CN107563029B - 一种基于k折交叉验证法的支持向量机近似模型优化方法 - Google Patents

一种基于k折交叉验证法的支持向量机近似模型优化方法 Download PDF

Info

Publication number
CN107563029B
CN107563029B CN201710725263.2A CN201710725263A CN107563029B CN 107563029 B CN107563029 B CN 107563029B CN 201710725263 A CN201710725263 A CN 201710725263A CN 107563029 B CN107563029 B CN 107563029B
Authority
CN
China
Prior art keywords
support vector
vector machine
optimization
model
fold cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710725263.2A
Other languages
English (en)
Other versions
CN107563029A (zh
Inventor
梅益
杨幸雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201710725263.2A priority Critical patent/CN107563029B/zh
Publication of CN107563029A publication Critical patent/CN107563029A/zh
Application granted granted Critical
Publication of CN107563029B publication Critical patent/CN107563029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种基于K折交叉验证法的支持向量机近似模型优化方法,包括建立回弹预测数字模型、运用拉丁超立方抽样进行回弹预测来获取板料移动位移、通过z‑score标准化归一法进行样本数据预处理,最后通过K折交叉验证法优化支持向量机非线性回归近似模型参数;本发明通过K折交叉验证法优化SVM参数,寻优结束后,最终得到的优化结果为:c=1.6245,g=4,均方差mse=0.8066,获得优化结果的3D视图及等高线视图。

Description

一种基于K折交叉验证法的支持向量机近似模型优化方法
技术领域
本发明属于SGCC板料复杂弯曲成形工艺领域,尤其涉及一种基于K折交叉验证法的支持向量机近似模型优化方法。
背景技术
随着汽车在生活、生产领域的迅速普及与更新,车窗升降板作为调节汽车窗口的重要活动零件,其装配性能和使用性能的好坏直接决定了车窗活动的平稳性和顺滑度,同时也在很大程度上影响人们的体验感受。由于车窗升降板的结构相对于其他大型覆盖件和结构件而言,具有形状复杂、曲率变化大、零件装配尺寸要求高的特点,导致在实际生产过程中为了获得质量上佳的零件,需要尽可能地减小零件回弹,避免造成零件尺寸精度的下降。
现阶段,在对冲压件进行回弹分析时,有较为成熟的解析求解法,但是只有在分析形状相对简单、容易成形的零件才有用,比如常见的U型件和V型件等。一旦涉及到形状复杂、特征较多的异形件时,解析求解法则无用武之地。同时有研究发现,在试验条件下的回弹量理论计算值均偏大,且平均相对误差高达88%,所以仅仅依靠理论公式的解析计算来预测零件回弹量是远远不可行的,甚至会给出错误的预测结果,误导实际应用。
发明内容
本发明要解决的技术问题是:提供一种基于K折交叉验证法的支持向量机近似模型优化方法,能够避免出现像传统交叉验证法出现的存在费时、效率低的缺点,提高支持向量机的学习能力及收敛速度,增加了对支持向量机模型参数选择的准确性和可靠性,以解决上述现有技术中存在的问题。
本发明采取的技术方案为:一种基于K折交叉验证法的支持向量机近似模型优化方法,该方法包括以下步骤:
(1)确定支持向量机的核函数类型:选择径向基函数作为支持向量机模型的核函数;
(2)确定径向基函数的惩罚因子C和核参数σ:取惩罚参数的变化范围为C∈[2-5,210],核参数的取值范围为σ∈[2-5,22];
(3)确定优化目标和优化变量:将零件成形后发生回弹的最大位移量作为优化目标,记为yi=(blank movement)i,根据使用要求,在不发生破裂等不可修复性缺陷的前提下,最大位移量需小于ymin=0.5mm;优化变量为板料厚度A、冲压速度B和摩擦因数C;
(4)确定样本获取的方法:采用拉丁超立方抽样方法获取100组优化变量试验数据,并通过dynaform平台分别进行车窗升降板的冲压成形有限元数值模拟和结果分析;
(5)确定K折交叉验证法的K值:取K=5,即将上述试验数据分成5组,其中1组作为验证集,其余4组作为测试集,并取验证集的均方差作为评判该模型的误差;
(6)数据归一化处理:采用z-score标准化法对数据进行归一化处理,将不同量纲、数量级的优化变量均归于[-1,1]区间内;
(7)建立优化模型:将C和σ的选择区间用幂函数表达,区间端点为幂函数的指数,采用K折交叉验证算法进行支持向量机回归模型的参数寻优,构建支持向量机近似模型。
优选的,上述步骤(3)的优化变量在初始成形工艺参数的基础上对每个参数的初始值以80%和120%的比例计算最大值和最小值,从而确定优化区间。
优选的,上述步骤(7)中模型迭代寻优后获得的最优成形工艺参数是C=1.6245,σ=4,均方差mse=0.8066,平均误差0.0538。
本发明的有益效果:与现有技术相比,本发明效果如下:
(1)本发明通过K折交叉验证方法构建支持向量机近视模型,能够避免出现像传统交叉验证法出现的存在费时、效率低的缺点,提高支持向量机的学习能力及收敛速度,增加了对支持向量机模型参数选择的准确性和可靠性;
(2)本发明采用拉丁超立方抽样方法针对100组成形工艺参数和对应质量指标的初始样本数据中后20组测试集模拟数据和预测数据值进行折线图对比和误差分析,经过数值模拟与分析验证后得出优化结果的3D视图和等高线视图,将前80能够较大程度上降低零件回弹量(零件回弹的最大位移量)和SVM预测集的回弹值对比,验证该参数下支持向量机的回归预测精度。将测试集的回弹值(最大位移量)与预测集的回弹值进行对比,计算两者之间的误差和平均误差来定量描述通过K折交叉验证法优化支持向量机核参数模型的优劣情况;
(3)本发明通过数据挖掘手段对涉及到的数据进行归一化处理,消除各个数据指标之间的单位和量纲差异,以避免直接将成形参数和数值模拟的回弹结果输入至MATLAB的编辑界面内,由于系统的数据精度造成较小数值的参数湮灭,比如板料厚度、摩擦因素和最大位移量,无法进行后续的数学建模工作,将总共100组的成形工艺参数和对应质量指标的初始样本数据通过数据归一化处理,方可进行下面的数学建模、模型优化和工艺参数优化等工作,从而对零件的质量进行综合性的对比和评价;
(4)通过z-score标准化方法将成形工艺参数和优化目标数据进行归一化,使样本数据归一后满足正态分布,实现的是样本坐标分布。
附图说明
图1为K折交叉验证法优化SVM参数C和σ的3D结果图;
图2为K折交叉验证法优化SVM参数C和σ的等高线结果图;
图3为训练集回弹最大位移量(CV-SVM);
图4为测试集回弹最大位移量(CV-SVM)。
具体实施方式
下面结合附图及具体的实施例对本发明进行进一步介绍。
实施例:如图1-图4所示,一种基于K折交叉验证法优化支持向量机近似模型参数方法,该方法包括以下步骤:
(1)针对SVM对非线性回归问题的应用确定核函数与核参数取值范围。由于使用支持向量机进行非线性回归分析时,需要将作为样本的试验数据投射到具有高维特征的空间,此过程需要通过核函数(Kernelfunction)才能实现。针对特定的问题,选择与其相匹配的核函数是决定支持向量机回归精度的重要因素。选取径向基函数作为核函数时,影响近似模型复杂程度的参数种类相对于其他核函数而言要少很多,而且径向基函数在样本数据在不同维度的的映射处理有着显著优势。所以本发明把径向基函数作为支持向量机对工艺优化进行非线性回归分析预测的核函数。为了有效控制支持向量机的学习能力和泛化能力,进行交叉验证时,取惩罚参数的变化范围为C∈[2-5,210],核参数的取值范围为σ∈[2-5,22],K折取为5;
(2)建立数学模型,确定优化目标与约束条件:由于本研究的分析对象为异形弯曲件车窗升降板,为了确保零件在后期进行装配的整体精度,把零件成形后发生回弹的最大位移量(blankmovement)作为优化目标,记为yi=(blank movement)i,根据使用要求,在不发生破裂等不可修复性缺陷的前提下,最大位移量小于ymin=0.7mm即可满足装配使用条件。零件成形前后的最大位移量可在回弹后处理界面下直接显示。本发明未选择零件不同截面弯曲角变化量(△θ)作为优化目标是因为该零件在装配过程主要考虑整体尺寸,细节尺寸对装配精度的影响程度不大;
miny=f(A,B,C)=yi
为了选取最佳的成形工艺参数,需要在初始成形工艺参数的基础上选择参数取值的变化区间,本发明采取的区间确定方法是在对每个参数的初始值以80%和120%的比例计算最大值和最小值,结果如表1所示。
表1成形工艺参数的取值区间
优化变量 下限 平均值 上限
材料厚度A/mm 0.8 1.0 1.2
冲压速度B/mm·s-1 4000 5000 6000
摩擦因数C 0.100 0.125 0.150
根据约束区间设置目标函数的束条件。
Figure BDA0001385868630000051
(3)编写拉丁超立方抽样所需的程序,通计算机的操作抽取100组试验数据作为成形工艺方案,并分别在DYNAFORM平台进行数值模拟,获取了对应参数下的回弹数据。将样本数据中的1~80组作为构建支持向量机非线性回归近似模型的训练样本,其余20组为测试样本用来检验该近似模型的精确度。
lhsdesign函数的抽样计算模型如下:
n=100;
p=1;
xA=0.8+(1.2-0.8)*lhsdesign(n,p);
xB=4000+(6000-4000)*lhsdesign(n,p);
xC=0.100+(0.150-0.100)*lhsdesign(n,p);
x=[xA xB xC]
式中,n——需要获得的样本个数;
p——表示变量数;
xA——材料厚度(程序运行时用字母a代替);
xB——冲压速度(程序运行时用字母b代替);
xC——摩擦因数(程序运行时用字母c代替);
x——参数组合。
针对零件成形过程,将拉丁超立方抽样方法获得的100组成形工艺参数在DYNAFORM平台下进行冲压分析数值模拟,获取板料移动位移(blank movement)作为回弹量分配训练集和测试集,如表2所示。
表2 100例车窗升降板弯曲成形的工艺参数及回弹量统计表
Figure BDA0001385868630000061
Figure BDA0001385868630000071
Figure BDA0001385868630000081
Figure BDA0001385868630000091
(3)为避免成形工艺参数单位不一致和量纲差距过大容易引起“大数据吞食小数据”的数据湮灭现象的产生,通过z-score标准化方法对以上100组数据样本进行归一化处理,将上述通过拉丁超立方抽样方法获取的100组关于车窗升降板冲压成形工艺参数及回弹量进行z-score标准化处理,得到的部分数据如表3所示。
表3 100组经z-score标准化处理得到的部分试验数据
Figure BDA0001385868630000092
(4)通过K折交叉验证法优化支持向量机非线性回归近似模型参数,在matlab软件中编写K折交叉验证的运行程序,为了区别系统代码和程序代码,将程序中的所有C和σ分别用c和g替代(下同),同时将C和σ的选择区间用幂函数表达,区间端点为幂函数的指数,进行支持向量机回归模型的参数寻优。
通过K折交叉验证法优化SVM参数,寻优结束后,最终得到的优化结果为:best c=1.6245,best g=4,均方差mse=0.8066,优化结果的3D视图和等高线视图分别见图1-图2所示。
80组训练集的回弹值(零件回弹的最大位移量)和SVM预测集的回弹值对比情况如图3所示,从图中可知,除了第23组的数值偏差明显较大,其余组的拟合程度较好。为了验证该参数下支持向量机的回归预测精度,通过20组的测试集对进行检测,数值模拟的回弹值和SVM预测集的回弹值对比情况如图4所示。
将测试集的回弹值(最大位移量)与预测集的回弹值进行对比,如表4所示,计算两者之间的误差和平均误差来定量描述通过K折交叉验证法优化支持向量机核参数模型的优劣情况。
表4 CV-SVM测试集回弹值与预测集回弹值的误差对比分析
Figure BDA0001385868630000101
通过对20组测试集模拟数据和预测数据进行折线图对比和误差分析,明确了K折交叉验证法优化支持向量机核参数后的模型虽然在预测集上的表现上佳,但对于测试集的预测精度有所欠缺,除了81~87、90、95和100号数据的拟合精度较高,其他编号的数据误差较大,但平均误差仅为0.0538,在一定程度上还是实现了对车窗升降板成形后回弹量的预测。
结果分析
(1)针对SVM对非线性回归问题的应用,采用径向基函数作为核函数,惩罚因子取值范围为C∈[2-5,210」,核参数取值范围为σ∈[2-5,22」;
(2)在MATLAB平台下编写拉丁超立方抽样所需的程序,通计算机的操作抽取100组试验数据作为成形工艺方案,并分别在DYNAFORM平台进行数值模拟,获取了对应参数下的回弹数据。将样本数据中的1~80组作为构建支持向量机非线性回归近似模型的训练样本,其余20组为测试样本用来检验该近似模型的精确度;
(3)为避免成形工艺参数单位不一致和量纲差距过大容易引起“大数据吞食小数据”的数据湮灭现象的产生,通过z-score标准化方法对以上100组数据样本进行归一化处理,分布区间为[-1,1];
(4)采用K折交叉验证法确定支持向量机的惩罚因子C和核参数σ时,取K=5;
(5)利用MATLAB平台下运行优化程序后的结果表示为:bestc=1.6245,bestg=4,均方差mse=0.8066,平均误差0.0538,构建了CV-SVM支持向量机非线性回归预测模型。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内,因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (1)

1.一种基于K折交叉验证法的支持向量机近似模型优化方法,其特征在于:该方法包括以下步骤:
(1)确定支持向量机的核函数类型:选择径向基函数作为支持向量机模型的核函数;
(2)确定径向基函数的惩罚因子C和核参数σ:取惩罚参数的变化范围为C∈[2-5,210],核参数的取值范围为σ∈[2-5,22];
(3)确定优化目标和优化变量:将零件成形后发生回弹的最大位移量作为优化目标,记为yi=(blank movement)i,根据使用要求,在不发生破裂缺陷的前提下,最大位移量需小于ymin=0.5mm;优化变量为板料厚度A、冲压速度B和摩擦因数C1;
设置目标函数的约束条件:
Figure FDA0002518286860000011
(4)确定样本获取的方法:采用拉丁超立方抽样方法获取100组优化变量试验数据,将样本数据中的1~80组作为构建支持向量机非线性回归近似模型的训练样本,其余20组为测试样本用来检验该近似模型的精确度,并通过dynaform平台分别进行车窗升降板的冲压成形有限元数值模拟和结果分析:拉丁超立方抽样方法的lhsdesign函数的抽样计算模型如下:
n=100;
p=1;
xA=0.8+(1.2-0.8)*lhsdesign(n,p);
xB=4000+(6000-4000)*lhsdesign(n,p);
xC=0.100+(0.150-0.100)*lhsdesign(n,p);
x=[xA xB xC]
式中,n——需要获得的样本个数;
p——表示变量数;
xA——材料厚度;
xB——冲压速度;
xC——摩擦因数;
x——参数组合;
(5)确定K折交叉验证法的K值:取K=5,即将上述试验数据分成5组,其中1组作为验证集,其余4组作为测试集,并取验证集的均方差作为评判支持向量机模型的误差;
(6)数据归一化处理:采用z-score标准化法对数据进行归一化处理,将不同量纲、数量级的优化变量均归于[-1,1]区间内;
(7)建立优化模型:将C和σ的选择区间用幂函数表达,区间端点为幂函数的指数,采用K折交叉验证算法进行支持向量机回归模型的参数寻优,构建支持向量机近似模型;
步骤(3)的优化变量在初始成形工艺参数的基础上对每个参数的初始值以80%和120%的比例计算最大值和最小值,从而确定优化区间。
CN201710725263.2A 2017-08-22 2017-08-22 一种基于k折交叉验证法的支持向量机近似模型优化方法 Active CN107563029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710725263.2A CN107563029B (zh) 2017-08-22 2017-08-22 一种基于k折交叉验证法的支持向量机近似模型优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710725263.2A CN107563029B (zh) 2017-08-22 2017-08-22 一种基于k折交叉验证法的支持向量机近似模型优化方法

Publications (2)

Publication Number Publication Date
CN107563029A CN107563029A (zh) 2018-01-09
CN107563029B true CN107563029B (zh) 2020-07-28

Family

ID=60976292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710725263.2A Active CN107563029B (zh) 2017-08-22 2017-08-22 一种基于k折交叉验证法的支持向量机近似模型优化方法

Country Status (1)

Country Link
CN (1) CN107563029B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595764A (zh) * 2018-03-26 2018-09-28 北京航空航天大学 电路模块行为级建模方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241521A (zh) * 2008-03-06 2008-08-13 上海交通大学 基于支持向量机的轿车车身综合性能指标建模方法
CN102999672A (zh) * 2012-11-30 2013-03-27 湖南大学 基于汽车耐撞性的并行支持向量机近似模型优化方法
CN106649964A (zh) * 2016-10-17 2017-05-10 贵州大学 一种基于ga‑elm算法的铝合金压铸件晶粒尺寸预测方法
CN106845136A (zh) * 2017-02-21 2017-06-13 上海大学 一种基于支持向量机的针阀体挤压研磨精度预测方法
CN106874935A (zh) * 2017-01-16 2017-06-20 衢州学院 基于多核函数自适应融合的支持向量机参数选择方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744978A (zh) * 2014-01-14 2014-04-23 清华大学 一种基于网格搜索技术用于支持向量机的参数寻优方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241521A (zh) * 2008-03-06 2008-08-13 上海交通大学 基于支持向量机的轿车车身综合性能指标建模方法
CN102999672A (zh) * 2012-11-30 2013-03-27 湖南大学 基于汽车耐撞性的并行支持向量机近似模型优化方法
CN106649964A (zh) * 2016-10-17 2017-05-10 贵州大学 一种基于ga‑elm算法的铝合金压铸件晶粒尺寸预测方法
CN106874935A (zh) * 2017-01-16 2017-06-20 衢州学院 基于多核函数自适应融合的支持向量机参数选择方法
CN106845136A (zh) * 2017-02-21 2017-06-13 上海大学 一种基于支持向量机的针阀体挤压研磨精度预测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SVM 和改进粒子群算法在冲压成形优化中的应用;杨旭静,冯小龙,郑娟,郭水军;《汽车工程》;20150430;第37卷(第4期);全文 *
基于支持向量机回归算法的薄板冲压成形工艺参数优化;冯小龙;《中国优秀硕士学位论文全文数据库工程科技I辑》;20140615;第1-4章,图3.2 *
聚类和优化支持向量机的冷轧带钢表面缺陷分类;化春键,周海英;《塑性工程学报》;20161031;第23卷(第5期);第2.2节 *
车窗升降板弯曲成形回弹缺陷的影响因素分析与成形工艺优化;王莉媛,梅益,刘闯,杨幸雨;《锻压技术》;20170531;第42卷(第5期);全文 *
采用PSO和SVM预测大锻坯内部空洞锻合压下率;陈伟;梅益;《计算机工程与应用》;20110921;全文 *

Also Published As

Publication number Publication date
CN107563029A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN110175434B (zh) 一种基于卷积神经网络的铁路扣件系统损伤检测方法
CN110147602B (zh) 一种建立折弯回弹角预测模型的方法及其应用
EP2062663B1 (en) Shape defect factor identification method, device, and program
CN108959794B (zh) 一种基于深度学习的结构频响动力学模型修正方法
CN105868428A (zh) 冲压件的回弹补偿方法
CN113987705A (zh) 一种基于深度学习的汽车覆盖件回弹预测方法
CN107563029B (zh) 一种基于k折交叉验证法的支持向量机近似模型优化方法
CN111222095B (zh) 一种大坝变形监测中的粗差判别方法、装置及系统
CN107025354A (zh) 一种基于极差分析的车窗升降板成形工艺优化方法
CN109635364A (zh) 一种基于误差控制函数的回弹量估算方法
CN104915478A (zh) 基于多参数不确定性分析的产品设计模型等效简化方法
CN117113588B (zh) 一种变曲率截面筒体精确辊弯成形方法、系统及电子设备
CN111639715B (zh) 基于ls-svm的汽车仪表组装质量预测方法与系统
CN107092745A (zh) 一种基于方差分析的车窗升降板成形工艺优化方法
CN110705841A (zh) 一种基于改进模糊层次分析法的化工生产安全评估方法
KR20070014564A (ko) 전산해석 신뢰도 분석방법
CN114662232A (zh) 一种复杂形状热冲压零件的成形质量分析方法
CN107545105A (zh) 一种基于pso的零件回弹成形工艺参数优化方法
CN115099093A (zh) 一种基于熵权topsis的白车身结构多目标优化设计方法
CN104268311B (zh) 汽车座椅导轨直线滚子结合部间隙评价方法
CN115526276A (zh) 一种具有鲁棒性的风洞天平校准载荷预测方法
CN114170245A (zh) 一种基于SAA-Unet网络的蜂窝肺病灶分割方法
CN114565209A (zh) 一种基于聚类的流程工业能耗状态评估方法
CN109409424B (zh) 一种外观缺陷检测模型建模方法和装置
CN108415372B (zh) 精密机床热误差补偿方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant