CN107546866B - 正向并联线圈电磁谐振能量传输系统设计方法 - Google Patents

正向并联线圈电磁谐振能量传输系统设计方法 Download PDF

Info

Publication number
CN107546866B
CN107546866B CN201710662935.XA CN201710662935A CN107546866B CN 107546866 B CN107546866 B CN 107546866B CN 201710662935 A CN201710662935 A CN 201710662935A CN 107546866 B CN107546866 B CN 107546866B
Authority
CN
China
Prior art keywords
coil
coils
positive
bridging
transmitting terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710662935.XA
Other languages
English (en)
Other versions
CN107546866A (zh
Inventor
施艳艳
王萌
梁洁
高伟康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201710662935.XA priority Critical patent/CN107546866B/zh
Publication of CN107546866A publication Critical patent/CN107546866A/zh
Application granted granted Critical
Publication of CN107546866B publication Critical patent/CN107546866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了正向并联线圈电磁谐振能量传输系统设计方法,涉及一种应用于无线电能传输的双正向并联谐振线圈制造方法。主要解决了无线电能传输系统近距离能量传输时,由于频率分裂的影响导致系统传输效率低下的问题。设计了一种双层绕制的发射线圈,即在原有单层单向绕制发射线圈的内部空间以相同方向绕制具有一定匝数内部线圈,使外部线圈和内部线圈“头头相连,尾尾相连”组成双正向并联结构。双正向并联线圈结构能够抑制收发线圈之间耦合强度的剧烈变化,减小近距离能量传输时频率分裂对系统传输效率所产生的影响。提高无线电能传输在近距离能量传输时,谐振频率处的传输效率。

Description

正向并联线圈电磁谐振能量传输系统设计方法
技术领域
本发明涉及正向并联线圈电磁谐振能量传输系统设计方法。
背景技术
磁耦合谐振式无线电能传输(wireless power transfer via magneticresonant coupling,WPT/MRC)技术具有传输距离中等、传输效率高、能穿过非磁导性障碍物传输电能等优点,使其有望取代电池成为物联网中的传感器节点无线供电。但是,磁耦合谐振式无线电能传输系统的传输效率随传输距离改变变化十分剧烈。
WPT/MRC系统只能在某一特定距离在系统工作于谐振频率处实现最大能力传输效率,当传输距离变大,尽管系统仍在谐振频率处具有最大能力传输系数,但是其数值会随着谐振线圈耦合系数的减弱而大幅降低;当传输距离较近时,谐振频率处的传输系数还会因为线圈之间耦合过强而减弱,而系统最佳能量传输频点也将分裂成谐振频率两侧的两个频率点,该现象也被称为“频率分裂(frequency spllitting)”。
为了抑制频率分裂,可以采用频率跟踪、阻抗匹配、改变线圈结构等方法。频率跟踪技术是通过在WPT/MRC系统中附加高频电流检测器、差分放大器、相位补偿器、锁相线圈等一系列复杂的电路来实现对发射回路谐振频率的跟踪控制,进而抑制频率分裂。但是,这些附加的电路会使系统变得复杂,也会消耗额外的能量。阻抗匹配方法是在WPT/MRC系统中使用可调阻抗匹配网络来抑制频率分裂,但是需要逆变电路、反馈电路、控制电路等根据传输的距离来调整匹配阻抗。此外,还可以通过改变线圈的结构的方式抑制频率分裂。
发明内容
本发明是为了实现在系统中不附加额外复杂电路、消耗多余能量的同时,能够有效抑制WPT/MRC中出现的频率分裂,从而提供一种正向并联线圈电磁谐振能量传输系统设计方法。
正向并联线圈电磁谐振能量传输系统设计方法,它由以下步骤实现;
步骤一、WPT/MRC系统发射端为双正向并联线圈,即双正向并联线圈作为发射线圈;接收端为单向线圈,即单向线圈作为接收线圈;双正向并联线圈由两个绕线方向相同,半径不同的线圈“头头相连,尾尾相连”并联组成;半径小的线圈嵌在半径大的线圈内部;接收线圈为单向线圈,绕线方向和双正向并联线圈一致;所有线圈均为圆形螺旋线圈;将发射端双正向并联线圈和接收端单向线圈同轴放置,并设定接收端单向线圈的半径为rR,匝数为nR,设定发射端组成双正向并联线圈的两个线圈半径分别为rT 1和rT 2,其中rT 1>rT 2
步骤二、线圈自感公式为:
式中,μ0为真空磁导率(4π×10-7H/m),r为线圈半径,n为线圈匝数,a为导线半径。
两单匝圆线圈之间的互感公式为:
式中,r1,r2分别是两单匝圆线圈的半径,d为两单匝圆线圈间的距离,K(k)和E(k)分别是第一类和第二类椭圆积分。
求出发射端两个正向线圈的自感分别为:
式中,rT 1和rT 2分别是两个正向线圈的半径,nT 1和nT 2分别为两个正向线圈的匝数,a为导线的半径。
发射端两个正向线圈和接收端单向线圈之间的互感分别为:
根据电路理论求出发射端双正向并联线圈和接收端单向线圈之间的互感为:
式中,nT 1和nT 2分别是发射端两个正向线圈的匝数,nR是接收端单向线圈匝数,rT 1和rT 2分别是发射端两个正向线圈的半径,rR则是接收端单向线圈半径,D为发射端两个正向线圈与接收端单向线圈中心点之间的距离;LT 1和LT 2分别是发射端两个正向线圈的自感;M12是发射端两个正向线圈之间的互感;M1(D)和M2(D)分别是发射端两个正向线圈和接收线圈之间的互感。
步骤三、通过求M(D)关于D的微分,得出公式:
根据双正向并联线圈和单向线圈的结构,在确定发射端两个正向线圈的半径后,可以求出两个正向线圈的匝数比。
步骤四、对两正向线圈的匝数进行调整,根据公式:
确定发射端双正向并联线圈和接收端单向线圈之间互感随距离变化曲线的平坦程度,v越小则表示互感随距离变化曲线越平坦;综合考虑后,得出两个正向线圈优化匝数分别为nT 1和nT 2
式中,D0为发射端双正向并联线圈和接收端单向线圈之间的初始距离,D1为两线圈间互感取最大值是两线圈间的距离。
步骤五、利用两个可调电容,分别将发射端双正向并联线圈和接收端单向线圈调谐在所用工作频率,完成正向并联线圈电磁谐振能量传输系统的制造。
接收端单向线圈的半径rR和匝数nR的设定标准根据实际充电目标确定;组成发射端双正向并联线圈的两个正向线圈的半径rT 1和rT 2的设定标准根据信号源确定。
组成发射端双正反向并联线圈的两个正向线圈匝数nT 1和nT 2的设定方法是根据发射端双正向并联线圈和接收端单向线圈之间的互感随传输距离变化曲线的平坦程度确定。
正向并联线圈电磁谐振能量传输系统设计方法,它包括发射线圈(由两个正向线圈组成的双正向并联线圈)、接收线圈(单向线圈)、可调电容C1和可调电容C2;所述线圈均为螺旋圆形线圈。
信号发生器的信号输出端与功率放大器的信号输入端连接;所述功率放大器的正向输出端子与可调电容C1的一端连接;所述可调电容C1的另一端分别与两个正向线圈的一端连接;所述两个正向线圈“头头相连,尾尾相连”;所述两个正向线圈的另一端与功率放大器的负向输出端子连接;
所述发射端双正向并联线圈和接收端单向线圈相对同轴放置,且两线圈中心点之间的距离为D,D为正数,所述接收端单向线圈的一端与负载的正向输入端子连接;所述接收端单向线圈的另一端与可调电容C2的一端连接,所述可调电容C2的另一端与负载的负向端子连接。
本发明获得的有益效果:双正向并联线圈作为WPT/MRC系统的发射线圈能有效抑制WPT/MRC频率分裂现象的产生。
附图说明
图1是WPT/MRC系统结构示意图;
图2是WPT/MRC系统的等效电路图;
图3是发射端双正向并联线圈和接收端单向线圈结构示意图;
图4是仿真所用的组件参数;
图5是单正向线圈作为发射线圈的无线电能传输系统传输效率随频率、收发线圈间距离变化的关系示意图;
图6是双正向并联线圈作为发射线圈的无线电能传输系统传输效率随频率、收发线圈间距离变化的关系示意图;
具体实施方式
以下结合附图,对正向并联线圈电磁谐振能量传输系统设计方法进行说明。
图1是WPT/MRC系统结构示意图。
如图1所示,WPT/MRC系统包括发信号发生器、功率放大器、射线圈(由两个正向线圈组成的双正向并联线圈)、接收线圈(单向线圈)、可调电容C1和可调电容C2和负载。
图2是WPT/MRC系统的等效电路图。
如图2所示,发射端两个正向线圈电感分别为Lt 1和Lt 2,接收端单向线圈电感为Lr;两个正向线圈之间的互感为M12;两个正向线圈与接收端单向线圈之间的互感分别为M1(D)和M2(D);等效之后,发射端双正向并联线圈的电感为Lt,发射端和接收端线圈之间的互感为M(D)。
图3是发射端双正向并联线圈和接收端单向线圈结构示意图。
如图3所示,发射端为双正向并联线圈,接收端为单向线圈。双正向并联线圈由两个正向线圈组成,两个正向线圈的绕线方向相同,“头头相连,尾尾相连”组成双正向并联线圈;接收端单向线圈的绕线方向和两个正向线圈的绕线方向相同,所述线圈均为圆形螺旋线圈。
线圈自感公式为:
式中,μ0为真空磁导率(4π×10-7H/m),r为线圈半径,n为线圈匝数,a为导线半径。
两单匝圆线圈之间的互感公式为:
式中,r1,r2分别是两单匝圆线圈的半径,d为两单匝圆线圈间的距离,K(k)和E(k)分别是第一类和第二类椭圆积分。
求出发射端两个正向线圈的自感分别为:
式中,rT 1和rT 2分别是两个正向线圈的半径,nT 1和nT 2分别为两个正向线圈的匝数,a为导线的半径。
发射端两个正向线圈和接收端单向线圈之间的互感分别为:
根据图2和电路理论求出发射端双正向并联线圈和接收端单向线圈之间的互感为:
式中,nT 1和nT 2分别是发射端两个正向线圈的匝数,nR是接收端单向线圈匝数,rT 1和rT 2分别是发射端两个正向线圈的半径,rR则是接收端单向线圈半径,D为发射端两个正向线圈与接收端单向线圈中心点之间的距离;LT 1和LT 2分别是发射端两个正向线圈的自感;M12是发射端两个正向线圈之间的互感;M1(D)和M2(D)分别是发射端两个正向线圈和接收线圈之间的互感。
通过对式(5)的微分得出式(6):
其中:
根据双正向并联线圈和单向线圈的结构,在确定发射端两个正向线圈的半径后,可以求出两个正向线圈的匝数比。
对两个正向线圈的匝数进行调整,根据公式:
确定发射端双正向并联线圈和接收端单向线圈之间互感随距离变化曲线的平坦程度,v越小则表示互感随距离变化曲线越平坦;综合考虑后,得出两个正向线圈优化匝数分别为nT 1和nT 2
式中,D0为发射端双正向并联线圈和接收端单向线圈之间的初始距离,D1为两线圈间互感取最大值是两线圈间的距离。
根据磁耦合谐振式无线能量传输系统的传输特性可以用传输系数S21来表示,传输效率用η来表示。
η=|S21|2×100% (9)
当系统工作于线圈谐振频率时,传输系数S21可以简化为(10)式:
由公式(10)可以看出,传输系数S21是关于互感和频率的函数,所以在固定工作频率下得到较好的效率变化曲线,可以通过改变线圈参数来实现。因此,对于线圈的优化设计是非常重要的。
图4给出了仿真所用的组件参数。
图5是单个正向线圈作为发射线圈的无线电能传输系统传输效率随频率、收发线圈间距离变化的仿真示意图。
如图5所示,单独使用单个正向线圈作为发射线圈,WPT/MRC系统在近距离传输时出现明显的频率分裂现象,系统在谐振频率出得传输效率明显降低。
图6是双正向并联线圈作为发射线圈的无线电能传输系统传输效率随频率、收发线圈间距离变化的仿真示意图。
如图6所示,使用由两个正向线圈“头头相连,尾尾相连”组成的双正向并联线圈作为发射线圈,WPT/MRC系统传输效率总是在谐振频率处最高,没有发生频率分裂现象。
通过对比图5和图6可以得出双正向并联线圈作为发射线圈的无线电能传输系统可以很好的抑制频率分裂现在的发生。
总结上面正向并联线圈电磁谐振能量传输系统设计方法,可以总结成如下设计步骤:
1、根据充电目标确定接收端单向线圈大小,根据电源确定发射端两个正向线圈的大小;
2、求出发射端双正向并联线圈和接收端单向线圈之间的互感,即求出(5),通过对(5)的微分得出(6),求出两个正向线圈之间的匝数比,对两个正向线圈的匝数进行调整,根据双正向并联线圈和单向线圈之间互感随距离变化曲线的平坦程度选取合适的匝数;
3、然后利用可调电容,将收发线圈调谐在所用工作频率
发明效果:通过理论计算可知,双正向并联线圈作为发射线圈的WPT/MRC系统可以有效抑制频率分裂现象的发生,并且可以使WPT/MRC系统在近距离内高效率地进行能量传输。

Claims (4)

1.正向并联线圈电磁谐振能量传输系统设计方法,其特征在于:它由以下步骤实现:
步骤一、WPT/MRC系统发射端为双正向并联线圈,即双正向并联线圈作为发射线圈;接收端为单向线圈,即单向线圈作为接收线圈;双正向并联线圈由两个绕线方向相同,半径不同的线圈头头相连、尾尾相连并联组成;半径小的线圈嵌在半径大的线圈内部;接收线圈为单向线圈,绕线方向和双正向并联线圈一致;所有线圈均为圆形螺旋线圈;将发射端双正向并联线圈和接收端单向线圈同轴放置,并设定接收端单向线圈的半径为rR,匝数为nR,设定发射端组成双正向并联线圈的两个线圈半径分别为rT 1和rT 2,其中rT 1>rT 2
步骤二、线圈自感公式为:
式中,μ0为真空磁导率(4π×10-7H/m),r为线圈半径,n为线圈匝数,a为导线半径;
两单匝圆线圈之间的互感公式为:
式中,r1,r2分别是两单匝圆线圈的半径,d为两单匝圆线圈间的距离,K(k)和E(k)分别是第一类和第二类椭圆积分;
根据电路理论求出发射端双正向并联线圈和接收端单向线圈之间的互感:
式中,nT 1和nT 2分别是发射端两个正向线圈的匝数,nR是接收端单向线圈匝数,rT 1和rT 2分别是发射端两个正向线圈的半径,rR则是接收端单向线圈半径,D为发射端两个正向线圈与接收端单向线圈中心点之间的距离;LT 1和LT 2分别是发射端两个正向线圈的自感;M12是发射端两个正向线圈之间的互感;M1(D)和M2(D)分别是发射端两个正向线圈和接收线圈之间的互感;
步骤三、通过求M(D)关于D的微分,得出公式:
根据双正向并联线圈和单向线圈的结构,在确定发射端两个正向线圈的半径后,可以求出两个正向线圈的匝数比;
步骤四、对两正向线圈的匝数进行调整,根据公式:
确定发射端双正向并联线圈和接收端单向线圈之间互感随距离变化曲线的平坦程度,v越小则表示互感随距离变化曲线越平坦;综合考虑后,得出两个正向线圈优化匝数分别为nT 1和nT 2
式中,D0为发射端双正向并联线圈和接收端单向线圈之间的初始距离,D1为两线圈间互感取最大值是两线圈间的距离;
步骤五、利用两个可调电容,分别将发射端双正向并联线圈和接收端单向线圈调谐在所用工作频率,完成正向并联线圈电磁谐振能量传输系统的制造。
2.根据权利要求1所述的正向并联线圈电磁谐振能量传输系统设计方法,其特征在于:接收端单向线圈的半径rR和匝数nR的设定标准根据实际充电目标确定;组成发射端双正向并联线圈的两正向线圈半径rT 1和rT 2的设定标准根据信号源确定。
3.根据权利要求2所述的正向并联线圈电磁谐振能量传输系统设计方法,其特征在于:组成发射端双正向并联线圈的两正向线圈匝数nT 1和nT 2的设定方法是根据发射端双正向并联线圈和接收端单向线圈之间的互感随传输距离变化曲线的平坦程度确定。
4.根据权利要求1所述的正向并联线圈电磁谐振能量传输系统设计方法,其特征在于:装置包括发射线圈、接收线圈、可调电容C1和可调电容C2,发射线圈由两个正向线圈组成的双正向并联线圈,接收线圈是与接收线圈同向的单向线圈;以上所述线圈均为螺旋圆形线圈;
信号发生器的信号输出端与功率放大器的信号输入端连接;所述功率放大器的正向输出端子与可调电容C1的一端连接;所述可调电容C1的另一端分别与两正向线圈的一端连接;所述两正向线圈“头头相连,尾尾相连”;所述两正向线圈的另一端与功率放大器的负向输出端子连接;
所述发射端双正向并联线圈和接收端单向线圈相对同轴放置,且两线圈中心点之间的距离为D,D为正数,所述接收端单向线圈的一端与负载的正向输入端子连接;所述接收端单向线圈的另一端与可调电容C2的一端连接,所述可调电容C2的另一端与负载的负向端子连接。
CN201710662935.XA 2017-08-04 2017-08-04 正向并联线圈电磁谐振能量传输系统设计方法 Active CN107546866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710662935.XA CN107546866B (zh) 2017-08-04 2017-08-04 正向并联线圈电磁谐振能量传输系统设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710662935.XA CN107546866B (zh) 2017-08-04 2017-08-04 正向并联线圈电磁谐振能量传输系统设计方法

Publications (2)

Publication Number Publication Date
CN107546866A CN107546866A (zh) 2018-01-05
CN107546866B true CN107546866B (zh) 2019-08-09

Family

ID=60970525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710662935.XA Active CN107546866B (zh) 2017-08-04 2017-08-04 正向并联线圈电磁谐振能量传输系统设计方法

Country Status (1)

Country Link
CN (1) CN107546866B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109363826B (zh) * 2018-09-26 2020-10-16 杭州电子科技大学温州研究院有限公司 一种基于植入线圈的肿瘤热疗装置及其参数优化方法
CN110071580B (zh) * 2019-06-10 2023-03-28 河南师范大学 高鲁棒性无线电能传输系统谐振频率优化设计方法
CN110112837A (zh) * 2019-06-25 2019-08-09 广州汇力威无线供电技术有限公司 基于pt对称原理的多发射线圈并联供电的无线供电系统
CN112491164B (zh) * 2020-12-02 2022-08-19 同济大学 高阶空间—时间对称的无线能量传输系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986245A (zh) * 2014-06-04 2014-08-13 中国矿业大学(北京) 基于双层双向螺旋线圈的无线电能传输系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417942B2 (ja) * 2009-03-31 2014-02-19 富士通株式会社 送電装置、送受電装置および送電方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986245A (zh) * 2014-06-04 2014-08-13 中国矿业大学(北京) 基于双层双向螺旋线圈的无线电能传输系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"一种提高PCB线圈的近距离传输效率的方法";丘小辉等;《电气技术》;20151231(第11期);7-11 *

Also Published As

Publication number Publication date
CN107546866A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
CN107546866B (zh) 正向并联线圈电磁谐振能量传输系统设计方法
CN107482790B (zh) 高效正向并联无线供电系统设计方法
CN107482793A (zh) 抑制频率分裂的正反向并联线圈设计方法
CN107394901B (zh) 抑制频率分裂的无线电能传输线圈设计方法
US10088508B2 (en) Wireless power transfer method and apparatus and method of detecting resonant frequency used in wireless power transfer
CN103414255A (zh) 一种自调谐磁耦合共振无线能量传输系统及其自调谐方法
CN107579600B (zh) 等半径共振供电线圈设计方法
CN206211680U (zh) 无线输电系统
CN107370248A (zh) 等半径电磁谐振并联供电线圈设计方法
CN107546867B (zh) 磁耦合高效率电能传输并联线圈设计方法
CN107749772B (zh) 一种无线能量信息同步传输系统
CN107508388B (zh) 磁耦合共振高效电能传输线圈设计方法
CN106877527A (zh) 基于不同谐振频率辅助线圈的无线能量传输方法
CN111740506B (zh) 一种具有稳定电压增益的三线圈无线电能传输系统的设计方法
CN103701487A (zh) 一种基于双频点谐振腔的水下无线电能和信号传输系统
CN103414254B (zh) 一种磁耦合共振无线能量传输系统功率匹配设计方法
CN107508387B (zh) 磁共振电能传输系统正向并联协调控制方法
CN109841389A (zh) 一种用于磁耦合无线电能传输的多线并绕线圈盘
CN109638977B (zh) 一种立体空间多节点功率均衡无线供电系统及方法
CN107565707B (zh) 磁耦合电能传输线圈最优切换设计方法
CN108767997A (zh) 一种太极型无线电能传输线圈结构
CN207939267U (zh) 非对称线圈结构磁耦合谐振无线电能传输系统
CN108682544A (zh) 无线充电系统发射线圈优化设计方法
CN103178802A (zh) 一种可调无耗匹配网络实现方法
US20150349540A1 (en) Apparatus and method for transmitting wireless power

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant