发明提出的最大换乘时间间隔10分钟与最大换乘距离300米,则该换乘行为将被成功识别,以2016年3月9日的地铁IC卡数据库与公共自行车IC卡数据库为例,共识别出出站借车换乘行为577个,还车进站换乘行为560个。
接下来,利用上述最大换乘时间间隔和最大换乘距离,从表7和表8所示的数据库中识别出换乘数据,基于换乘数据,应用标准差椭圆来计算地铁站点公共自行车的换乘服务范围。本发明中,地铁站点公共自行车的换乘服务范围指的是以某地铁站点为中心所覆盖的,涉及该地铁站点的所有换乘行为所涉及的公共自行车站点的分布范围。下面以南京地铁2号线兴隆大街地铁站为例,计算该站点公共自行车服务范围。
(1)确定该地铁站点对应下的产生换乘行为的公共自行车站点个数n,这n个站点经度分别为{j1,j2,…,ji,…,jn},纬度分别为{w1,w2,…,wi,…,wn},由Arcgis投影工具将站点经纬度坐标投影至二维平面,得到n个站点的平面坐标,横轴坐标为{x1,x2,…,xi,…,xn},纵轴坐标为{y1,y2,…,yi,…,yn}。
统计兴隆大街地铁站一周的公共自行车IC卡与地铁IC卡的换乘识别数据(2016年3月9日至2016年3月15日),一周的换乘数据显示兴隆大街地铁站一周内共产生公共自行车接驳地铁换乘行为38次,换乘行为总共涉及15个公共自行车站点。表9列出了兴隆大街地铁站所有的公共自行车站点情况。
表9兴隆大街站公共自行车换乘站点经纬度
(2)基于公共自行车站点的坐标信息,计算标准差椭圆的相关参数,具体包括:
(2.1)选取服务范围椭圆的标准差等级。
换乘活动分布具有空间正态分布特征,即这些换乘公共自行车站点在接驳中心地铁站处最为密集,而在远离接驳地铁站时会逐渐变得稀疏。为使测定的服务范围更加准确,避免特殊值的干扰,本发明选取95%作为标准差椭圆的标准差等级,即计算标准差椭圆时只选取离接驳地铁站最近的95%的公共自行车站点作为测定样本。
(2.2)计算标准差椭圆的中心坐标(SDEx,SDEy),计算公式如下(4)和(5):
其中,xi和yi是地铁站点对应下的换乘公共自行车站点i的坐标,为所有与该地铁站对应的换乘公共自行车站点横轴坐标{x1,x2,…,xi,…,xn}的平均值,为所有与该地铁站对应的换乘公共自行车站点纵轴坐标{y1,y2,…,yi,…,yn}的平均值,n为这些公共自行车站点总数。
(2.3)计算服务范围标准差椭圆的旋转角θ,θ为通过椭圆中心点的纵轴正方向顺时针旋转至椭圆长轴的旋转角,计算公式(6)-(9)如下:
其中和是换乘公共自行车站点坐标与平均中心的偏差,
(2.4)计算标准差椭圆的长轴与短轴长度,计算公式如下(10)-(11)
其中,σx为长轴长度,σy为短轴长度,
(2.5)计算标准差椭圆面积S,得到服务范围。
(3)绘制换乘活动标准差椭圆。
首先确定椭圆中心点坐标(SDEx,SDEy),随后确定旋转角度θ,最后确定标准差椭圆的长轴长度σx与短轴长度σy,进而确定椭圆短轴的位置,绘制标准差椭圆,得到地铁站点公共自行车换乘活动服务范围与分布方向。
在本实施例中,根据换乘行为涉及的公共自行车站点坐标,得出兴隆大街地铁站公共自行车服务范围标准差椭圆相关参数如表10所示。绘制出的兴隆大街地铁站公共自行车服务范围如图2所示。
表10兴隆大街站公共自行车换乘标准差椭圆参数
Claims (10)
1.一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述方法包括以下步骤:
(1)获取公共自行车IC卡与地铁IC卡原始数据,并从原始数据中提取有效数据信息;
(2)对公共自行车IC卡和地铁IC卡的有效数据进行预处理,筛除无用数据;
(3)基于不同的换乘行为模式,将预处理之后的IC卡数据分别融合到不同的数据库中,并对数据按卡号进行排序,使得一张IC卡对应着多条刷卡记录,这些刷卡记录以时间先后顺序依次排列;
(4)对融合之后的数据进行过滤,筛选出可能的换乘数据对;
(5)针对每张卡的可能换乘数据对,计算还车进站时间间隔和出站借车时间间隔以及地铁站点与公共自行车站点之间距离,并确定最大换乘时间间隔与最大换乘距离,利用所述最大换乘时间间隔与最大换乘距离识别出地铁与公共自行车之间的换乘数据;
(6)基于识别出来的换乘数据,应用标准差椭圆来测定地铁站点公共自行车的服务范围。
2.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(1)中的公共自行车IC卡有效信息包括:刷卡日期、IC卡卡号、借车时间、还车时间、借车站点编号、还车站点编号、借车站点经度、借车站点纬度、还车站点经度、还车站点纬度;所述地铁IC卡有效信息包括:刷卡日期、IC卡卡号、出站时间、进站时间、进站站点编号、出站站点编号、进站站点经度、进站站点纬度、出站站点经度、出站站点纬度。
3.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(2)中对公共自行车IC卡和地铁IC卡有效数据进行预处理包括:
2.1)筛除无效刷卡记录,包括有残缺项的刷卡记录、有逻辑性错误的刷卡记录、用车时间少于2分钟的公共自行车刷卡记录、进出站时间间隔少于5分钟的地铁刷卡记录;
2.2)删除所有的公共自行车专卡的刷卡数据;
2.3)删除仅存在于地铁IC卡数据中以及仅存在于公共自行车IC卡数据中的卡号对应的刷卡数据,保留同一天内同一卡号在地铁IC卡数据中和公共自行车IC卡数据中都出现的刷卡数据。
4.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(3)中换乘行为模式包括出站借车和还车进站两种地铁与公共自行车换乘行为模式,其中,出站借车换乘行为指的是乘客出地铁站后,在一定的换乘时间和距离内,找到公共自行车站点租借公共自行车;还车进站换乘行为指的是乘客将公共自行车还至公共自行车站点,在一定的换乘时间和距离内,找到地铁站点进站乘坐地铁。
5.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(3)中,对IC卡数据进行融合和排序具体包括:
针对出站借车行为模式,选取同一天内的地铁IC卡数据出站信息与公共自行车IC卡数据借车信息,将选取数据融合至出站借车数据库,并对数据进行两轮排序:先按IC卡卡号进行升序排列,然后针对同一卡号的多条记录按照出站时间和借车时间的先后进行升序排序;
针对还车进站行为模式,选取同一天内的公共自行车IC卡数据还车信息与地铁IC卡数据进站信息,将选取数据融合至还车进站数据库,并对数据进行两轮排序:先按IC卡卡号进行升序排列,然后针对同一卡号的多条记录按照还车时间和进站时间的先后进行升序排列;
其中,所述出站信息包括刷卡日期、卡号、出站时间、出站站点编号、出站站点经度、出站站点纬度;所述借车信息包括刷卡日期、卡号、借车时间、借车站点编号、借车站点经度、借车站点纬度;所述还车信息包括刷卡日期、卡号、还车时间、还车站点编号、还车站点经度、还车站点纬度;所述进站信息包括刷卡日期、卡号、进站时间、进站站点编号、进站站点经度、进站站点纬度。
6.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(4)中,可能的换乘数据对指的是:过滤之后的还车进站数据库中的数据结构为:同一张卡的刷卡记录的排列顺序为公共自行车还车数据-地铁进站数据-公共自行车还车数据-地铁进站数据这样的形式,每相邻的一对公共自行车还车数据-地铁进站数据称为还车进站数据对;过滤之后的出站借车数据库中的数据结构为:同一张卡的刷卡记录的排列顺序为地铁出站数据-公共自行车借车数据-地铁出站数据-公共自行车借车数据这样的形式,每相邻的一对地铁出站数据-公共自行车借车数据称为出站借车数据对。
7.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(5)中,计算地铁站点与公共自行车站点之间的距离使用以下公式:
其中,D为地铁站点与公共自行车站点之间的距离,r为地球的半径,φ1、φ2分别为地铁站点和公共自行车站点的纬度,λ1、λ2分别为地铁站点和公共自行车站点的经度。
8.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(5)中,确定的最大换乘时间间隔为10分钟,最大换乘距离为300米。
9.根据权利要求1所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,所述步骤(6)包括以下具体步骤:
6.1)确定某地铁站点对应下的产生换乘行为的公共自行车站点个数n,这n个站点经度分别为{j1,j2,…,ji,…,jn},纬度分别为{w1,w2,…,wi,…,wn},由Arcgis投影工具将站点经纬度坐标投影至二维平面,得到n个站点的平面坐标,横轴坐标为{x1,x2,…,xi,…,xn},纵轴坐标为{y1,y2,…,yi,…,yn};
6.2)基于公共自行车站点的坐标信息,选取95%作为标准差椭圆的标准差等级,计算标准差椭圆的相关参数,包括标准差椭圆的中心坐标、旋转角、长轴长度与短轴长度,计算公式分别如下:
标准差椭圆的中心坐标(SDEx,SDEy):
其中,xi和yi是地铁站点对应下的换乘公共自行车站点i的坐标,为所有与该地铁站对应的换乘公共自行车站点横轴坐标{x1,x2,…,xi,…,xn}的平均值,为所有与该地铁站对应的换乘公共自行车站点纵轴坐标{y1,y2,…,yi,…,yn}的平均值,n为这些公共自行车站点总数;
标准差椭圆的旋转角θ,θ为通过椭圆中心点的纵轴正方向顺时针旋转至椭圆长轴的旋转角:
其中和是换乘公共自行车站点坐标与平均中心的偏差,
标准差椭圆的长轴长度σx与短轴长度σy:
6.3)基于上述参数,计算标准差椭圆面积S,得到换乘服务范围。
10.根据权利要求9所述的一种基于IC卡数据测定地铁站点公共自行车服务范围的方法,其特征在于,还包括绘制换乘活动标准差椭圆,具体地,首先确定椭圆中心点坐标(SDEx,SDEy),随后确定旋转角度θ,最后确定标准差椭圆的长轴长度σx与短轴长度σy,进而确定椭圆短轴的位置,绘制标准差椭圆,得到地铁站点公共自行车换乘活动服务范围与分布方向。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710812260.2A CN107578619B (zh) | 2017-09-11 | 2017-09-11 | 基于ic卡数据测定地铁站点公共自行车服务范围的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710812260.2A CN107578619B (zh) | 2017-09-11 | 2017-09-11 | 基于ic卡数据测定地铁站点公共自行车服务范围的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107578619A true CN107578619A (zh) | 2018-01-12 |
CN107578619B CN107578619B (zh) | 2020-08-11 |
Family
ID=61036490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710812260.2A Active CN107578619B (zh) | 2017-09-11 | 2017-09-11 | 基于ic卡数据测定地铁站点公共自行车服务范围的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107578619B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109754151A (zh) * | 2018-11-22 | 2019-05-14 | 广东岭南通股份有限公司 | 基于交易数据的地铁站点识别方法、装置、设备及介质 |
CN110111140A (zh) * | 2019-04-25 | 2019-08-09 | 华南理工大学 | 一种基于ic卡数据的热点换乘枢纽识别方法 |
CN110399402A (zh) * | 2019-07-12 | 2019-11-01 | 天津市市政工程设计研究院 | 一种基于大数据的轨道交通站点分类方法 |
CN110457299A (zh) * | 2019-07-12 | 2019-11-15 | 北京交通大学 | 基于共享单车骑行数据的站点影响范围确定方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050022449A (ko) * | 2003-08-30 | 2005-03-08 | 박종철 | 전자 영수증 발행, 저장, 복권화 사업을 위한 장치 및 방법 |
CN104200650A (zh) * | 2014-08-27 | 2014-12-10 | 浙江工业大学 | 一种城市拥堵时段的多模式公交换乘方法 |
CN104318113A (zh) * | 2014-10-29 | 2015-01-28 | 中国科学院深圳先进技术研究院 | 基于乘客换乘的时空特征推算乘客上车站点的方法及系统 |
CN105335795A (zh) * | 2015-10-23 | 2016-02-17 | 东南大学 | 一种基于ic卡数据的地铁公交换乘问题自动诊断方法 |
-
2017
- 2017-09-11 CN CN201710812260.2A patent/CN107578619B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050022449A (ko) * | 2003-08-30 | 2005-03-08 | 박종철 | 전자 영수증 발행, 저장, 복권화 사업을 위한 장치 및 방법 |
CN104200650A (zh) * | 2014-08-27 | 2014-12-10 | 浙江工业大学 | 一种城市拥堵时段的多模式公交换乘方法 |
CN104318113A (zh) * | 2014-10-29 | 2015-01-28 | 中国科学院深圳先进技术研究院 | 基于乘客换乘的时空特征推算乘客上车站点的方法及系统 |
CN105335795A (zh) * | 2015-10-23 | 2016-02-17 | 东南大学 | 一种基于ic卡数据的地铁公交换乘问题自动诊断方法 |
Non-Patent Citations (2)
Title |
---|
祁文田: ""基于GPS数据的出租车载客点空间特征分析",中国优秀硕士学位论文全文数据库,祁文田", 《中国优秀硕士学位论文全文数据库》 * |
蒋敏: ""基于IC卡数据的地铁与常规公交换乘时间分析",中国优秀硕士学位论文全文数据库,蒋敏", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109754151A (zh) * | 2018-11-22 | 2019-05-14 | 广东岭南通股份有限公司 | 基于交易数据的地铁站点识别方法、装置、设备及介质 |
CN109754151B (zh) * | 2018-11-22 | 2023-04-28 | 广东岭南通股份有限公司 | 基于交易数据的地铁站点识别方法、装置、设备及介质 |
CN110111140A (zh) * | 2019-04-25 | 2019-08-09 | 华南理工大学 | 一种基于ic卡数据的热点换乘枢纽识别方法 |
CN110399402A (zh) * | 2019-07-12 | 2019-11-01 | 天津市市政工程设计研究院 | 一种基于大数据的轨道交通站点分类方法 |
CN110457299A (zh) * | 2019-07-12 | 2019-11-15 | 北京交通大学 | 基于共享单车骑行数据的站点影响范围确定方法和装置 |
CN110457299B (zh) * | 2019-07-12 | 2022-06-14 | 北京交通大学 | 基于共享单车骑行数据的站点影响范围确定方法和装置 |
CN110399402B (zh) * | 2019-07-12 | 2023-05-23 | 天津市政工程设计研究总院有限公司 | 一种基于大数据的轨道交通站点分类方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107578619B (zh) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102097002B (zh) | 一种基于ic卡数据获取公交站点od的方法及系统 | |
CN107578619A (zh) | 基于ic卡数据测定地铁站点公共自行车服务范围的方法 | |
Jang | Travel time and transfer analysis using transit smart card data | |
Guo | Mind the map! The impact of transit maps on path choice in public transit | |
CN108053240B (zh) | 生成车载广告投放公交线路方案的方法及装置 | |
CN107590239A (zh) | 一种基于ic卡数据测定地铁站点公共自行车接驳半径的方法 | |
CN107506864A (zh) | 一种客运巴士路线规划方法和装置 | |
CN107886723A (zh) | 一种交通出行调查数据处理方法 | |
CN107195180A (zh) | 一种基于电警数据的交通出行轨迹提取方法和装置 | |
CN105335795B (zh) | 一种基于ic卡数据的地铁公交换乘问题自动诊断方法 | |
CN107451299A (zh) | 基于ic卡数据的地铁与公共自行车换乘行为识别方法 | |
CN104282142B (zh) | 一种基于出租车gps数据的公交站台设置方法 | |
CN114139251B (zh) | 一种边境地区陆路口岸整体布局方法 | |
Liu et al. | Mode choice between bus and bike-sharing for the last-mile connection to urban rail transit | |
CN107657006A (zh) | 基于时空特性的公共自行车ic卡与地铁ic卡匹配方法 | |
Huang | Data integration for urban transport planning | |
CN113096389A (zh) | 一种基于多源数据的全国高速公路网络拓扑构建方法 | |
Pojani et al. | Parking: An international perspective | |
CN106781467B (zh) | 一种基于协同过滤的公交乘客刷卡站点信息提取方法 | |
CN113313307A (zh) | 基于信令大数据的旅游路线挖掘方法 | |
Meng et al. | Shared scooter parking: The role of parking density and land use in compliance and demand | |
CN108171533B (zh) | 基于智能公交卡数据的车载广告公交线路推荐方法及装置 | |
CN110189029A (zh) | 一种基于大规模手机位置数据的自行车骑车与停车需求评估方法 | |
Xianning et al. | Research on Spatial Perception and Inheritance of Traffic Settlement: a Case Study of Yuliang Ancient Village in Huizhou. | |
Niger | Rationalizing public transport: a Euro-Asian perspective |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |