CN107561617B - 一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法 - Google Patents

一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法 Download PDF

Info

Publication number
CN107561617B
CN107561617B CN201710795112.4A CN201710795112A CN107561617B CN 107561617 B CN107561617 B CN 107561617B CN 201710795112 A CN201710795112 A CN 201710795112A CN 107561617 B CN107561617 B CN 107561617B
Authority
CN
China
Prior art keywords
film
angle prism
hypotenuse
refractive index
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710795112.4A
Other languages
English (en)
Other versions
CN107561617A (zh
Inventor
刘华松
杨霄
李士达
孙鹏
姜承慧
季一勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN201710795112.4A priority Critical patent/CN107561617B/zh
Publication of CN107561617A publication Critical patent/CN107561617A/zh
Application granted granted Critical
Publication of CN107561617B publication Critical patent/CN107561617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明公开了一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法,属于光学薄膜技术领域,在3μm‑5μm波段中去除二氧化碳辐射波长,该制备方法,使用棱镜转向和反射滤光的方法,通过设计固定棱镜45度的反射滤光薄膜,通过二次反射的方法实现对二氧化碳波长的滤波;该光学元件,主要由四个硅材料的直角棱镜组成;第一直角棱镜斜边表面或第四直角棱镜斜边表面制备反射滤光薄膜;第二直角棱镜直角边表面或第三直角棱镜的直角边表面制备减反射薄膜。本发明的内容能够实现其余波长的高效透过,设计的元件结构简单易于制作,可直接应用于二氧化碳波长陷波的红外光学成像系统中。

Description

一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制 备方法
技术领域
本发明属于光学薄膜技术领域,特别是有关红外光学薄膜元件的设计与制备技术,涉及一种滤除二氧化碳波长的中波红外透射元件。
背景技术
红外导引头是一种接收3μm-5μm或8.0μm-14.0μm目标电磁辐射的自寻的装置。它探测的目标本身能辐射红外线,无需外部照射,多数的军事目标(飞机、探测、军舰等)都是良好的红外辐射源。由于红外导引头是被动检测系统,无论哪一类红外导引头,目标和背景都是它们的组成部分之一,它们的共同任务都是从背景噪声中提取红外目标信号。所不同的是:红外点源导引头是一种能量检测系统,它需要从空间、时间、光谱等特征方面,经过调制或滤波,抑制背景噪声,提取目标信号;而红外成像导引头则是一种对比度检测系统,目标和背景都是检测对象,它将相邻两个瞬时所检测到的信号差值作为有效信号值,其识别目标的基础是要找出目标和背景的特征差。
在对地目标的红外成像导引装置研究中,目标所处的周围环境存在大量的自然辐射源,如太阳、大气、海绵、天空等等。由于大气中二氧化碳的辐射波长在4.2μm附近,往往会淹没目标的辐射信息,影响到红外成像的对比度。因此如何从3μm-5μm波段中去除二氧化碳的辐射波长,并且保持该波段内其余部分高透过率,是近年来红外成像系统的关键问题之一。采用光学负滤光薄膜的方式在设计上可以实现去除二氧化碳辐射波长,但是膜层厚度太厚无法在制备工艺上有效实现。采用超表面的方法也是一条技术途径,但是由于超表面的制造技术并不成熟,限制了该方法的应用。
本发明提供了一种在3.5μm-4.9μm波段中去除二氧化碳辐射波长的方法,并且能够实现其余波长的高效透过,为解决上述的问题提供了新的方法。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:在3μm-5μm波段中去除二氧化碳辐射波长的方法,并且能够实现其余波长的高效透过,设计的元件结构简单易于制作。
(二)技术方案
为了解决上述技术问题,本发明的技术方案是,一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,主要由四个硅材料的直角棱镜组成;第一直角棱镜斜边表面,或第四直角棱镜斜边表面即B表面,制备反射滤光薄膜;第二直角棱镜直角边表面即C表面,或第三直角棱镜的直角边表面即D表面,其制备减反射薄膜;第一直角棱镜斜边表面与第二直角棱镜斜边表面相邻;第三直角棱镜斜边表面与第四直角棱镜斜边表面即B表面相邻;第三直角棱镜斜边的直角边与第二直角棱镜的直角边相邻;
1)C表面或D表面的减反射多层膜的膜系结构为:
Sub/x1M x2H x3L x4M/Air
其中,Sub为基底,基底为硅,H、M和L分别代表高折射率、中折射率和低折射率材料,x1~x4分别代表每层膜的光学厚度系数,设置薄膜的中心波长为λ0,单位光学厚度为λ0/4;
H为高折射率材料锗,M为中折射率材料硫化锌,L为低折射率材料氧化铝;
2)上述的膜系结构中,设定λ0=4.1μm,则x1-x4的系数如下:
x1=0.3302,x2=0.2632,x3=0.9854,x4=0.0288
3)第一直角棱镜斜边表面或B表面的反射滤光薄膜膜系结构为:
Sub/y1A y2H y3L y4H y5Ly6H y7L y8H y9L y10H y11L y12H y13L/Air
其中,Sub为基底,基底为硅,H和L分别代表高折射率和低折射率材料,A为金属薄膜材料;y1~y13分别代表每层膜的光学厚度系数,薄膜的中心波长为λ0,单位光学厚度为λ0/4;
所述高折射率材料为锗,低折射率材料为氧化铝;
4)上述的反射滤光膜系结构中,设定λ0=4.1μm,则y1-y13的系数如下:
y1=0.0339,y2=1.8586,y3=0.1737,y4=1.7836,y5=1.2152,y6=1.2910,y7=0.2104,y8=1.5364,
y9=1.2907,y10=1.3498,y11=0.2134,y12=1.4645,y13=0.6509。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,C表面和D表面同时制备减反射薄膜。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,四块棱镜通过胶合工艺胶合在一起,入射面为C表面,出射面为D表面。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,第一直角棱镜斜边表面和B表面同时制备反射滤光薄膜。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,金属薄膜材料为金薄膜。
一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,该方法包括以下内容:
1)第二直角棱镜直角边表面即C表面,或第三直角棱镜的直角边表面即D表面,其制备减反射薄膜;
C表面或D表面的减反射多层膜的膜系结构为:
Sub/x1M x2H x3L x4M/Air
其中,Sub为基底,基底为硅,H、M和L分别代表高折射率、中折射率和低折射率材料,x1~x4分别代表每层膜的光学厚度系数,薄膜设计的中心波长为λ0,单位光学厚度为λ0/4;
2)上述的膜系结构中,设定λ0=4.1μm,确定系数x1-x4
3)第一直角棱镜斜边表面,或第四直角棱镜斜边表面即B表面,制备反射滤光薄膜;
第一直角棱镜斜边表面或B表面的反射滤光薄膜膜系结构为:
Sub/y1A y2H y3L y4H y5L y6H y7L y8H y9L y10H y11L y12H y13L/Air
其中,Sub为基底,基底为硅,H和L分别代表高折射率和低折射率材料,A为金属薄膜材料;y1~y13分别代表每层膜的光学厚度系数,薄膜设计的中心波长为λ0,单位光学厚度为λ0/4;
4)上述的反射滤光膜系结构中,设定λ0=4.1μm,确定系数y1-y13
5)四块棱镜通过胶合在一起,入射面为C表面,出射面为D表面;
使第一直角棱镜斜边表面与第二直角棱镜斜边表面相邻,第三直角棱镜斜边表面与第四直角棱镜斜边表面即B表面相邻,第三直角棱镜斜边的直角边与第二直角棱镜的直角边相邻。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,H为高折射率材料锗,M为中折射率材料硫化锌,L为低折射率材料氧化铝。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,金属薄膜材料为金薄膜。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,确定x1-x4的系数如下:
x1=0.3302,x2=0.2632,x3=0.9854,x4=0.0288。
优选地,上述一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,确定y1-y13的系数如下:
y1=0.0339,y2=1.8586,y3=0.1737,y4=1.7836,y5=1.2152,y6=1.2910,y7=0.2104,y8=1.5364,
y9=1.2907,y10=1.3498,y11=0.2134,y12=1.4645,y13=0.6509。
(三)有益效果
上述技术方案所提供的光学元件具有易于制作和光学性能高的优点,使用四块棱镜组合,涉及减反射薄膜和反射滤光薄膜两类薄膜,为一种滤除二氧化碳辐射波长(4.085μm-4.419μm)的中波红外(3.5μm-4.7μm)减反射元件,可实现在3.5μm-4.9μm波段范围内,陷波范围4.085μm-4.419μm,最大陷波效率达到1×10-4,其余波段的透过率达到90%以上。该元件有效实现了二氧化碳辐射波长的滤除,具有较高的应用价值。
通过使用棱镜转向和反射滤光的方法,通过设计固定棱镜角度(45°)的反射滤光薄膜,通过二次反射的方法实现对二氧化碳波长的滤波,在3.5μm-4.9μm波段范围内,陷波范围4.085μm-4.419μm,最大陷波效率达到1×10-4,其余波段的透过率达到90%以上。本发明的内容可直接应用于二氧化碳波长陷波的红外光学成像系统中。
附图说明
图1滤光元件结构示意图
图2硅基底的光学常数
图3锗薄膜的光学常数
图4氧化铝薄膜的光学常数
图5硫化锌薄膜的光学常数
图6金薄膜的光学常数
图7两个入射界面的减反射薄膜光谱透过率(C和D面)
图8两个斜入射界面的滤光薄膜光谱透过率(A和B面)
图9整个元件的光谱透过率
具体实施方式
下面对本发明进一步详细地描述。
如图1所示,本发明提供一种在3μm-5μm波段中去除二氧化碳辐射波长(4.085μm-4.419μm)的光学元件,主要由四个硅材料的棱镜胶合而成。主要包括:第一直角棱镜表面A表面制备反射滤光薄膜,第二直角棱镜表面C制备减反射薄膜,第三直角棱镜的D表面制备减反射薄膜,第四直角棱镜表面B制备反射滤光薄膜。
1)根据光学薄膜设计理论,C和D表面的减反射多层膜的膜系结构为:
Sub/x1M x2H x3L x4M/Air
其中,基底Sub为硅,H、M和L分别代表高折射率、中折射率和低折射率材料,x1~x4分别代表每层膜的光学厚度系数,设置薄膜设计的中心波长为λ0,所以单位光学厚度为λ0/4。所述高折射率材料H为锗,中折射率材料M为硫化锌,低折射率材料L为氧化铝。
2)上述的膜系结构中,设定λ0=4.1μm,则x1-x4的系数如下:
x1=0.3302,x2=0.2632,x3=0.9854,x4=0.0288
3)根据光学薄膜设计理论,A和B表面的反射滤光薄膜膜系结构为:
Sub/y1A y2H y3L y4H y5L y6H y7L y8H y9L y10H y11L y12H y13L/Air
其中,基底Sub为硅材料,H和L分别代表高折射率和低折射率材料,A为金属薄膜材料。y1~y13分别代表每层膜的光学厚度系数,同样设置薄膜设计的中心波长为λ0,所以单位光学厚度为λ0/4。所述高折射率材料为锗,低折射率材料为氧化铝,金属材料为金薄膜;
4)上述的反射滤光膜系结构中,设定λ0=4.1μm,则y1-y13的系数如下:
y1=0.0339,y2=1.8586,y3=0.1737,y4=1.7836,y5=1.2152,y6=1.2910,y7=0.2104,y8=1.5364,
y9=1.2907,y10=1.3498,y11=0.2134,y12=1.4645,y13=0.6509
5)在实际制备中,可以将第二直角棱镜的C面和第三直角棱镜的D面同时制备减反射薄膜,将第一直角棱镜的A面和第四直角棱镜的B面同时制备反射滤光薄膜。
6)四块棱镜通过胶合工艺胶合在一起,入射面为C表面,出射面为D表面。
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
1)滤光元件的结构示意图如图1所示;
2)棱镜选择硅材料,其光学常数如附图2所示;
3)C和D表面的减反射多层膜的薄膜材料选择分别为锗、氧化铝和硫化锌,其光学常数分别见图3、图4和图5。
4)设定参考波长为λ0=4.1μm,C和D表面的减反射多层膜的膜系结构为:
Sub/0.3302M 0.2632H 0.9854L 0.0288M/Air
其中,H、M和L分别代表锗、硫化锌和氧化铝薄膜,每层膜的单位光学厚度为λ0/4。
5)减反射多层膜的光谱透过率见图7,在3μm-5μm波段的平均透过率达到99%以上;
6)A和B表面的反射滤光薄膜材料选择为锗、氧化铝和金薄膜,金薄膜的光学常数见图6;
7)设定参考波长为λ0=4.1μm,A和B表面的反射滤光多层膜系结构为:
Sub/0.0339A 1.8586H 0.1737L 1.7836H 1.2152L 1.2910H 0.2104L 1.5364H1.2906L
1.3498H 0.2134L 1.4645H 0.6509L/Air
其中,H和L分别代表锗和氧化铝薄膜,A代表了金薄膜,每层膜的单位光学厚度为λ0/4。
8)反射滤光薄膜的光谱反射率见图8,在3μm-5μm波段范围内,平均陷波效率达到5%,其余波段的反射率达到99%以上;
9)将四块棱镜胶合一起,其中C面(直角边)为入射面,经过A和B两个(斜边)表面的反射,从D面出射。附图9为整体的光学透过率,在3.5μm-4.9μm波段范围内,陷波范围4.085μm-4.419μm,最大陷波效率达到1×10-4,其余波段的透过率达到90%以上;
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

1.一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,主要由四个硅材料的直角棱镜组成;第一直角棱镜斜边表面,或第四直角棱镜斜边表面即B表面,制备反射滤光薄膜;第二直角棱镜直角边表面即C表面,或第三直角棱镜的直角边表面即D表面,其制备减反射薄膜;
第一直角棱镜斜边表面与第二直角棱镜斜边表面相邻;
第三直角棱镜斜边表面与第四直角棱镜斜边表面即B表面相邻;
第三直角棱镜斜边的直角边与第二直角棱镜的直角边相邻;
1)C表面或D表面的减反射多层膜的膜系结构为:
Sub/x1M x2H x3L x4M/Air
其中,Sub为基底,基底为硅,H、M和L分别代表高折射率、中折射率和低折射率材料,x1~x4分别代表每层膜的光学厚度系数,设置薄膜的中心波长为λ0,单位光学厚度为λ0/4;
H为高折射率材料锗,M为中折射率材料硫化锌,L为低折射率材料氧化铝;
2)上述的膜系结构中,设定λ0=4.1μm,则x1-x4的系数如下:
x1=0.3302,x2=0.2632,x3=0.9854,x4=0.0288
3)第一直角棱镜斜边表面或B表面的反射滤光薄膜膜系结构为:
Sub/y1Ay2H y3L y4H y5L y6H y7Ly8H y9Ly10H y11L y12H y13L/Air
其中,Sub为基底,基底为硅,H和L分别代表高折射率和低折射率材料,A为金属薄膜材料;y1~y13分别代表每层膜的光学厚度系数,薄膜的中心波长为λ0,单位光学厚度为λ0/4;
所述高折射率材料为锗,低折射率材料为氧化铝;
4)上述的反射滤光膜系结构中,设定λ0=4.1μm,则y1-y13的系数如下:
y1=0.0339,y2=1.8586,y3=0.1737,y4=1.7836,y5=1.2152,y6=1.2910,y7=0.2104,y8=1.5364,
y9=1.2907,y10=1.3498,y11=0.2134,y12=1.4645,y13=0.6509。
2.根据权利要求1所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,C表面和D表面同时制备减反射薄膜。
3.根据权利要求1所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,四块棱镜通过胶合工艺胶合在一起,入射面为C表面,出射面为D表面。
4.根据权利要求1所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,第一直角棱镜斜边表面和B表面同时制备反射滤光薄膜。
5.根据权利要求1所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件,其特征在于,金属薄膜材料为金薄膜。
6.一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,该方法包括以下内容:
1)第二直角棱镜直角边表面即C表面,或第三直角棱镜的直角边表面即D表面,其制备减反射薄膜;
C表面或D表面的减反射多层膜的膜系结构为:
Sub/x1M x2H x3L x4M/Air
其中,Sub为基底,基底为硅,H、M和L分别代表高折射率、中折射率和低折射率材料,x1~x4分别代表每层膜的光学厚度系数,薄膜设计的中心波长为λ0,单位光学厚度为λ0/4;
2)上述的膜系结构中,设定λ0=4.1μm,确定系数x1-x4
3)第一直角棱镜斜边表面,或第四直角棱镜斜边表面即B表面,制备反射滤光薄膜;
第一直角棱镜斜边表面或B表面的反射滤光薄膜膜系结构为:
Sub/y1Ay2H y3L y4H y5L y6H y7Ly8H y9Ly10H y11L y12H y13L/Air
其中,Sub为基底,基底为硅,H和L分别代表高折射率和低折射率材料,A为金属薄膜材料;y1~y13分别代表每层膜的光学厚度系数,薄膜设计的中心波长为λ0,单位光学厚度为λ0/4;
4)上述的反射滤光膜系结构中,设定λ0=4.1μm,确定系数y1-y13
5)四块棱镜通过胶合在一起,入射面为C表面,出射面为D表面;
使第一直角棱镜斜边表面与第二直角棱镜斜边表面相邻,第三直角棱镜斜边表面与第四直角棱镜斜边表面即B表面相邻,第三直角棱镜斜边的直角边与第二直角棱镜的直角边相邻;H为高折射率材料锗,M为中折射率材料硫化锌,L为低折射率材料氧化铝。
7.根据权利要求6所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,金属薄膜材料为金薄膜。
8.根据权利要求6所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,确定x1-x4的系数如下:
x1=0.3302,x2=0.2632,x3=0.9854,x4=0.0288。
9.根据权利要求6所述的一种滤除二氧化碳辐射波长的中波红外透射光学元件的制备方法,其特征在于,确定y1-y13的系数如下:
y1=0.0339,y2=1.8586,y3=0.1737,y4=1.7836,y5=1.2152,y6=1.2910,y7=0.2104,y8=1.5364,
y9=1.2907,y10=1.3498,y11=0.2134,y12=1.4645,y13=0.6509。
CN201710795112.4A 2017-09-06 2017-09-06 一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法 Active CN107561617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710795112.4A CN107561617B (zh) 2017-09-06 2017-09-06 一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710795112.4A CN107561617B (zh) 2017-09-06 2017-09-06 一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法

Publications (2)

Publication Number Publication Date
CN107561617A CN107561617A (zh) 2018-01-09
CN107561617B true CN107561617B (zh) 2020-10-02

Family

ID=60979248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710795112.4A Active CN107561617B (zh) 2017-09-06 2017-09-06 一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法

Country Status (1)

Country Link
CN (1) CN107561617B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514174A (en) * 1965-05-11 1970-05-26 Centre Nat Rech Scient Infrared interference filters
JPH0251105A (ja) * 1988-08-12 1990-02-21 Sumitomo Electric Ind Ltd Co↓2レーザ用ビームスプリッタ膜
EP1649308A1 (en) * 2003-07-14 2006-04-26 Commonwealth Scientific and Industrial Research Organisation An optical filter, an optical interleaver and associated methods of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404568B2 (ja) * 2003-04-10 2010-01-27 株式会社エルモ社 赤外線カットフィルタおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514174A (en) * 1965-05-11 1970-05-26 Centre Nat Rech Scient Infrared interference filters
JPH0251105A (ja) * 1988-08-12 1990-02-21 Sumitomo Electric Ind Ltd Co↓2レーザ用ビームスプリッタ膜
EP1649308A1 (en) * 2003-07-14 2006-04-26 Commonwealth Scientific and Industrial Research Organisation An optical filter, an optical interleaver and associated methods of manufacture

Also Published As

Publication number Publication date
CN107561617A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN108680981B (zh) 一种深紫外窄带滤光片制备方法
JP5013022B2 (ja) 赤外線カットフィルタ
EP3361295B1 (en) Optical polarizing filter
CN107290814B (zh) 一种可见光、激光与中红外波段全介质薄膜分色元件及设计方法
US3697153A (en) Multilayer optical interference filter with wideband spectral transmission region and reduced ripple
JP2022166089A (ja) 誘導透過フィルタ
CN103091759B (zh) 一种窄带干涉滤光片
CN107479190B (zh) 一种可见光与长波红外全介质薄膜分色元件及设计方法
CN107300783B (zh) 一种可见光、激光与中红外波段分色元件及设计方法
US4726654A (en) Multi-layered anti-reflection coating
CN107515438A (zh) 一种红外宽谱段截止窄带激光分光元件
CN203883014U (zh) 一种基于红外滤波的红外双色探测器
CA3003004C (en) Filter array with reduced stray focused light
CN108089244A (zh) 一种宽带大角度减反射红外光学多层膜
CN107561617B (zh) 一种滤除二氧化碳辐射波长的中波红外透射光学元件及其制备方法
CN107315257B (zh) 一种中波红外与长波红外波段分色元件及设计方法
CN108196332B (zh) 一种可滤除二氧化碳红外吸收干扰的中波红外反射滤光薄膜
CN107783218B (zh) 一种深紫外带通滤光片及其制备方法
CN208207265U (zh) 一种深紫外窄带滤光片
US11215741B2 (en) Angle of incidence restriction for optical filters
CN113359221B (zh) 基于介质偶极子的入射角度不敏感的光谱滤光片及应用
US4554447A (en) Multi-element spectral filter with curved interior surfaces
Liu et al. Study on a new type of green infrared stealth film material
CN112839150B (zh) 一种基于Philips棱镜结构的日夜兼用摄像系统及摄像机
CN215813419U (zh) 一种三通滤波片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant