CN107577844A - A method and system for predicting the outlet temperature of the mirror field of a trough-type photothermal power station - Google Patents

A method and system for predicting the outlet temperature of the mirror field of a trough-type photothermal power station Download PDF

Info

Publication number
CN107577844A
CN107577844A CN201710659592.1A CN201710659592A CN107577844A CN 107577844 A CN107577844 A CN 107577844A CN 201710659592 A CN201710659592 A CN 201710659592A CN 107577844 A CN107577844 A CN 107577844A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
temperature
power station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710659592.1A
Other languages
Chinese (zh)
Other versions
CN107577844B (en
Inventor
朱凌志
陈宁
王湘艳
姚志豪
张亚南
王宇扬
施涛
曲立楠
于若英
赵大伟
赵亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suncan Energy-Saving Photothermal Technology Co Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shanxi Electric Power Co Ltd
Original Assignee
Suncan Energy-Saving Photothermal Technology Co Ltd
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncan Energy-Saving Photothermal Technology Co Ltd, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI, State Grid Shanxi Electric Power Co Ltd filed Critical Suncan Energy-Saving Photothermal Technology Co Ltd
Priority to CN201710659592.1A priority Critical patent/CN107577844B/en
Publication of CN107577844A publication Critical patent/CN107577844A/en
Application granted granted Critical
Publication of CN107577844B publication Critical patent/CN107577844B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提出一种槽式光热电站镜场出口温度的预测方法及系统,所述方法包括:获取预设时间段槽式光热电站的实际运行参数;将所述预设时间段槽式光热电站的实际运行参数代入预先建立的温度预测模型,以确定集热器光学效率实际值;根据温度预测模型、集热器光学效率实际值以及待预测时间段的太阳直射辐射强度预测值,确定槽式光热电站镜场出口温度预测值。本发明提供的预测方法及系统能够准确预测未来一段时间内的镜场出口温度;对于及时调整控制聚光器跟踪角度,防止集热管内导热油超温、裂解具有重要意义。

The present invention proposes a method and system for predicting the outlet temperature of the mirror field of a trough-type photothermal power station. The actual operating parameters of the thermal power station are substituted into the pre-established temperature prediction model to determine the actual value of the optical efficiency of the collector; according to the temperature prediction model, the actual value of the optical efficiency of the collector and the predicted value of the direct solar radiation intensity in the time period to be predicted, determine Predicted value of outlet temperature of mirror field in trough solar thermal power plant. The prediction method and system provided by the invention can accurately predict the outlet temperature of the mirror field within a certain period of time in the future; it is of great significance for timely adjusting and controlling the tracking angle of the concentrator and preventing the heat transfer oil in the heat collecting tube from overheating and cracking.

Description

一种槽式光热电站镜场出口温度的预测方法及系统A method and system for predicting the outlet temperature of the mirror field of a trough-type photothermal power station

技术领域technical field

本发明涉及电站自动化控制技术领域,具体涉及一种槽式光热电站镜场出口温度的预测方法及系统。The invention relates to the technical field of power station automation control, in particular to a method and system for predicting the outlet temperature of a mirror field of a trough-type photothermal power station.

背景技术Background technique

槽式镜场是槽式太阳能光热电站的能量收集部分,槽式镜场主要包含若干条并联的槽式回路,每条槽式回路主要由若干集热器组成,集热器主要包括集热器支架、集热管、反射镜、跟踪控制系统等核心部件。槽式光热发电采用抛物面形聚光器聚焦太阳直射辐射加热集热管内的传热流体,常用的传热流体为导热油,最高可升温到400℃,将导热油加热到高温状态,用于产生蒸汽带动汽轮机组发电。导热油在槽式光热电站镜场出口处的温度也被称为槽式光热电站镜场出口温度。The trough mirror field is the energy collection part of the trough solar thermal power station. The trough mirror field mainly includes several parallel trough circuits. Each trough circuit is mainly composed of several heat collectors. The heat collector mainly includes heat collectors. Core components such as collector brackets, heat collector tubes, reflectors, and tracking control systems. The trough photothermal power generation uses a parabolic concentrator to focus the direct sunlight radiation to heat the heat transfer fluid in the heat collector tube. The commonly used heat transfer fluid is heat transfer oil, which can be heated up to 400°C. The heat transfer oil is heated to a high temperature state for use in Generate steam to drive the steam turbine to generate electricity. The temperature of the heat transfer oil at the outlet of the mirror field of the trough solar thermal power station is also called the outlet temperature of the mirror field of the trough solar thermal power station.

槽式光热电站镜场出口温度受多种因素决定,包括有太阳辐射强度、现场环境温度、风速和导热油流量等。在槽式光热电站发电过程中,由于上述因素随时会发生变化,如果不及时对集热管内流动的导热油流量进行控制,镜场出口温度过高会导致导热油裂解,对光热电站的相关设备造成损害,严重时还可能会造成生产事故。为此,准确的预测出槽式光热电站镜场出口温度,及时调节导热油流量,在槽式光热电站的优化控制中起着十分重要的作用。也成为本领域技术人员迫切需要解决的问题。The outlet temperature of the mirror field of the trough solar thermal power station is determined by many factors, including the intensity of solar radiation, the ambient temperature of the site, the wind speed and the flow rate of heat transfer oil, etc. During the power generation process of the trough solar thermal power plant, the above factors will change at any time. If the flow of heat transfer oil flowing in the heat collecting tube is not controlled in time, the temperature at the outlet of the mirror field will be too high, which will lead to cracking of the heat transfer oil, which will affect the power of the solar thermal power plant. Related equipment will cause damage, and in severe cases, it may cause production accidents. For this reason, accurately predicting the outlet temperature of the mirror field of the trough-type solar thermal power station and timely adjusting the flow rate of heat transfer oil play a very important role in the optimal control of the trough-type solar thermal power station. It has also become an urgent problem for those skilled in the art.

发明内容Contents of the invention

为了解决现有技术中无法准确预测出槽式光热电站镜场出口温度的缺陷,本发明的目的在于提出一种槽式光热电站镜场出口温度预测的方法,该方法是通过如下技术方案实现的:In order to solve the defect that the exit temperature of the mirror field of the trough-type photothermal power station cannot be accurately predicted in the prior art, the purpose of the present invention is to propose a method for predicting the outlet temperature of the mirror field of the trough-type photothermal power station. The method is through the following technical scheme Achieved:

获取预设时间段槽式光热电站的实际运行参数;Obtain the actual operating parameters of the trough solar thermal power plant in the preset time period;

将所述预设时间段槽式光热电站的实际运行参数代入预先建立的温度预测模型,以确定集热器光学效率实际值;Substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the pre-established temperature prediction model to determine the actual value of the optical efficiency of the collector;

根据温度预测模型、集热器光学效率实际值以及待预测时间段的太阳直射辐射强度预测值,确定槽式光热电站镜场出口温度预测值。According to the temperature prediction model, the actual value of the optical efficiency of the collector and the predicted value of the solar direct radiation intensity in the time period to be predicted, the predicted value of the outlet temperature of the mirror field of the trough solar thermal power station is determined.

进一步地,将所述预设时间段槽式光热电站的实际运行参数代入温度预测模型,以确定集热器光学效率实际值,包括:Further, substituting the actual operating parameters of the trough-type photothermal power plant in the preset time period into the temperature prediction model to determine the actual value of the optical efficiency of the collector, including:

将所述预设时间段槽式光热电站的实际运行参数代入如下式的温度预测模型:Substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the temperature prediction model of the following formula:

式中,实际运行参数包括:预设起始时刻的槽式回路入口温度Tin、预设终止时刻的槽式回路出口实际温度Tout、传热流体的平均温度Tm以及预设起始、终止时刻的相关参数平均值;所述预设起始、终止时刻的相关参数平均值包括传热流体质量流量平均值传热流体比热容平均值cf、槽式回路集热面积平均值Aa、集热器散热量平均值Qloss、连接集热器的管道散热量平均值Qloss,pipe和槽式回路的热熔平均值CloopIn the formula, the actual operating parameters include: the inlet temperature T in of the trough loop at the preset start time, the actual temperature T out of the trough loop outlet at the preset end time, the average temperature T m of the heat transfer fluid, and the preset start, The average value of the relevant parameters at the end time; the average value of the relevant parameters at the preset start and end time includes the average value of the mass flow rate of the heat transfer fluid The average specific heat capacity c f of the heat transfer fluid, the average heat collection area of the trough loop A a , the average heat dissipation of the collector Q loss , the average heat dissipation of the pipe connected to the collector Q loss,pipe and the heat dissipation of the trough loop Melting average value C loop ;

η为集热器光学效率实际值;Kθb(θ)为太阳直射辐射的入射角函数;Ge为太阳直射辐射强度;Tm=(Tout+Tin)/2;η is the actual value of the optical efficiency of the collector; K θb (θ) is the incident angle function of direct solar radiation; G e is the intensity of direct solar radiation; T m = (T out +T in )/2;

根据所述温度预测模型计算集热器光学效率实际值η。Calculate the actual value η of the optical efficiency of the heat collector according to the temperature prediction model.

进一步地,根据温度预测模型、集热器光学效率实际值以及待预测时间段的太阳直射辐射强度预测值,确定槽式光热电站镜场出口温度预测值包括:Further, according to the temperature prediction model, the actual value of the optical efficiency of the collector, and the predicted value of the direct solar radiation intensity in the time period to be predicted, the determination of the predicted value of the outlet temperature of the mirror field of the trough-type photothermal power station includes:

将集热器光学效率实际值代入温度预测模型中;Substitute the actual value of the optical efficiency of the collector into the temperature prediction model;

通过温度预测模型计算槽式光热电站镜场出口温度预测值Tout,cal,如下式:Calculate the predicted value T out,cal of the outlet temperature of the mirror field of the trough solar thermal power station through the temperature prediction model, as follows:

式中,Ge,cal为待预测时间段的太阳直射辐射强度预测值;Tin,real为当前时刻的槽式回路入口温度。In the formula, G e,cal is the predicted value of direct solar radiation intensity in the time period to be predicted; T in,real is the inlet temperature of the trough circuit at the current moment.

本发明的另一目的在于提出一种槽式光热电站镜场出口温度的预测系统,包括:Another object of the present invention is to propose a system for predicting the outlet temperature of the mirror field of a trough-type photothermal power station, including:

采集模块,获取预设时间段槽式光热电站的实际运行参数;The acquisition module acquires the actual operating parameters of the trough solar thermal power plant in the preset time period;

计算模块,将所述预设时间段槽式光热电站的实际运行参数代入预先建立的温度预测模型,以确定集热器光学效率实际值;A calculation module, substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the pre-established temperature prediction model to determine the actual value of the optical efficiency of the collector;

预测模块,根据温度预测模型、集热器光学效率实际值以及待预测时间段的太阳直射辐射强度预测值,确定槽式光热电站镜场出口温度预测值;The prediction module, according to the temperature prediction model, the actual value of the optical efficiency of the collector, and the predicted value of the direct solar radiation intensity in the time period to be predicted, determines the predicted value of the outlet temperature of the mirror field of the trough-type photothermal power station;

建模模块,用于预先建立及存储温度预测模型。The modeling module is used for establishing and storing a temperature prediction model in advance.

与最接近的现有技术相比,本发明提供的技术方案具有以下有益效果:Compared with the closest prior art, the technical solution provided by the present invention has the following beneficial effects:

本发明提供的一种槽式光热电站镜场出口温度的预测方法及系统,先根据温度预测模型确定预设时间段的集热器光学效率实际值,然后根据温度预测模型和集热器光学效率实际值确定槽式光热电站镜场出口温度预测值,其中的温度预测模型根据预先获取的太阳直射辐射强度和槽式光热电站的实际运行参数构建。本发明的预测方法及系统与现有技术中以最小方差求得估计的光学效率,然后根据该数值预测后续的回路出口温度的方法相比较,更能够准确的预测出槽式光热电站镜场出口温度,实现了对槽式光热电站未来一段时间内的镜场出口温度的准确预测,确保槽式光热电站的安全、可靠运行。The invention provides a method and system for predicting the outlet temperature of the mirror field of a trough-type photothermal power station. First, the actual value of the optical efficiency of the collector for a preset time period is determined according to the temperature prediction model, and then the actual value of the optical efficiency of the collector is determined according to the temperature prediction model and the optical efficiency of the collector. The actual value of the efficiency determines the predicted value of the exit temperature of the mirror field of the trough solar thermal power station, and the temperature prediction model is constructed according to the pre-acquired solar direct radiation intensity and the actual operating parameters of the trough solar thermal power plant. Compared with the method of obtaining the estimated optical efficiency with the minimum variance in the prior art, and then predicting the subsequent loop outlet temperature based on the value, the prediction method and system of the present invention can more accurately predict the mirror field of the trough-type photothermal power station The outlet temperature realizes the accurate prediction of the outlet temperature of the mirror field of the trough solar thermal power plant in the future, ensuring the safe and reliable operation of the trough solar thermal power plant.

附图说明Description of drawings

图1为本发明实施例中槽式光热电站镜场出口温度预测方法的流程示意图。Fig. 1 is a schematic flowchart of a method for predicting the outlet temperature of a mirror field of a trough-type solar-thermal power plant in an embodiment of the present invention.

图2为本发明实施例中预先采集数据的来源图;Fig. 2 is a source diagram of pre-collected data in an embodiment of the present invention;

图3为本发明实施例中的太阳直射辐射DNI分布图;Fig. 3 is the direct solar radiation DNI distribution figure in the embodiment of the present invention;

图4为本发明实施例中方法得出的出口温度预测值与实测值的对比图。Fig. 4 is a comparison chart of the predicted value of the outlet temperature obtained by the method in the embodiment of the present invention and the measured value.

具体实施方式Detailed ways

为了更好地理解本发明,下面结合说明书附图和实例对本发明的内容做进一步的说明。In order to better understand the present invention, the content of the present invention will be further described below in conjunction with the accompanying drawings and examples.

本发明实施例中的槽式光热电站镜场出口温度预测方法能够较为准确的预测出短时内的槽式光热电站镜场出口温度,当发现出口温度超过预设阈值时,可以警示系统自动或现场作业人员手动调整传热流体质量流量,以防止集热管内导热油超温、裂解对槽式光热电站的安全运行造成影响。The method for predicting the outlet temperature of the mirror field of the trough-type solar thermal power station in the embodiment of the present invention can accurately predict the outlet temperature of the mirror field of the trough-type solar-thermal power station in a short period of time. When the outlet temperature is found to exceed the preset threshold, the system can be alerted The mass flow rate of the heat transfer fluid is adjusted automatically or manually by on-site operators to prevent the overheating and cracking of the heat transfer oil in the heat collecting tube from affecting the safe operation of the trough solar thermal power plant.

本发明中所涉及的槽式光热电站由大量的槽式回路并联组成,每个回路内的传热流体流量基本一致,正常运行时每个槽式回路的出口温度也一致,因此,各个槽式回路的出口温度即为槽式光热电站镜场出口温度。本发明的方法在实现时需要以如图2中所示的太阳辐射监测站、气象站、槽式镜场运行监测站所采集到的数据作为基础,来预测槽式光热电站的镜场出口温度。The trough-type photothermal power station involved in the present invention is composed of a large number of trough-type circuits connected in parallel. The flow rate of the heat transfer fluid in each circuit is basically the same, and the outlet temperature of each trough-type circuit is also consistent during normal operation. Therefore, each tank The outlet temperature of the loop is the outlet temperature of the mirror field of the trough solar thermal power plant. The method of the present invention needs to be based on the data collected by the solar radiation monitoring station, weather station, and trough mirror field operation monitoring station as shown in Figure 2 to predict the exit of the mirror field of the trough photothermal power station temperature.

本发明实施例中的槽式光热电站镜场出口温度预测方法的具体流程图如图1所示,其包括以下步骤:The specific flow chart of the method for predicting the outlet temperature of the mirror field of the trough-type photothermal power station in the embodiment of the present invention is shown in Figure 1, which includes the following steps:

步骤S101,获取预设时间段槽式光热电站的实际运行参数;Step S101, obtaining the actual operating parameters of the trough solar thermal power plant in the preset time period;

步骤S102,将所述预设时间段槽式光热电站的实际运行参数代入预先建立的温度预测模型,以确定集热器光学效率实际值;Step S102, substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the pre-established temperature prediction model to determine the actual value of the optical efficiency of the collector;

步骤S103,根据温度预测模型、集热器光学效率实际值以及待预测时间段的太阳直射辐射强度预测值,确定槽式光热电站镜场出口温度预测值。Step S103, according to the temperature prediction model, the actual value of the optical efficiency of the collector, and the predicted value of the solar direct radiation intensity in the time period to be predicted, determine the predicted value of the outlet temperature of the mirror field of the trough-type photothermal power station.

上述步骤S101中,获取预设时间段槽式光热电站的实际运行参数包括:In the above step S101, the acquisition of the actual operating parameters of the trough-type solar thermal power plant in the preset time period includes:

预设起始时刻的槽式回路入口温度Tin(单位℃)、预设终止时刻的槽式回路出口实际温度Tout(单位℃)、传热流体的平均温度Tm(单位℃)以及预设起始、终止时刻的相关参数平均值;所述预设起始、终止时刻的相关参数平均值包括传热流体质量流量平均值(单位kg/s)、传热流体比热容平均值cf(单位J/(kg·℃))、槽式回路集热面积平均值Aa(单位m2)、集热器散热量平均值Qloss、连接集热器的管道散热量平均值Qloss,pipe和槽式回路的热熔平均值Cloop(单位J/℃)。The inlet temperature T in of the trough circuit at the preset start time (unit ℃), the actual temperature T out of the trough circuit outlet at the preset end time moment (unit ℃), the average temperature T m of the heat transfer fluid (unit ℃) and the preset Set the average value of the relevant parameters at the start and end time; the average value of the relevant parameters at the preset start and end time include the average value of the mass flow rate of the heat transfer fluid (unit: kg/s), average specific heat capacity of heat transfer fluid c f (unit: J/(kg·℃)), average value of heat collecting area of trough circuit A a (unit: m 2 ), average value of heat dissipation of heat collector Q loss , the average heat dissipation Q loss,pipe of the pipe connected to the collector and the average value C loop of the thermal melt of the trough circuit (unit J/°C).

上述步骤S102中,将所述预设时间段槽式光热电站的实际运行参数代入预先建立的温度预测模型,以确定集热器光学效率实际值,可以包括如下步骤:In the above step S102, substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the pre-established temperature prediction model to determine the actual value of the optical efficiency of the collector may include the following steps:

将所述预设时间段槽式光热电站的实际运行参数代入如下式的温度预测模型:Substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the temperature prediction model of the following formula:

对于每日运行的槽式聚光器,其光学性能随时间发生变化,但在短期内较为稳定,基于短时间的实际运行数据,将上述公式(1)变形成如下公式(2),通过公式(2)计算集热器光学效率实际值:For the daily operation of the trough concentrator, its optical performance changes with time, but it is relatively stable in the short term. Based on the short-term actual operation data, the above formula (1) is transformed into the following formula (2), through the formula (2) Calculate the actual value of the optical efficiency of the collector:

式中,Tm=(Tout+Tin)/2;In the formula, T m = (T out +T in )/2;

η为集热器光学效率实际值,对于槽式光热电站,该效率涵盖了聚光器反射镜镜面反射率、清洁度、集热管透过率、吸收率、表面清洁度等参数;η is the actual value of the optical efficiency of the collector. For trough solar thermal power plants, this efficiency covers the specular reflectance of the concentrator reflector, cleanliness, transmittance, absorptivity, surface cleanliness and other parameters of the collector tube;

Kθb(θ)为太阳直射辐射的入射角函数,对于槽式光热电站,则为与法向直射辐射DNI相关的入射角函数;K θb (θ) is the incident angle function of direct solar radiation, and for trough solar thermal power plants, it is the incident angle function related to the normal direct radiation DNI;

Ge为太阳直射辐射强度DNI,如图3所示为DNI分布图。G e is the direct solar radiation intensity DNI, as shown in Figure 3 is the DNI distribution map.

基于短时间的实际运行数据,根据公式(1)计算出集热器光学效率实际值η,则可以根据上述温度预测模型预测后续一段时间内的镜场出口温度。本发明实施例中所指的短时间一般指预测5分钟以内的槽式光热电站镜场出口温度,需要采集的槽式光热电站的实际运行参数的预设时间可以取30分钟以内的实际参数为宜。Based on the short-term actual operation data, the actual value η of the optical efficiency of the collector is calculated according to the formula (1), and the outlet temperature of the mirror field in the subsequent period of time can be predicted according to the above temperature prediction model. The short time referred to in the embodiments of the present invention generally refers to predicting the outlet temperature of the mirror field of the trough-type solar-thermal power station within 5 minutes, and the preset time of the actual operating parameters of the trough-type solar-thermal power station that needs to be collected can be within 30 minutes. parameters are appropriate.

上述公式(1)和(2)中的Kθb(θ)可按下式计算:K θb (θ) in the above formulas (1) and (2) can be calculated as follows:

式中,θ为预设起始、终止时刻的太阳直射辐射DNI的入射角平均值,单位°;IAM为入射角修正系数;f为集热器焦距,单位m;L为集热器的长度,单位m。In the formula, θ is the average value of the incident angle of the direct solar radiation DNI at the preset start and end time, unit °; IAM is the incident angle correction coefficient; f is the focal length of the collector, unit m; L is the length of the collector , unit m.

上述公式(3)中的IAM可按下式计算:The IAM in the above formula (3) can be calculated as follows:

上述公式(1)和(2)中的Qloss可以按下式计算:The Q loss in the above formulas (1) and (2) can be calculated as follows:

式中,θ为预设起始、终止时刻的太阳直射辐射DNI的入射角平均值;IAM为入射角修正系数,计算方法同公式(3);Vw为预设起始、终止时刻的环境风速平均值,单位m/s;Ta为预设起始、终止时刻的环境温度平均值,单位℃;A0~A6为集热管散热量的计算系数,该系数可以选择下表1中的任一组数据,两组数据为通过两种实验方法拟合的参数,数值大致详相近。In the formula, θ is the average value of the incident angle of the direct solar radiation DNI at the preset starting and ending moments; IAM is the incident angle correction coefficient, and the calculation method is the same as formula (3); Vw is the environment at the preset starting and ending moments The average wind speed, in m/s; T a is the average ambient temperature at the preset start and end time, in °C; A 0 ~ A 6 is the calculation coefficient of the heat dissipation of the heat collecting tube, which can be selected from the following table 1 Any set of data, the two sets of data are parameters fitted by two experimental methods, and the values are roughly similar.

表1集热管散热量计算系数Table 1 Calculation coefficient of heat dissipation of heat collecting tube

上述公式(1)和(2)中的Qloss,pipe可按下式计算:The Q loss,pipe in the above formulas (1) and (2) can be calculated as follows:

式中,Do为连接集热器的管道包裹保温材料后的外径,单位m;Di为连接集热器的管道内径,单位m;λ为保温材料的热导率,单位W/(m·℃);α为连接集热器的管道表面传热系数,单位W/(m2·℃),其中ω为预设起始、终止时刻的环境风速平均值,α一般取值为11.63W/(m2·℃);Ta1为预设起始、终止时刻的连接集热器的管道外表面温度平均值,单位℃;Ta2为预设起始、终止时刻的环境温度平均值,单位℃。In the formula, D o is the outer diameter of the pipe connected to the heat collector wrapped with insulation material, in m; D i is the inner diameter of the pipe connected to the heat collector, in m; λ is the thermal conductivity of the heat insulation material, in W/( m °C); α is the surface heat transfer coefficient of the pipe connected to the collector, unit W/(m 2 °C), Where ω is the average ambient wind speed at the preset start and end times, and α generally takes a value of 11.63W/(m 2 °C); T a1 is the outer surface of the pipe connected to the collector at the preset start and end time The average temperature, in ℃; T a2 is the average ambient temperature at the preset start and end time, in ℃.

上述步骤S102中,根据温度预测模型和集热器光学效率实际值确定槽式光热电站镜场出口温度预测值,可以包括如下步骤:In the above step S102, according to the temperature prediction model and the actual value of the optical efficiency of the collector, the predicted value of the outlet temperature of the mirror field of the trough-type photothermal power station can be determined, which may include the following steps:

将集热器光学效率实际值代入温度预测模型中;Substitute the actual value of the optical efficiency of the collector into the temperature prediction model;

通过温度预测模型计算槽式光热电站镜场出口温度预测值Tout,cal,如下式:Calculate the predicted value T out,cal of the outlet temperature of the mirror field of the trough solar thermal power station through the temperature prediction model, as follows:

式中,Ge,cal为待预测时间段的太阳直射辐射强度预测值;Tin,real为当前时刻的槽式回路入口温度,其余参数均与公式(1)中参数相同。In the formula, G e,cal is the predicted value of direct solar radiation intensity in the time period to be predicted; T in,real is the inlet temperature of the trough circuit at the current moment, and the other parameters are the same as those in formula (1).

Ge,cal可以采用现有技术中本领域技术人员公知的现有技术进行预测,例如:对历史同期且天气状况相当的数据进行拟合的结果作为预测值,或者根据申请号为CN201710103508.8的太阳能直射辐射强度信息预测方法和系统对未来时间的太阳直射辐射强度进行预测。G e, cal can be predicted using existing technologies known to those skilled in the art, for example: the result of fitting the data of the same period of history and comparable weather conditions as the predicted value, or according to the application number CN201710103508.8 The solar direct radiation intensity information prediction method and system predict the solar direct radiation intensity in the future.

为了验证本发明实施例提供的一种槽式光热电站镜场出口温度的预测方法的准确性,从10时开始,计算前15分钟的实验数据,求得槽式回路光学效率实际值,如图4所示,预测的回路导热油出口温度与实测的出口温度趋势大体一致。最大偏差出现在10时30分,达到4.86℃,经历3分钟左右,此后预测偏差逐渐降低,测试期间平均偏差在1.07℃。可见,本发明实施例提供的槽式光热电站镜场出口温度预测方法可以比较准确地预测出镜场出口温度。In order to verify the accuracy of a method for predicting the outlet temperature of the mirror field of a trough-type solar-thermal power station provided by the embodiment of the present invention, starting from 10 o'clock, the experimental data of the first 15 minutes were calculated to obtain the actual value of the optical efficiency of the trough-type circuit, as shown in As shown in Figure 4, the predicted outlet temperature of the circuit heat transfer oil is generally consistent with the measured outlet temperature trend. The maximum deviation appeared at 10:30, reaching 4.86°C, and lasted for about 3 minutes. After that, the prediction deviation gradually decreased, and the average deviation during the test was 1.07°C. It can be seen that the method for predicting the outlet temperature of the mirror field of the trough-type photothermal power station provided by the embodiment of the present invention can predict the outlet temperature of the mirror field more accurately.

基于同一发明构思,本发明实施例还提供了一种槽式光热电站镜场出口温度的预测系统,这些设备解决问题的原理与槽式光热电站镜场出口温度的预测方法相似,该一种槽式光热电站镜场出口温度的预测系统主要包括采集模块、构建模块、计算模块和预测模块,下面对上述四个模块的功能进行进一步说明:Based on the same inventive concept, the embodiment of the present invention also provides a prediction system for the outlet temperature of the mirror field of the trough-type photothermal power station. The prediction system for the outlet temperature of the mirror field of the trough-type photothermal power station mainly includes an acquisition module, a construction module, a calculation module and a prediction module. The functions of the above four modules are further described below:

采集模块,获取预设时间段槽式光热电站的实际运行参数;The acquisition module acquires the actual operating parameters of the trough solar thermal power plant in the preset time period;

计算模块,将所述预设时间段槽式光热电站的实际运行参数代入预先建立的温度预测模型,以确定集热器光学效率实际值;A calculation module, substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the pre-established temperature prediction model to determine the actual value of the optical efficiency of the collector;

预测模块,根据温度预测模型、集热器光学效率实际值以及待预测时间段的太阳直射辐射强度预测值,确定槽式光热电站镜场出口温度预测值;The prediction module, according to the temperature prediction model, the actual value of the optical efficiency of the collector, and the predicted value of the direct solar radiation intensity in the time period to be predicted, determines the predicted value of the outlet temperature of the mirror field of the trough-type photothermal power station;

建模模块,用于预先建立及存储温度预测模型。The modeling module is used for establishing and storing a temperature prediction model in advance.

采集模块获取预设时间段槽式光热电站的实际运行参数,可以包括:The acquisition module obtains the actual operating parameters of the trough solar thermal power plant in the preset time period, which may include:

预设起始时刻的槽式回路入口温度Tin、预设终止时刻的槽式回路出口实际温度Tout、传热流体的平均温度Tm以及预设起始、终止时刻的相关参数平均值;所述预设起始、终止时刻的相关参数平均值包括传热流体质量流量平均值传热流体比热容平均值cf、槽式回路集热面积平均值Aa、集热器散热量平均值Qloss、连接集热器的管道散热量平均值Qloss,pipe和槽式回路的热熔平均值CloopThe inlet temperature T in of the trough circuit at the preset start time, the actual temperature T out of the trough circuit outlet at the preset end time, the average temperature T m of the heat transfer fluid, and the average value of relevant parameters at the preset start and end time; The average value of the relevant parameters at the preset start and end time includes the average value of the mass flow rate of the heat transfer fluid The average specific heat capacity c f of the heat transfer fluid, the average heat collection area of the trough loop A a , the average heat dissipation of the collector Q loss , the average heat dissipation of the pipe connected to the collector Q loss,pipe and the heat dissipation of the trough loop Melting average C loop .

建模模块,可以用于构建如下式的温度预测模型:The modeling module can be used to build a temperature prediction model as follows:

式中,η为集热器光学效率实际值;Kθb(θ)为太阳直射辐射的入射角函数;Ge为太阳直射辐射强度;Tm=(Tout+Tin)/2。In the formula, η is the actual value of the optical efficiency of the collector; K θb (θ) is the incident angle function of direct solar radiation; G e is the intensity of direct solar radiation; T m =(T out +T in )/2.

计算模块,可以用于将所述预设时间段槽式光热电站的实际运行参数代入如上式的温度预测模型中,并计算集热器光学效率实际值。The calculation module can be used for substituting the actual operating parameters of the trough solar thermal power plant in the preset time period into the temperature prediction model of the above formula, and calculating the actual value of the optical efficiency of the heat collector.

温度预测模型中的Qloss可以通过计算模块按下式计算:The Q loss in the temperature prediction model can be calculated by the calculation module as follows:

式中,θ为预设起始和终止时刻的太阳直射辐射的入射角平均值;IAM为入射角修正系数;Vw为预设起始和终止时刻的环境风速平均值;A0~A6为集热管散热量的计算系数;Ta为预设起始和终止时刻的环境温度平均值。In the formula, θ is the average value of the incident angle of direct solar radiation at the preset start and end time; IAM is the correction coefficient of the incident angle; V w is the average value of the ambient wind speed at the preset start and end time; A 0 ~ A 6 is the calculation coefficient of the heat dissipation of the heat collecting tube; T a is the average value of the ambient temperature at the preset start and end time.

所述A0~A6可以选用A0=0.357、A1=0.0524、A2=-2.96×10-4、A3=1.126×10-6、A4=1.068×10-8、A5=-0.0224、、A6=0.002012,也可以选用A0=0.801、A1=0.0494、A2=-2.92×10-4、A3=1.13×10-6、A4=1.524×10-8、A5=-0.34、A6=0.0025The A 0 to A 6 can be selected from A 0 =0.357, A 1 =0.0524, A 2 =-2.96×10 -4 , A 3 =1.126×10 -6 , A 4 =1.068×10 -8 , A 5 = -0.0224, A 6 =0.002012, A 0 =0.801, A 1 =0.0494, A 2 =-2.92×10 -4 , A 3 =1.13×10 -6 , A 4 =1.524×10 -8 , A 5 =-0.34, A 6 =0.0025

温度预测模型中的IAM可以通过计算模块按下式计算:The IAM in the temperature prediction model can be calculated by the calculation module as follows:

温度预测模型中的Kθb(θ)可以通过计算模块按下式计算::K θb (θ) in the temperature prediction model can be calculated by the calculation module as follows:

式中,f为集热器焦距;L为集热器的长度。In the formula, f is the focal length of the collector; L is the length of the collector.

温度预测模型中的Qloss,pipe可以通过计算模块按下式计算::The Q loss and pipe in the temperature prediction model can be calculated by the calculation module as follows:

式中,Do为连接集热器的管道包裹保温材料后的外径;Di为连接集热器的管道内径;λ为保温材料的热导率;α为连接集热器的管道表面传热系数;Ta1为预设起始、终止时刻的连接集热器的管道外表面温度平均值;Ta2为预设起始、终止时刻的环境温度平均值。In the formula, D o is the outer diameter of the pipe connected to the heat collector wrapped with insulation material; D i is the inner diameter of the pipe connected to the heat collector; λ is the thermal conductivity of the heat insulation material; Thermal coefficient; T a1 is the average temperature of the outer surface of the pipe connected to the collector at the preset start and end time; T a2 is the average ambient temperature at the preset start and end time.

预测模块可以用于:Prediction modules can be used to:

将集热器光学效率实际值代入温度预测模型中;Substitute the actual value of the optical efficiency of the collector into the temperature prediction model;

通过温度预测模型计算槽式光热电站镜场出口温度预测值Tout,cal,如下式:Calculate the predicted value T out,cal of the outlet temperature of the mirror field of the trough solar thermal power station through the temperature prediction model, as follows:

式中,Ge,cal为待预测时间段的太阳直射辐射强度预测值;Tin,real为当前时刻的槽式回路入口温度。In the formula, G e,cal is the predicted value of direct solar radiation intensity in the time period to be predicted; T in,real is the inlet temperature of the trough circuit at the current moment.

本发明提供的预测方法及系统通过计算集热器光学效率实际值和预先构建的温度预测模型,能够准确预测未来一段时间内的镜场出口温度,这对于及时调整控制槽式聚光器跟踪角度,防止集热管内导热油超温、裂解等具有重要意义。The prediction method and system provided by the present invention can accurately predict the outlet temperature of the mirror field within a certain period of time in the future by calculating the actual value of the optical efficiency of the collector and the pre-built temperature prediction model, which is helpful for timely adjustment and control of the tracking angle of the trough concentrator , It is of great significance to prevent the heat transfer oil in the heat collecting tube from overheating and cracking.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowcharts and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.

以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。The above are only embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are included in the pending application of the present invention. within the scope of the claims.

Claims (13)

  1. A kind of 1. Forecasting Methodology of slot type photo-thermal power station mirror field outlet temperature, it is characterised in that including:
    Obtain the actual operation parameters in preset time period slot type photo-thermal power station;
    The actual operation parameters in the preset time period slot type photo-thermal power station are substituted into the temperature prediction model pre-established, with true Determine heat collector optical efficiency actual value;
    It is pre- according to the beam radia intensity of temperature prediction model, heat collector optical efficiency actual value and period to be predicted Measured value, determine slot type photo-thermal power station mirror field exit temperature prediction value.
  2. 2. the Forecasting Methodology of slot type photo-thermal power station mirror field as claimed in claim 1 outlet temperature, it is characterised in that will be described pre- If the actual operation parameters in period slot type photo-thermal power station substitute into temperature prediction model, to determine heat collector optical efficiency reality Value, including:
    The actual operation parameters in the preset time period slot type photo-thermal power station are substituted into the temperature prediction model such as following formula:
    <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;eta;K</mi> <mrow> <mi>&amp;theta;</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mi>e</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>p</mi> <mi>i</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>dT</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow>
    In formula, actual operation parameters include:The slot type circuit entrance temperature T of default initial timein, the preset termination moment slot type Circuit outlet actual temperature Tout, heat-transfer fluid mean temperature TmAnd default starting, the relevant parameter of end time are averaged Value;The default starting, the relevant parameter average value of end time include heat-transfer fluid mass flow average valueHeat-transfer fluid Specific heat capacity average value cf, slot type loop thermal-arrest area average Aa, heat collector heat dissipation capacity average value Qloss, connection heat collector pipe Road heat dissipation capacity average value Qloss,pipeWith the hot melt average value C in slot type looploop
    η is heat collector optical efficiency actual value;Kθb(θ) is the incident angle function of beam radia;GeFor beam radia Intensity;Tm=(Tout+Tin)/2;
    Heat collector optical efficiency actual value η is calculated according to the temperature prediction model.
  3. 3. the Forecasting Methodology of slot type photo-thermal power station mirror field as claimed in claim 2 outlet temperature, it is characterised in that the Qloss It is calculated as follows:
    <mrow> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mn>2</mn> </msub> <msup> <msub> <mi>T</mi> <mi>m</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>A</mi> <mn>3</mn> </msub> <msup> <msub> <mi>T</mi> <mi>m</mi> </msub> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>A</mi> <mn>4</mn> </msub> <msup> <msub> <mi>T</mi> <mi>m</mi> </msub> <mn>2</mn> </msup> <msub> <mi>G</mi> <mi>e</mi> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mi>I</mi> <mi>A</mi> <mi>M</mi> <mo>+</mo> <msqrt> <msub> <mi>V</mi> <mi>w</mi> </msub> </msqrt> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>5</mn> </msub> <mo>+</mo> <msub> <mi>A</mi> <mn>6</mn> </msub> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
    In formula, θ is default starting, the beam radia incidence angle average value of end time;IAM is incident angle modifier;Vw For default starting, the ambient wind velocity average value of end time;A0~A6For the design factor of thermal-collecting tube heat dissipation capacity;TaTo preset Begin, the environment temperature average value of end time.
  4. 4. the Forecasting Methodology of slot type photo-thermal power station mirror field as claimed in claim 3 outlet temperature, it is characterised in that the A0= 0.357、A1=0.0524, A2=-2.96 × 10-4、A3=1.126 × 10-6、A4=1.068 × 10-8、A5=-0.0224, A6= 0.002012, or A0=0.801, A1=0.0494, A2=-2.92 × 10-4、A3=1.13 × 10-6、A4=1.524 × 10-8、 A5=-0.34, A6=0.0025.
  5. 5. the Forecasting Methodology of prediction slot type photo-thermal power station mirror field outlet temperature as claimed in claim 3, it is characterised in that described IAM is calculated as follows:
    <mrow> <mi>I</mi> <mi>&amp;Lambda;</mi> <mi>M</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>0.000884</mn> <mfrac> <mi>&amp;theta;</mi> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mn>0.00005369</mn> <mfrac> <msup> <mi>&amp;theta;</mi> <mn>2</mn> </msup> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow>
  6. 6. the Forecasting Methodology of prediction slot type photo-thermal power station mirror field outlet temperature as claimed in claim 4, it is characterised in that described Kθb(θ) is calculated as follows:
    <mrow> <msub> <mi>K</mi> <mrow> <mi>&amp;theta;</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mi>I</mi> <mi>A</mi> <mi>M</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>f</mi> <mi>L</mi> </mfrac> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
    In formula, f is heat collector focal length;L is the length of heat collector.
  7. 7. the Forecasting Methodology of slot type photo-thermal power station mirror field as claimed in claim 2 outlet temperature, it is characterised in that described Qloss,pipeIt is calculated as follows:
    <mrow> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>p</mi> <mi>i</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mfrac> <mn>1</mn> <mi>&amp;lambda;</mi> </mfrac> <mi>l</mi> <mi>n</mi> <mfrac> <msub> <mi>D</mi> <mi>o</mi> </msub> <msub> <mi>D</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <mn>2</mn> <mrow> <msub> <mi>&amp;alpha;D</mi> <mi>o</mi> </msub> </mrow> </mfrac> </mrow> </mfrac> </mrow>
    In formula, DoTo connect the external diameter after the duct wraps insulation material of heat collector;DiTo connect the internal diameter of the pipeline of heat collector;λ is The thermal conductivity of insulation material;α is the pipe surface heat transfer coefficient of connection heat collector;Ta1For default starting, the connection of end time The pipeline external surface temperature averages of heat collector;Ta2For default starting, the environment temperature average value of end time.
  8. 8. the Forecasting Methodology of slot type photo-thermal power station mirror field as claimed in claim 2 outlet temperature, it is characterised in that according to temperature The beam radia prediction of strength value of forecast model, heat collector optical efficiency actual value and period to be predicted, determines groove Formula photo-thermal power station mirror field exit temperature prediction value includes:
    Heat collector optical efficiency actual value is substituted into temperature prediction model;
    Slot type photo-thermal power station mirror field exit temperature prediction value T is calculated by temperature prediction modelout,cal, such as following formula:
    <mrow> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>,</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;eta;K</mi> <mrow> <mi>&amp;theta;</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> </mrow> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> </mrow> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>p</mi> <mi>i</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> </mrow> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>dT</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow>
    In formula, Ge,calFor the beam radia prediction of strength value of period to be predicted;Tin,realReturned for the slot type at current time Road inlet temperature.
  9. A kind of 9. forecasting system of slot type photo-thermal power station mirror field outlet temperature, it is characterised in that including:
    Acquisition module, obtain the actual operation parameters in preset time period slot type photo-thermal power station;
    Computing module, the actual operation parameters in the preset time period slot type photo-thermal power station are substituted into the temperature prediction pre-established Model, to determine heat collector optical efficiency actual value;
    Prediction module, according to the direct sunlight of temperature prediction model, heat collector optical efficiency actual value and period to be predicted Radiation intensity predicted value, determine slot type photo-thermal power station mirror field exit temperature prediction value;
    Modeling module, for pre-establishing and storage temperature forecast model.
  10. 10. the forecasting system of slot type photo-thermal power station mirror field as claimed in claim 9 outlet temperature, it is characterised in that described to adopt Collect the actual operation parameters that module obtains preset time period slot type photo-thermal power station, including:
    The slot type circuit entrance temperature T of default initial timein, the preset termination moment slot type circuit outlet actual temperature Tout, pass The mean temperature T of hot fluidmAnd default starting, the relevant parameter average value of end time;The default starting, end time Relevant parameter average value include heat-transfer fluid mass flow average valueHeat-transfer fluid specific heat capacity average value cf, slot type loop collection Hot area average Aa, heat collector heat dissipation capacity average value Qloss, connection heat collector pipe heat dissipation average value Qloss,pipeAnd groove The hot melt average value C in formula looploop
  11. 11. the forecasting system of slot type photo-thermal power station mirror field as claimed in claim 10 outlet temperature, it is characterised in that described to build Mould module, for building the temperature prediction model such as following formula:
    <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;eta;K</mi> <mrow> <mi>&amp;theta;</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mi>e</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>p</mi> <mi>i</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>dT</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow>
    In formula, η is heat collector optical efficiency actual value;Kθb(θ) is the incident angle function of beam radia;GeFor direct sunlight Radiation intensity;Tm=(Tout+Tin)/2。
  12. 12. the forecasting system of slot type photo-thermal power station mirror field as claimed in claim 11 outlet temperature, it is characterised in that the meter Module is calculated, for the actual operation parameters in the preset time period slot type photo-thermal power station to be substituted into temperature prediction model and calculate collection Hot device optical efficiency actual value.
  13. 13. the forecasting system of slot type photo-thermal power station mirror field as claimed in claim 12 outlet temperature, it is characterised in that described pre- Module is surveyed to be used for,
    Heat collector optical efficiency actual value is substituted into temperature prediction model;
    Slot type photo-thermal power station mirror field exit temperature prediction value T is calculated by temperature prediction modelout,cal, such as following formula:
    <mrow> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>,</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;eta;K</mi> <mrow> <mi>&amp;theta;</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mo>,</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> </mrow> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> </mrow> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>p</mi> <mi>i</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> </mrow> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msub> <mi>c</mi> <mi>f</mi> </msub> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>dT</mi> <mi>m</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow>
    In formula, Ge,calFor the beam radia prediction of strength value of period to be predicted;Tin,realReturned for the slot type at current time Road inlet temperature.
CN201710659592.1A 2017-08-04 2017-08-04 Method and system for predicting mirror field outlet temperature of slot type photo-thermal power station Active CN107577844B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710659592.1A CN107577844B (en) 2017-08-04 2017-08-04 Method and system for predicting mirror field outlet temperature of slot type photo-thermal power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710659592.1A CN107577844B (en) 2017-08-04 2017-08-04 Method and system for predicting mirror field outlet temperature of slot type photo-thermal power station

Publications (2)

Publication Number Publication Date
CN107577844A true CN107577844A (en) 2018-01-12
CN107577844B CN107577844B (en) 2022-08-19

Family

ID=61033954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710659592.1A Active CN107577844B (en) 2017-08-04 2017-08-04 Method and system for predicting mirror field outlet temperature of slot type photo-thermal power station

Country Status (1)

Country Link
CN (1) CN107577844B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520159A (en) * 2018-10-16 2019-03-26 北京拉夫堡太阳能技术有限公司 A kind of temprature control method and system of solar energy heat collection pipe
CN109539596A (en) * 2018-11-28 2019-03-29 西安工程大学 Solar thermal collection system light thermal efficiency forecast method based on GA-GRNN
CN112836333A (en) * 2020-11-16 2021-05-25 苏州西热节能环保技术有限公司 Method, device and readable storage medium for calculating power generation efficiency of a solar thermal power station
CN113946935A (en) * 2021-08-17 2022-01-18 中国能源建设集团新疆电力设计院有限公司 Slot type light-gathering heat-collecting system performance algorithm based on parallel computing
CN114035437A (en) * 2021-11-25 2022-02-11 云南电网有限责任公司电力科学研究院 Anti-interference control method and device for outlet temperature of trough type solar heat collection field
CN118565089A (en) * 2024-07-30 2024-08-30 中国计量大学 A composite hyperbolic concentrating photovoltaic thermal system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226036A (en) * 2016-08-12 2016-12-14 中国科学院工程热物理研究所 A kind of on-site measurement method of trough type solar heat-collector light heat loss
CN106769137A (en) * 2016-12-09 2017-05-31 中国科学院电工研究所 Paraboloid trough type solar heat-collector heat performance measuring apparatus and hot property Forecasting Methodology

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226036A (en) * 2016-08-12 2016-12-14 中国科学院工程热物理研究所 A kind of on-site measurement method of trough type solar heat-collector light heat loss
CN106769137A (en) * 2016-12-09 2017-05-31 中国科学院电工研究所 Paraboloid trough type solar heat-collector heat performance measuring apparatus and hot property Forecasting Methodology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钟福春等: "槽式太阳能镜场系统集热量计算研究", 《科技创新导报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520159A (en) * 2018-10-16 2019-03-26 北京拉夫堡太阳能技术有限公司 A kind of temprature control method and system of solar energy heat collection pipe
CN109539596A (en) * 2018-11-28 2019-03-29 西安工程大学 Solar thermal collection system light thermal efficiency forecast method based on GA-GRNN
CN109539596B (en) * 2018-11-28 2020-10-23 西安工程大学 GA-GRNN-based solar heat collection system photo-thermal efficiency prediction method
CN112836333A (en) * 2020-11-16 2021-05-25 苏州西热节能环保技术有限公司 Method, device and readable storage medium for calculating power generation efficiency of a solar thermal power station
CN113946935A (en) * 2021-08-17 2022-01-18 中国能源建设集团新疆电力设计院有限公司 Slot type light-gathering heat-collecting system performance algorithm based on parallel computing
CN113946935B (en) * 2021-08-17 2023-04-14 中国能源建设集团新疆电力设计院有限公司 Slot type light-gathering and heat-collecting system performance algorithm based on parallel computing
CN114035437A (en) * 2021-11-25 2022-02-11 云南电网有限责任公司电力科学研究院 Anti-interference control method and device for outlet temperature of trough type solar heat collection field
CN114035437B (en) * 2021-11-25 2023-11-21 云南电网有限责任公司电力科学研究院 A method and device for anti-interference control of outlet temperature of trough solar collector field
CN118565089A (en) * 2024-07-30 2024-08-30 中国计量大学 A composite hyperbolic concentrating photovoltaic thermal system
CN118565089B (en) * 2024-07-30 2024-10-29 中国计量大学 A composite hyperbolic concentrating photovoltaic thermal system

Also Published As

Publication number Publication date
CN107577844B (en) 2022-08-19

Similar Documents

Publication Publication Date Title
CN107577844B (en) Method and system for predicting mirror field outlet temperature of slot type photo-thermal power station
Guerraiche et al. Experimental and numerical study of a solar collector using phase change material as heat storage
Qiu et al. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods
CN103115749B (en) Dynamic testing device and dynamic testing method for thermal performances of groove-type solar collector
CN103615624B (en) A molten salt pipeline heating device
CN106769137B (en) Thermal performance measurement device and thermal performance prediction method of parabolic trough solar collector
CN112528542B (en) Photo-thermal power generation system dynamic modeling method considering heat collector working mode and control method
CN203704396U (en) Solar thermal power generation, heat transfer and heat storage system based on double molten salt
Fan et al. Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China
CN106226036B (en) A kind of on-site measurement method of trough type solar heat-collector photo-thermal loss
CN109855843A (en) Parabolic trough type solar thermal collector efficiency dynamic checkout unit and method
CN106369838B (en) A kind of slot light collection solar thermal collection system design method
Ghodbane et al. A numerical analysis of the energy behavior of a parabolic trough concentrator
CN106769136B (en) Dynamic measuring device and measuring method of thermal efficiency of parabolic trough solar collector
Gu et al. Theoretical and experimental study on the heat collection of solar dish system based on adjustable receiver
Wang et al. Rolling optimization based on holism for the operation strategy of solar tower power plant
Lindquist et al. A novel modular and dispatchable CSP Stirling system: Design, validation, and demonstration plans
CN105423576A (en) Overheat protection device and overheat protection method of heat absorber for solar energy photothermal conversion
CN114021333A (en) A method, system and equipment for predicting the outlet temperature of a mirror field of a trough type photothermal power station
CN114077271B (en) High-temperature chloride photo-thermal and energy storage circulating simulation experiment platform and experiment method
CN110411041B (en) Trough Concentrator Power Generation System with Secondary Reflector
CN103968567B (en) A kind of solar thermal collection system and control method thereof
CN203857692U (en) All glass vacuum pipe solar water heater for heating
CN111737925B (en) Heliostat structure based on phase-change material and design optimization method thereof
CN118705756A (en) Abnormal operation prediction and adjustment method and equipment for trough solar concentrating thermal system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant