CN107576269B - 一种输电线路山火定位方法 - Google Patents

一种输电线路山火定位方法 Download PDF

Info

Publication number
CN107576269B
CN107576269B CN201710687688.9A CN201710687688A CN107576269B CN 107576269 B CN107576269 B CN 107576269B CN 201710687688 A CN201710687688 A CN 201710687688A CN 107576269 B CN107576269 B CN 107576269B
Authority
CN
China
Prior art keywords
camera
flame
visible light
infrared
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710687688.9A
Other languages
English (en)
Other versions
CN107576269A (zh
Inventor
陆佳政
何立夫
罗晶
刘毓
李波
章国勇
方针
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Hunan Electric Power Co Ltd
Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Co Ltd
Hunan Xiangdian Test Research Institute Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Hunan Electric Power Co Ltd
Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Co Ltd
Hunan Xiangdian Test Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Hunan Electric Power Co Ltd, Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Co Ltd, Hunan Xiangdian Test Research Institute Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710687688.9A priority Critical patent/CN107576269B/zh
Publication of CN107576269A publication Critical patent/CN107576269A/zh
Application granted granted Critical
Publication of CN107576269B publication Critical patent/CN107576269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

本发明公开了一种输电线路山火定位方法,包括步骤1:第一摄像机和第二摄像机分别拍摄山火得到山火照片,并提取山火照片中的火焰区域;第一摄像机和第二摄像机分别为可见光摄像机、红外摄像机或者第一摄像机和第二摄像机分别为红外摄像机、可见光摄像机;山火照片分别为可见光照片和红外照片;步骤2:计算步骤1中山火照片中火焰区域的火焰图心的坐标;步骤3:根据步骤2计算出的火焰图心的坐标以及第一摄像机、第二摄像机的标定参数计算出山火到安装第一摄像机的杆塔的距离。本发明通过上述定位方法,实现了山火到杆塔的定位,提高了山火监测的智能性和效率。

Description

一种输电线路山火定位方法
技术领域
本发明属于电气工程技术领域,尤其涉及一种输电线路山火定位方法。
背景技术
受农村植被覆盖率迅速增长和农民用火习俗的影响,近年来,我国输电线路山火跳闸故障频发,且因山火引起的跳闸故障占比不断提升。山火已经成为大电网安全稳定运行的重要威胁之一。根据电网防山火经验,输电线路防山火的关键在于及时发现输电线路附近的初发山火,并监控其发展趋势,做好应急措施。
基于可见光-红外双波段的输电线路分布式山火监测装置,利用图像视频监测,能够自动识别输电线路附近的山火,准确率高,是输电线路山火监测的高效手段。但是,现有的分布式山火监测装置识别到发生山火后,无法自动计算火点到杆塔的距离,仍需值班人员根据图片或视频来判断,严重影响了山火监测的智能性和效率。
发明内容
针对上述现有技术中无法自动计算火点到杆塔的距离的缺陷,本发明提供了一种输电线路山火定位方法,实现了自动计算出输电线路附近山火到杆塔距离。
本发明提供一种输电线路山火定位方法,包括:
步骤1:利用第一摄像机和第二摄像机分别拍摄山火得到山火照片,并提取山火照片中的火焰区域;
其中,第一摄像机和第二摄像机分别为可见光摄像机、红外摄像机或者第一摄像机和第二摄像机分别为红外摄像机、可见光摄像机;
山火照片分别为可见光照片和红外照片;
步骤2:计算步骤1中山火照片中火焰区域的火焰图心的坐标;
步骤3:根据步骤2计算出的火焰图心的坐标以及第一摄像机、第二摄像机的标定参数计算出山火到安装第一摄像机的杆塔的距离;
其中,山火到安装第一摄像机的杆塔的距离的计算公式如下所示:
其中,Zc1为火焰图心对应的空间点P到第一摄像机的深度距离,Zc1实际视为山火到安装第一摄像机的杆塔的距离;
f1、f2分别为第一摄像机和第二摄像机的焦距,u01、u02分别为第一摄像机和第二摄像机的图像坐标系中图像主点横坐标,dx1、dx2分别为单个像素在第一摄像机和第二摄像机的图像坐标系中x轴方向上的物理长度;Δx、Δz分别为第二摄像机的摄像机坐标系相较于第一摄像机的摄像机坐标系在x轴、z轴方向的平移位移,u1、u2分别为第一摄像机、第二摄像机拍摄的山火照片中火焰图心的横坐标。
上述山火到杆塔的距离计算公式是利用同一个空间点在两个山火照片中的图像坐标之间的对应关系,并结合两个摄像机参数和基于相似三角形原理获得,其中上述两个山火照片中的火焰图形匹配了同一个空间点。克服了可见光摄像机和红外摄像机的成像机制不同、火焰闪动带来的特征点匹配困难等难题,提高了定位结果的可靠性。
优选地,步骤1中提取可见光照片中的火焰区域的过程如下所示:
将可见光照片从RGB颜色模型转化到HSV颜色模型,并计算出可见光照片中像素点在HSV颜色模型的颜色值;
其中,HSV颜色模型的颜色值分别为饱和度、明度和色调;
识别可见光照片中在HSV颜色模型的饱和度、明度和色调满足火焰区域颜色值的边界条件的区域,满足边界条件的区域为可见光照片中的火焰区域;
其中,火焰区域颜色值的边界条件如下所示:
其中,h表示颜色值中的色调,s表示颜色值中的饱和度,v表示颜色值中的明度。
优选地,按照如下公式计算可见光照片中像素点在HSV颜色模型的颜色值:
v=max/255
其中,max=max(r,g,b),min=min(r,g,b),s,v∈[0,1],h∈[0°,360°),r,g,b∈[0,1,…,255];
max(r,g,b)表示r、g、b中的最大值;min(r,g,b)表示r、g、b中的最小值;
其中,r、g、b分别为可见光照片中像素点在RGB颜色模型的三个颜色通道的值。
优选地,步骤1中提取红外照片中的火焰区域的过程如下所示:
识别红外照片中亮度值满足亮度阈值的区域;
其中,满足亮度阈值的区域为红外照片中的火焰区域,火焰区域如下所示:
F={(i,j)|f(i,j)≥200}
其中,F为红外照片中火焰区域内像素点的集合,f(i,j)为红外照片中第i列第j行的像素点的亮度值。
优选地,步骤2中火焰图心的坐标(u,v)的计算公式如下所示:
其中,u为山火照片中火焰图心的横坐标,v为山火照片中火焰图心的纵坐标;
m、n分别表示在山火照片中火焰区域中行和列中像素点个数,xi,j为火焰区域中第i行第j列的像素点的列坐标值,yi,j为火焰区域中第i行第j列的像素点的行坐标值。
利用上述火焰图心的坐标计算公式可以分别计算出步骤2中可见光照片中的火焰区域的火焰图心和红外照片中火焰区域的火焰图心的坐标。其中,将可见光照片中的火焰图心和红外照片中的火焰图心作为立体匹配点,虽然红外摄像机和可见光摄像机的成像机理不同,导致红外图像与可见光图像的纹理、灰度和灰度对比度存在较大的差异,且红外图像轮廓模糊,纹理信息较弱。再者,山火具有闪动特性,其外形轮廓不断动态变化,而受限于机器的反应速度,可见光照片和红外照片的拍摄时间存在一定的间隔,导致可见光照片与红外照片中,火焰的形状轮廓存在差异。但是,在红外摄像机和可见光摄像机拍摄的时间间隔内,火焰图心位置的变化可忽略不计,上述以火焰图心作为山火的可见光图像和红外图像的立体匹配点,即可见光照片和红外照片中火焰图心匹配的同一个空间点,进而利用火焰图心的坐标进行深度计算,提高山火定位精度。
优选地,上述方法还包括:
根据步骤3中空间点P到第一摄像机的深度距离Zc1计算出空间点P到第二摄像机的深度距离Zc2
其中,Zc1和Zc2关系如下所示:
Zc2=Zc1+Δz。
虽然第一摄像机和第二摄像机都可以安装在同一个杆塔上,但是当第一摄像机和第二摄像机未安装在同一个杆塔上时,通过上述公式就可以计算出山火到安装第二摄像仪的杆塔的距离。
有益效果:
本发明提供了一种输电线路山火定位方法,通过可见光和红外技术获取山火的可见光照片和红外照片,并计算出火焰图心,根据计算出的火焰图心以及第一摄像机和第二摄像机的标定参数计算出山火到杆塔的距离,实现了山火定位,提高了山火监测的智能性和效率,根据山火到杆塔的距离及时做出应急措施,降低山火带来的损失。同时,促使现有的仅用于监控的分布式山火监测装置能够实现山火到输电线路杆塔距离的计算,提高了分布式山火监测装置的性能。
此外,在红外摄像机和可见光摄像机拍摄的时间间隔内,火焰图心的位置的变化可以忽略不计,本发明以可见光照片和红外照片中的火焰图心作为立体匹配点,即可见光照片和红外照片中的火焰图心对应了同一个空间点,克服了可见光摄像机和红外摄像机的成像机制不同、火焰闪动带来的特征点匹配困难等难题,提高了定位结果的可靠性。
再者,在HSV颜色模型中对可见光照片中火焰进行识别,且根据大量的数据分析确定了火焰区域边界条件,使得所获取的可见光照片中火焰区域的识别准确率高
附图说明
图1是本发明实施例提供的一种输电线路山火定位方法的流程图;
图2是本发明实施例提供的可见光照片;
图3是本发明实施例提供的红外照片;
图4是本发明实施例提供的可见光照片的火焰区域;
图5是本发明实施例提供的红外照片的火焰区域。
具体实施方式
以下结合附图和具体实施方式对本发明进行进一步地说明。
本发明提供的输电线路山火定位方法是利用红外摄像机和可见光摄像机基于双目原理进行山火拍摄并定位,其中,红外摄像机和可见光摄像机平行设置。
参见图1,本发明提供一种输电线路山火定位方法,包括步骤:
步骤1:利用第一摄像机和第二摄像机分别拍摄山火得到山火照片,并提取山火照片中的火焰区域;
其中,第一摄像机和第二摄像机分别为可见光摄像机、红外摄像机或者第一摄像机和第二摄像机分别为红外摄像机、可见光摄像机;因此拍摄的山火照片分别为可见光照片和红外照片,如图2和图3所示。
本实施例中优选可见光摄像机、红外摄像机是分布式山火监测装置的摄像机中可见光摄像机和红外摄像机。即步骤1实际为分布式山火监测装置监测到山火后,立即同时拍摄山火的可见光照片和红外照片,并上传至后端控制中心进行下述步骤2和步骤3中的数据分析和处理。其他可行的实施例中,可见光摄像机和红外摄像机可以安装在杆塔上,但不是分布式山火监测装置中的摄像机,当检测到山火时,可见光摄像机和红外摄像机分布拍摄山火照片。
一方面,提取山火的可见光照片的火焰区域的过程如下所示:
步骤A:将可见光照片从RGB颜色模型转化到HSV颜色模型,并计算出可见光照片中像素点在HSV颜色模型的颜色值;
步骤B:识别可见光照片中在HSV颜色模型的饱和度、明度和色调满足火焰区域颜色值的边界条件的区域,满足边界条件的区域为所述可见光照片中的火焰区域。
其中,RGB(Red Green Blue)颜色模型为红绿蓝颜色模型,RGB颜色模型的值用(r,g,b)表示,r、g、b分别表示为可见光照片中像素点在RGB颜色模型的三个颜色通道的值,r,g,b∈[0,1,…,255];HSV(Hue Saturation Value)颜色模型的颜色值分别为饱和度、明度和色调,本实施例中,h表示色调,s表示饱和度,v表示明度。可见光照片中的像素点从RGB颜色模型转化到HSV颜色模型的换算过程如下所示:
v=max/255
其中,max=max(r,g,b),min=min(r,g,b),s,v∈[0,1],h∈[0°,360°);max(r,g,b)表示r、g、b中的最大值;min(r,g,b)表示r、g、b中的最小值。
其中,步骤1中可见光照片中火焰区域在HSV颜色模型的颜色值的边界条件如下所示:
其中,可见光照片中火焰区域的像素点在HSV颜色模型的颜色值满足上述边界条件。
另一方面,步骤1中提取红外照片中的火焰区域的过程为:识别红外照片中亮度值满足亮度阈值的区域。
其中,亮度阈值为亮度值大于或等于200,满足亮度阈值的区域为红外照片中的火焰区域,火焰区域如下所示:
F={(i,j)|f(i,j)≥200}
其中,F为红外照片中火焰区域内像素点的集合,f(i,j)为红外照片中第i列第j行的像素点的亮度值。
需要说明的是,红外热成像的原理是正是通过探测物体的红外辐射强度生成红外图像。在红外图像中,物体的温度越高,对应的图像灰度值越大。森林火灾中,由于火源点的温度远高于环境温度,在红外图像中,火源点的亮度远大于环境亮度,故本实施例中通过识别红外照片中各个像素点的亮度值是否满足亮度阈值来获取红外照片中的火焰区域。
步骤2:计算步骤1中山火照片中火焰区域的火焰图心的坐标。
具体的,利用下述公式(1),(2)计算出山火照片中火焰区域的火焰图心的坐标(u,v)。
其中,u为山火照片中火焰图心的横坐标,v为山火照片中火焰图心的纵坐标;m、n分别表示在山火照片中火焰区域中行和列中像素点个数,xi,j为火焰区域中第i行第j列的像素点的列坐标值,yi,j为火焰区域中第i行第j列的像素点的行坐标值。
由此可知,步骤2实际为通过上述公式(1),(2)计算出可见光照片中火焰区域的火焰图心的坐标以及红外照片中火焰区域的火焰图心的坐标。如图4和图5所示,图4中可见光照片中火焰区域的火焰图心的坐标是(515.264,233.409),图5中红外照片中火焰区域的火焰图心的坐标是(296.123,220.411)。
本实施例中,选择火焰图心作为可见光照片和红外照片中的立体匹配点,即视可见光照片和红外照片中的火焰图心对应的空间点p相同。其中,红外摄像机和可见光摄像机的成像机理不同,导致红外图像与可见光图像的纹理、灰度和灰度对比度存在较大的差异,且红外图像轮廓模糊,纹理信息较弱。再者,山火具有闪动特性,其外形轮廓不断动态变化,而受限于机器的反应速度,可见光照片和红外照片的拍摄时间存在一定的间隔,导致可见光照片与红外照片中,火焰的形状轮廓存在差异。因此,要在红外图像和可见光图像中提取到火焰的匹配特征点十分困难。在红外摄像机和可见光摄像机拍摄的时间间隔内,火焰图心位置的变化可忽略不计,本实施例以火焰图心作为山火的可见光图像和红外图像的立体匹配点,进行深度计算,提高了山火定位精度。
步骤3:根据步骤2计算出的火焰图心的坐标以及第一摄像机、第二摄像机的标定参数计算出山火到安装第一摄像机的杆塔的距离;
其中,山火到安装第一摄像机的杆塔的距离的计算公式如下所示:
其中,Zc1为火焰图心对应的空间点P到第一摄像机的深度距离,忽略地形之类的环境因素的影响,将Zc1实际视为山火到安装第一摄像机的杆塔的距离;f1、f2分别为第一摄像机和第二摄像机的焦距,u01、u02分别为第一摄像机和第二摄像机的图像坐标系中图像主点横坐标,dx1、dx2分别为单个像素在第一摄像机和第二摄像机的图像坐标系中x轴方向上的物理长度;Δx、Δz分别为第二摄像机的摄像机坐标系相较于第一摄像机的摄像机坐标系在x轴、z轴方向的平移位移,u1、u2分别为第一摄像机、第二摄像机拍摄的山火照片中火焰图心的横坐标。
其中,第一摄像机、第二摄像机的标定参数包括摄像机的焦距、摄像机的图像坐标系中图像主点坐标、单个像素在摄像机的图像坐标系中各轴方向上的物理长,因此上述公式(3)中的f1、f2、u01、u02、dx1、dx2、Δx、Δz均为第一摄像机、第二摄像机的标定参数。本实施例中采用分布式山火监测装置的可见光摄像机和红外摄像机时,在安装之前,需对分布式山火监测装置的可见光摄像机、红外摄像机进行标定,将其标定参数存入控制中心数据库,以供后端控制中心进行定位计算。例如,可见光摄像机为第一摄像机,红外摄像机为第二摄像机,可见光摄像机的标定参数为:焦距f1为22.34mm,主点坐标(u01,v01)为(640.21,480.47),单个像素在图像坐标系中的x轴方向的物理长度,即像元距离dx1为3.76μm。红外摄像机的标定参数为:焦距f2为19.67mm,主点坐标(u02,v02)为(320.13,240.31),单个像素在图像坐标系中的x轴方向的物理长度,像元距离dx2为17.61μm,第二摄像机的摄像机坐标系相较于第一摄像机的摄像机坐标系在x轴方向的平移位移,即可见光摄像机与红外摄像机的基线长度Δx为287.5mm,第二摄像机的摄像机坐标系相较于第一摄像机的摄像机坐标系在z轴方向的平移位移,即可见光摄像机与红外摄像机的光心前后距离Δz为24.2mm。应当理解,在其他可行的实施例中,若不是采用分布式山火监测装置,也需要对红外摄像机和可见光摄像机进行标定。
需要说明的是,上述公式(3)是利用可见光摄像机和红外摄像机并基于双目立体视觉原理推导而来,其中,需要建立两类坐标系:图像坐标系、摄像机坐标系。
其中,针对图像坐标系,像素是数字图像的基本元素。在摄像机图像中,建立以图像左上角为坐标原点的像素坐标系,其任意一点坐标(u,v)分别表示该像素点的列数与行数。为表示像素在图像中的物理位置,在图像平面中建立O1-xy坐标系,坐标原点O1为摄像机主轴与图像平面的交点,即为图像的主点。设图像主点O1的坐标为(u0,v0),每个像素在x轴、y轴方向上的物理长度为dx、dy。
此外,针对摄像机坐标系,为描述目标点与摄像机的位置关系,建立摄像机坐标系Oc-XcYcZc,原点为摄像机的光心Oc,Xc轴、Yc轴分别平行于图像平面坐标系的x轴和y轴,Zc轴为摄像机的光轴,其与图像平面垂直,而且它与图像平面的交点为O1,Oc到图像平面的距离即为摄像机的焦距f。
设空间点P在摄像机坐标系下的坐标为(Xc,Yc,Zc),对于双目系统,假设第一摄像机和第二摄像机水平平行放置,其旋转关系可忽略,空间点P分别在第一摄像机坐标系和第二摄像机坐标系下的坐标为(Xc1,Yc1,Zc1)和(Xc2,Yc2,Zc2),则其坐标关系可表示为:
式中,Δx、Δy、Δz分别为第二摄像机坐标系相对于第一摄像机坐标系在各坐标轴方向上的平移。
从上可知,通过建立图像坐标系以及摄像机坐标系进一步了解上述公式(3)中各项标定参数的含义。
同时利用上述公式(4),上述输电线路山火定位方法,还包括:
根据步骤3中空间点P到第一摄像机的深度距离Zc1计算出空间点P到第二摄像机的深度距离Zc2
其中,Zc1和Zc2关系如下所示:
Zc2=Zc1+Δz。
其中,空间点P到第二摄像机的深度距离视为山火到安装第二摄像头的杆塔距离。本实施例中优选第一摄像仪和第二摄像仪均安装在同一杆塔上,并按照双目原理平行设置,其他可行的实施例中,第一摄像仪和第二摄像仪分别安装在不同杆塔上,且同样地按照双目原理平行设置,通过上述公式可获取到山火到安装第二摄像仪的杆塔的距离。
综上所述,本发明提供的一种输电线路山火定位方法,利用双目体视觉原理并通过可见光摄像机和红外摄像机分别拍摄山火照片后,对山火照片进行图像分析和处理,计算出山火到安装摄像机的杆塔的距离,实现了山火定位,以便可以及时做出应急措施,且本定位方法的定位精度高,例如进行验证时,计算出的山火到杆塔的距离为621.55m,实测距离为583.2m,误差仅为6.58%。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的范围内可对其进行许多修改,但都将落入本发明的保护范围内。

Claims (5)

1.一种输电线路山火定位方法,其特征在于,包括:
步骤1:利用第一摄像机和第二摄像机分别拍摄山火得到山火照片,并提取山火照片中的火焰区域;
其中,第一摄像机和第二摄像机分别为可见光摄像机、红外摄像机或者第一摄像机和第二摄像机分别为红外摄像机、可见光摄像机;
所述山火照片分别为可见光照片和红外照片;
步骤2:计算步骤1中山火照片中火焰区域的火焰图心的坐标;
其中,火焰图心的坐标(u,v)的计算公式如下所示:
其中,u为山火照片中火焰图心的横坐标,v为山火照片中火焰图心的纵坐标;
m、n分别表示在山火照片中火焰区域中行和列中像素点个数,xi,j为火焰区域中第i行第j列的像素点的列坐标值,yi,j为火焰区域中第i行第j列的像素点的行坐标值;
步骤3:根据步骤2计算出的火焰图心的坐标以及第一摄像机、第二摄像机的标定参数计算出山火到安装第一摄像机的杆塔的距离;
其中,山火到安装第一摄像机的杆塔的距离的计算公式如下所示:
其中,Zc1为火焰图心对应的空间点P到第一摄像机的深度距离,Zc1也视为山火到安装第一摄像机的杆塔的距离;
f1、f2分别为第一摄像机和第二摄像机的焦距,u01、u02分别为第一摄像机和第二摄像机的图像坐标系中图像主点的横坐标,dx1、dx2分别为单个像素在第一摄像机和第二摄像机的图像坐标系中x轴方向上的物理长度;Δx、Δz分别为第二摄像机的摄像机坐标系相较于第一摄像机的摄像机坐标系在x轴、z轴方向的平移位移,u1、u2分别为第一摄像机、第二摄像机拍摄的山火照片中火焰图心的横坐标。
2.根据权利要求1所述的方法,其特征在于,步骤1中提取可见光照片中的火焰区域时,提取过程如下所示:
将可见光照片从RGB颜色模型转化到HSV颜色模型,并计算出可见光照片中像素点在HSV颜色模型的颜色值;
其中,所述HSV颜色模型的颜色值分别为饱和度、明度和色调;
识别可见光照片中在HSV颜色模型的饱和度、明度和色调满足火焰区域颜色值的边界条件的区域,满足边界条件的区域为所述可见光照片中的火焰区域;
其中,火焰区域在HSV颜色模型的颜色值的边界条件如下所示:
其中,h表示颜色值中的色调,s表示颜色值中的饱和度,v表示颜色值中的明度。
3.根据权利要求2所述方法,其特征在于,按照如下公式计算可见光照片中像素点在HSV颜色模型的颜色值:
v=max/255
其中,max=max(r,g,b),min=min(r,g,b),s,v∈[0,1],h∈[0°,360°),r,g,b∈[0,1,…,255];
max(r,g,b)表示r、g、b中的最大值;min(r,g,b)表示r、g、b中的最小值;
其中,r、g、b分别为可见光照片中像素点在RGB颜色模型的三个颜色通道值。
4.根据权利要求1所述方法,其特征在于,步骤1中提取红外照片中的火焰区域的过程如下所示:
识别红外照片中亮度值满足亮度阈值的区域;
其中,满足亮度阈值的区域为红外照片中的火焰区域,火焰区域如下所示:
F={(i,j)|f(i,j)≥200};
其中,F为红外照片中火焰区域内像素点的集合,f(i,j)为红外照片中第i列第j行的像素点的亮度值。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:
根据步骤3中空间点P到第一摄像机的深度距离Zc1计算出空间点P到第二摄像机的深度距离Zc2
其中,Zc1和Zc2关系如下所示:
Zc2=Zc1+Δz。
CN201710687688.9A 2017-08-11 2017-08-11 一种输电线路山火定位方法 Active CN107576269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710687688.9A CN107576269B (zh) 2017-08-11 2017-08-11 一种输电线路山火定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710687688.9A CN107576269B (zh) 2017-08-11 2017-08-11 一种输电线路山火定位方法

Publications (2)

Publication Number Publication Date
CN107576269A CN107576269A (zh) 2018-01-12
CN107576269B true CN107576269B (zh) 2019-12-24

Family

ID=61034895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710687688.9A Active CN107576269B (zh) 2017-08-11 2017-08-11 一种输电线路山火定位方法

Country Status (1)

Country Link
CN (1) CN107576269B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035665A (zh) * 2018-08-27 2018-12-18 西北工业大学 一种新型森林火灾预警系统及火灾预警方法
TWI694382B (zh) * 2019-01-04 2020-05-21 財團法人金屬工業研究發展中心 具深度視覺之煙霧偵測方法
CN110507941B (zh) * 2019-08-21 2021-07-02 深圳供电局有限公司 一种火灾处理方法及其系统
CN114092547B (zh) * 2021-11-26 2023-02-03 国网四川省电力公司达州供电公司 一种基于卫星图片技术的防火设备定位方法和装置
CN115364401A (zh) * 2022-08-15 2022-11-22 山东瑞美油气装备技术创新中心有限公司 灭火的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652251B1 (en) * 2008-11-17 2010-01-26 Fluke Corporation Registration methods for fusing corresponding infrared and visible light images
JP5940853B2 (ja) * 2012-03-23 2016-06-29 株式会社日立国際電気 火災検知システム及び火災検知方法
CN104408706A (zh) * 2014-09-30 2015-03-11 天津艾思科尔科技有限公司 一种基于双波段图像的火灾检测及定位方法
CN104597052A (zh) * 2015-02-09 2015-05-06 淮阴工学院 基于多特征融合的马铃薯高速无损分级检测方法及系统
CN106373320B (zh) * 2016-08-22 2018-10-02 中国人民解放军海军工程大学 基于火焰颜色离散度和连续帧图像相似度的火灾识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双波段野外火灾图像识别及目标定位方法研究;刘媛珺;《中国优秀硕士学位论文全文数据库信息科技辑》;20111215(第S2期);第I138-1319页 *

Also Published As

Publication number Publication date
CN107576269A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
CN107576269B (zh) 一种输电线路山火定位方法
CN109443206B (zh) 基于彩色球形光源靶标的机械臂末端位姿测量系统及方法
CN103389042A (zh) 基于深度图像的地面自动检测以及场景高度计算的方法
CN106897653B (zh) 基于红外和可见光视频融合的林区烟火检测方法及其检测系统
CN104253482A (zh) 基于图像数据库和巡检机器人的设备故障检测方法
KR102336030B1 (ko) 전기차 충전기 화재 감지 및 상태 이상 예측 시스템
CN110879080A (zh) 一种高温锻件高精度智能测量仪和测量方法
CN110910460A (zh) 一种获取位置信息的方法、装置及标定设备
US11120571B2 (en) System for measuring deformations and a method for measuring deformations
JP6930545B2 (ja) 画像処理装置、キャリブレーション用チャート、及びキャリブレーションシステム
CN110617772A (zh) 一种非接触式线径测量装置及方法
CN109801336A (zh) 基于可见光及红外光视觉的机载目标定位系统及方法
CN112906674A (zh) 一种基于双目视觉的矿井火灾识别与火源定位方法
CN103971479A (zh) 基于摄像机标定技术的林火定位方法
CN104239845B (zh) 基于红外热成像技术的双视智能图像识别和目标定位方法
CN103487036B (zh) 基于空间前方交会和链码形似性的同名标记点匹配方法
CN106228540B (zh) 一种多光谱视频火焰检测方法
CN103418132B (zh) 光线枪指向位置确定系统及方法
KR102265291B1 (ko) 실시간 화재 감지 시스템 및 화재 감지 방법
CN116052004B (zh) 一种异常事件双向监测方法、装置、电子设备及存储介质
CN116563391A (zh) 一种基于机器视觉的激光结构自动标定方法
CN115876086A (zh) 一种高密度连接器的检测方法及检测系统
CN113792684B (zh) 弱对齐条件下的消防机器人多模态视觉火焰检测方法
KR20190134426A (ko) 트리오 영상장치를 통한 태양광 모듈 열화상 촬영 시스템
CN212261348U (zh) 一种基于热成像和人脸识别的远距离测温系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant