CN107543733A - A kind of condenser duty on-line monitoring system and measuring method - Google Patents
A kind of condenser duty on-line monitoring system and measuring method Download PDFInfo
- Publication number
- CN107543733A CN107543733A CN201710141817.4A CN201710141817A CN107543733A CN 107543733 A CN107543733 A CN 107543733A CN 201710141817 A CN201710141817 A CN 201710141817A CN 107543733 A CN107543733 A CN 107543733A
- Authority
- CN
- China
- Prior art keywords
- steam
- water
- pressure
- data
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 14
- 238000004364 calculation method Methods 0.000 claims abstract description 33
- 238000011056 performance test Methods 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 238000013480 data collection Methods 0.000 claims abstract description 12
- 238000007781 pre-processing Methods 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000000691 measurement method Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 140
- 238000000605 extraction Methods 0.000 claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000010248 power generation Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000002209 hydrophobic effect Effects 0.000 claims description 7
- 238000003303 reheating Methods 0.000 claims description 7
- 238000004134 energy conservation Methods 0.000 claims description 3
- 239000000498 cooling water Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明涉及一种凝汽器热负荷在线监测系统及测量方法,该系统包括在线数据收集模块、数据预处理模块、性能试验标定模块和数据计算分析模块,使用该系统的计算方法通过以凝结水流量为基准的ASME性能试验标定不同阀位对应的主蒸汽体积流量,以此试验数据为基础,借助其他压力和温度等辅助测量数据计算热力系统的主蒸汽流量、主给水流量、再热蒸汽流量等参数,进而获得进入汽轮机系统的总能量;依据系统能量守恒定律,从进入汽轮机系统的总能量中扣除发电机功率及各项损失后即获得凝汽器热负荷,从而使最终得到的热负荷数据精确度高,实时性好。
The invention relates to an online monitoring system and measurement method for condenser heat load. The system includes an online data collection module, a data preprocessing module, a performance test calibration module and a data calculation and analysis module. The flow-based ASME performance test calibrates the main steam volume flow corresponding to different valve positions. Based on this test data, calculate the main steam flow, main feedwater flow, and reheat steam flow of the thermal system with the help of other auxiliary measurement data such as pressure and temperature. and other parameters, and then obtain the total energy entering the steam turbine system; according to the law of conservation of system energy, the heat load of the condenser is obtained after deducting the generator power and various losses from the total energy entering the steam turbine system, so that the final heat load The data accuracy is high and the real-time performance is good.
Description
技术领域technical field
本发明涉及一种凝汽器热负荷在线监测系统及测量方法,属于火力发电技术领域。The invention relates to an on-line monitoring system and a measuring method for a heat load of a condenser, belonging to the technical field of thermal power generation.
背景技术Background technique
随着国家对火电机组节能减排工作的重视,实时在线监测汽轮机凝汽器热负荷对火力发电企业的节能减排工作具有重要的意义。As the country attaches great importance to the energy saving and emission reduction work of thermal power units, real-time online monitoring of the heat load of steam turbine condenser is of great significance to the energy saving and emission reduction work of thermal power generation enterprises.
目前获得凝汽器热负荷一般有两种方法:一种是通过正平衡方法计算进入凝汽器的蒸汽流量及蒸汽焓值、凝结水流量及凝结水焓值、进入凝汽器的疏水流量及疏水焓值,从而直接求解凝汽器热负荷;另一种方法是通过测量流过凝汽器的循环冷却水流量及进出凝汽器的循环冷却水温度来计算凝汽器热负荷。At present, there are generally two ways to obtain the heat load of the condenser: one is to calculate the steam flow rate and steam enthalpy value entering the condenser, the condensate flow rate and condensate enthalpy value, the drain flow rate and The heat load of the condenser can be solved directly by using the enthalpy value of the water trap; another method is to calculate the heat load of the condenser by measuring the flow rate of the circulating cooling water flowing through the condenser and the temperature of the circulating cooling water entering and leaving the condenser.
上述第一种方法因为要通过整机的能量平衡计算低压缸排汽焓,涉及到的测试参数及测试仪表较多,因此精度难以得到保证。The above-mentioned first method needs to calculate the exhaust enthalpy of the low-pressure cylinder through the energy balance of the whole machine, which involves many test parameters and test instruments, so the accuracy is difficult to guarantee.
上述第二种方法需要精确的测量循环冷却水流量及进出凝汽器的循环水温度。然而 300MW等级及以上的机组循环冷却水管道直径达2m-3m,无法用精度较高的流量喷嘴或孔板测量,而超声波流量计的测量精度又较差;其次,循环冷却水温升一般不超过10℃,即使较小的温度测量误差也会对凝汽器热负荷的计算带来较大误差。The above second method requires accurate measurement of the circulating cooling water flow rate and the temperature of the circulating water entering and leaving the condenser. However, the circulating cooling water pipes of 300MW and above units have a diameter of 2m-3m, which cannot be measured with high-precision flow nozzles or orifice plates, and the measurement accuracy of ultrasonic flowmeters is poor; secondly, the temperature rise of circulating cooling water is generally not high. If it exceeds 10°C, even a small temperature measurement error will bring a large error to the calculation of the heat load of the condenser.
专利201510007306.4所述的凝汽器热负荷计算方法利用热耗率和负荷的关系曲线,对运行参数进行反向修正,得到汽轮机热耗率,进而求得对应的凝汽器热负荷。该方法所依据的热耗率和负荷关系曲线仅能反映机组试验隔离状态下的汽轮机热耗,而实际运行中机组并非处于隔离状态,且大多数机组存在对外抽汽,锅炉吹灰排污等影响,因此该方法的计算精度受制于系统状态的影响较大。The heat load calculation method of the condenser described in patent 201510007306.4 uses the relationship curve between the heat consumption rate and the load to reversely correct the operating parameters to obtain the heat consumption rate of the steam turbine, and then obtain the corresponding heat load of the condenser. The heat consumption rate and load relationship curve based on this method can only reflect the heat consumption of the steam turbine in the isolation state of the unit test, but the units are not in the isolation state in actual operation, and most units have external steam extraction, boiler soot blowing and sewage discharge, etc. , so the calculation accuracy of this method is greatly affected by the state of the system.
发明内容Contents of the invention
本发明为了解决现有技术中存在的问题,提供一种准确的实时在线监测凝汽器热负荷的系统与方法。In order to solve the problems existing in the prior art, the present invention provides an accurate real-time online monitoring system and method for the heat load of the condenser.
为了达到上述目的,本发明提出的技术方案为:一种凝汽器热负荷在线监测系统,用于在线监测火力发电机组中凝汽器的热负荷,该系统包括在线数据收集模块、数据预处理模块、性能试验标定模块和数据计算分析模块,所述在线数据收集模块与数据预处理模块连接,数据预处理模块连接与性能试验标定模块连接,性能试验标定模块与数据计算分析模块连接,所述在线数据收集模块包括若干个压力温度传感器、机组自带的发电机出口处的电功率计和供热抽汽管道上的流量传感器,若干个压力温度传感器分别设置于主蒸汽管路、再热蒸汽管路、供热抽汽管路、供热抽汽回水管路、最终给水管路、冷再蒸汽管路、再热减温水管路、再热减温器的入口与出口以及高压加热器的进水口、出水口、进汽口与疏水口处;所述火力发电机组中高压加热器设有三个,分别为第一高压加热器、第二高压加热器和第三高压加热器,所述在线数据收集模块用于收集在线数据,所述数据预处理模块用于对在线数据进行预处理,所述性能试验标定模块用于存储通过高精度ASME试验标定过的基准数据,并接收预处理后的数据,且根据预处理后的数据得到主蒸汽体积流量等基准数据,所述数据计算分析模块用于对在线数据与基准数据进行计算分析得到汽轮机凝汽器热负荷。In order to achieve the above object, the technical solution proposed by the present invention is: an online monitoring system for condenser thermal load, which is used to monitor the thermal load of the condenser in thermal power generating units on-line, the system includes an online data collection module, data preprocessing module, a performance test calibration module and a data calculation and analysis module, the online data collection module is connected to the data preprocessing module, the data preprocessing module is connected to the performance test calibration module, the performance test calibration module is connected to the data calculation and analysis module, and the The online data collection module includes several pressure and temperature sensors, the electric power meter at the generator outlet of the unit, and the flow sensor on the heating and extraction pipeline. Several pressure and temperature sensors are respectively installed in the main steam pipeline and the reheat steam pipeline. pipeline, heating extraction steam pipeline, heating extraction steam return water pipeline, final water supply pipeline, cold resteam pipeline, reheat desuperheating water pipeline, inlet and outlet of reheat desuperheater, and inlet and outlet of high pressure heater At the water outlet, water outlet, steam inlet and drain port; there are three high-pressure heaters in the thermal power generation unit, which are respectively the first high-pressure heater, the second high-pressure heater and the third high-pressure heater. The online data The collection module is used to collect online data, the data preprocessing module is used to preprocess online data, and the performance test calibration module is used to store benchmark data calibrated by high-precision ASME tests and receive preprocessed data , and obtain benchmark data such as the main steam volume flow rate according to the preprocessed data, and the data calculation and analysis module is used to calculate and analyze the online data and the benchmark data to obtain the heat load of the steam turbine condenser.
对上述技术方案的改进为:所述数据计算分析模块包括数据转换模块和数据计算模块,所述数据转换模块用于通过水和蒸汽性质计算软件包将压力温度传感器收集的压力和温度数据转换为密度和焓值等数据。The improvement to the above technical solution is: the data calculation and analysis module includes a data conversion module and a data calculation module, and the data conversion module is used to convert the pressure and temperature data collected by the pressure and temperature sensors into Data such as density and enthalpy.
对上述技术方案的改进为:还包括终端显示模块,所述终端显示模块与数据计算分析模块连接,用于接收凝汽器热负荷数据并进行显示。The improvement to the above technical solution is: further comprising a terminal display module connected to the data calculation and analysis module for receiving and displaying the heat load data of the condenser.
一种采用上述凝汽器热负荷在线监测系统的凝汽器热负荷在线测量方法,包括如下步骤:A method for online measurement of condenser heat load using the above-mentioned condenser heat load online monitoring system, comprising the following steps:
步骤1、通过压力温度传感器收集火力发电机组中各个管道内蒸汽与水的压力和温度等在线数据,并收集火力发电机组DCS系统中的发电机功率和供热抽汽量等在线数据;Step 1. Collect online data such as the pressure and temperature of steam and water in each pipeline in the thermal power generation unit through pressure and temperature sensors, and collect online data such as generator power and heating and extraction volume in the DCS system of the thermal power generation unit;
步骤2、通过ASME试验标定计算所需的基准数据;Step 2. Calculate the required benchmark data through ASME test calibration;
步骤3、根据步骤1收集的压力和温度数据利用水和蒸汽性质计算软件包计算出蒸汽与水的密度和焓值数据;Step 3, using the water and steam property calculation software package to calculate the density and enthalpy data of steam and water according to the pressure and temperature data collected in step 1;
步骤4、计算火力发电机组中的各管道中蒸汽与水的质量流量;Step 4, calculate the mass flow rate of steam and water in each pipeline in the thermal power generating set;
步骤5、计算火力发电机组中汽轮机系统获得的热量,Step 5, calculate the heat obtained by the steam turbine system in the thermal power generating set,
Q0=Fmhm+Frhr-Fwhw-Fcrhcr-Frhshrhs-Fcq(hcq-hhs)+3600(Wf+Wn)ηT (9)Q 0 =F m h m +F r h r -F w h w -F cr h cr -F rhs h rhs -F cq (h cq -h hs )+3600(W f +W n )η T (9 )
式中:Q0为汽轮机系统获得的热量,Fm为主蒸汽流量,hm为主蒸汽焓值,Fr为再热蒸汽流量,hr为再热蒸汽焓值,Fw为最终给水流量,hw为最终给水焓值,Fcr为冷再蒸汽流量,hcr为冷再蒸汽焓值,Frhs为再热减温水流量,hrhs为再热减温水焓值,Fcq为供热抽汽流量,hcq为供热抽汽焓值,hhs为供热抽汽回水焓值,Wf为给水泵电机功率,kW; Wn为凝泵电机功率,ηT为功热转换效率;In the formula: Q 0 is the heat obtained by the steam turbine system, F m is the main steam flow rate, h m is the main steam enthalpy value, F r is the reheat steam flow rate, h r is the reheat steam enthalpy value, F w is the final feed water flow rate , h w is the final feed water enthalpy value, F cr is the cold resteam flow rate, h cr is the cold resteam enthalpy value, F rhs is the reheat desuperheating water flow rate, h rhs is the reheat desuperheating water enthalpy value, F cq is the heating Extraction steam flow, h cq is heating extraction steam enthalpy, h hs is heating extraction steam return enthalpy, W f is feed water pump motor power, kW; W n is condensing pump motor power, η T is work heat conversion efficiency;
步骤6、计算凝汽器热负荷;Step 6, calculating the heat load of the condenser;
依据系统能量守恒的原理计算凝汽器热负荷;Calculate the heat load of the condenser according to the principle of system energy conservation;
式中:Qn为凝汽器热负荷,Wc为发电机功率,ηg为发电机效率,ηm为机械效率。Where: Q n is the heat load of the condenser, W c is the power of the generator, η g is the efficiency of the generator, and η m is the mechanical efficiency.
对上述技术方案的改进为:所述步骤2中ASME试验的内容为:The improvement to above-mentioned technical scheme is: the content of ASME test in the described step 2 is:
①通过高精度的热力性能试验测试不同汽轮机综合阀位对应的主蒸汽体积流量,①Through the high-precision thermal performance test to test the main steam volume flow rate corresponding to the comprehensive valve position of different steam turbines,
②通过变汽温试验测试高压缸与中压缸合缸结合处的过桥漏汽量Dg。② Test the bridge leakage D g at the junction of the high-pressure cylinder and the medium-pressure cylinder through the variable steam temperature test.
对上述技术方案的改进为:所述步骤4中计算的质量流量包括主蒸汽质量流量、最终给水流量、冷再蒸汽流量、再热减温水量和再热蒸汽流量。The improvement to the above technical solution is: the mass flow calculated in step 4 includes the main steam mass flow, the final feed water flow, the cold resteam flow, the reheated desuperheating water amount and the reheated steam flow.
对上述技术方案的改进为:所述主蒸汽质量流量的计算方法为:The improvement to the above technical solution is: the calculation method of the main steam mass flow rate is:
①采集汽轮机综合阀位值ψi,根据步骤2的基准数据获取当前综合阀位值ψi对应的主蒸汽体积流量Qi;①Collect the steam turbine integrated valve position value ψ i , and obtain the main steam volume flow Q i corresponding to the current integrated valve position value ψ i according to the benchmark data in step 2;
②采集主蒸汽压力值Pm和主蒸汽温度值tm,通过水和蒸汽性质计算软件包计算出主蒸汽密度ρm;②Collect the main steam pressure value P m and the main steam temperature value t m , and calculate the main steam density ρ m through the water and steam property calculation software package;
③利用主蒸汽体积流量Qi和主蒸汽密度ρm计算主蒸汽质量流量Fm;③ Calculate the main steam mass flow rate F m by using the main steam volume flow rate Q i and the main steam density ρ m ;
所述最终给水流量的计算方法为:The calculation method of the final feed water flow is:
Fw=Fm+D0 F w =F m +D 0
上式中:D0为炉侧汽水工质排出量。In the above formula: D 0 is the discharge volume of steam and water on the furnace side.
对上述技术方案的改进为:所述冷再蒸汽流量的计算方法为:The improvement to the above technical solution is: the calculation method of the cold resteam flow is:
①采集第一高压加热器的进水压力P1j、进水温度t1j、出水压力P1c、出水温度t1c、进汽压力P1、进汽温度t1、疏水压力Ps1、疏水温度ts1等参数;① Collect the inlet water pressure P 1j , inlet water temperature t 1j , outlet water pressure P 1c , outlet water temperature t 1c , inlet steam pressure P 1 , inlet steam temperature t 1 , drain pressure P s1 , drain temperature t of the first high pressure heater s1 and other parameters;
通过水和蒸汽性质计算软件包计算出高压加热器的进水焓值h1j、出水焓值h1c、进汽焓值 h1、疏水焓值hs1,计算抽汽流量F1;Calculate the inlet water enthalpy value h 1j , the outlet water enthalpy value h 1c , the inlet steam enthalpy value h 1 , and the drain enthalpy value h s1 of the high pressure heater through the water and steam property calculation software package, and calculate the extraction flow F 1 ;
②采集第二高加进水压力P2j、进水温度t2j、出水压力P2c、出水温度t2c、进汽压力P2、进汽温度t2、疏水压力Ps2、疏水温度ts2等参数;② Collect the second highest water inlet pressure P 2j , inlet water temperature t 2j , outlet water pressure P 2c , outlet water temperature t 2c , inlet steam pressure P 2 , inlet steam temperature t 2 , drain pressure P s2 , drain temperature t s2 , etc. parameter;
通过水和蒸汽性质计算软件包计算出#2高加进水焓值h2j、出水焓值h2c、进汽焓值h2、疏水焓值hs2,计算2段抽汽流量F2,其中第二高加的出水压力P2c、出水温度t2c与第一高加的进水压力P1j、进水温度t1j取同样的数值;Calculate #2 high inlet water enthalpy value h 2j , outlet water enthalpy value h 2c , inlet steam enthalpy value h 2 , and hydrophobic enthalpy value h s2 through the water and steam property calculation software package, and calculate the 2-stage extraction flow F 2 , where The outlet water pressure P 2c and outlet water temperature t 2c of the second high-pressure generator are the same as the inlet water pressure P 1j and inlet water temperature t 1j of the first high-pressure generator;
③计算冷再蒸汽流量Fcr,③Calculate the cold resteam flow rate F cr ,
Fcr=Fm-F1-F2-Dm-Dg-Dz上式中:Dg为过桥漏气量、Dm为门杆漏汽量、Dz为高压缸后轴封漏汽量。F cr =F m -F 1 -F 2 -D m -D g -D z In the above formula: D g is the air leakage of the bridge, D m is the air leakage of the door rod, and D z is the rear shaft seal of the high pressure cylinder Leakage.
对上述技术方案的改进为:所述再热减温水量的计算方法为:The improvement to the above-mentioned technical solution is: the calculation method of the reheating and desuperheating water volume is:
①采集再热减温器前的压力Pzq和温度tzq、再热减温器后的压力Pzh和温度tzh、再热减温水的压力Prhs和温度trhs;① Collect the pressure P zq and temperature t zq before the reheat desuperheater, the pressure P zh and temperature t zh after the reheat desuperheater, and the pressure P rhs and temperature t rhs of the reheat desuperheater;
②通过水和蒸汽性质计算软件包计算出再热减温器前的蒸汽焓值hzq、再热减温器后的蒸汽焓值hzh、再热减温水的焓值hrhs,计算再热减温水量Frhs;② Calculate the steam enthalpy value h zq before the reheat desuperheater, the steam enthalpy value h zh after the reheat desuperheater, and the enthalpy value h rhs of the reheat desuperheater water through the water and steam property calculation software package, and calculate the reheat The amount of desuperheating water F rhs ;
对上述技术方案的改进为:所述再热蒸汽流量的计算公式为:The improvement to the above technical solution is: the calculation formula of the reheating steam flow is:
Fr=Fcr+Frhs。F r =F cr +F rhs .
本发明的有益效果为:The beneficial effects of the present invention are:
(1)主蒸汽流量及再热蒸汽流量是利用在线监测的数据和基准数据间接计算获得,因此不受系统隔离的影响,适合在线计算;(2)主蒸汽体积流量由高精度的ASME试验获取,并作为基准值,因此精确度高;(3)本发明中所需参数,如综合阀位、发电机功率、压力、温度等,这些参数均为直接测量参数,因此参数容易获取且数据可靠;(4)由于汽轮机组每次大修前后都需要进行热力性能试验,因此有利于本发明标定主蒸汽流量系数。(1) The main steam flow rate and reheat steam flow rate are calculated indirectly by using online monitoring data and benchmark data, so they are not affected by system isolation and are suitable for online calculation; (2) The main steam volume flow rate is obtained by high-precision ASME tests , and as a reference value, so the accuracy is high; (3) required parameters in the present invention, such as comprehensive valve position, generator power, pressure, temperature, etc., these parameters are all direct measurement parameters, so the parameters are easy to obtain and reliable data (4) Since the steam turbine unit needs to carry out the thermal performance test before and after each overhaul, it is beneficial for the present invention to calibrate the main steam flow coefficient.
附图说明Description of drawings
图1为本发明实施例系统的结构示意图。FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present invention.
图2为本发明实施例数据采集元件布置示意图。FIG. 2 is a schematic diagram of the arrangement of data acquisition components according to an embodiment of the present invention.
具体实施方式detailed description
下面结合附图以及具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例:Example:
如图1所示,本实施例的一种凝汽器热负荷在线监测系统,用于在线监测火力发电机组中凝汽器的热耗率,该系统包括在线数据收集模块、数据预处理模块、性能试验标定模块、数据计算分析模块和终端显示模块,在线数据收集模块与数据预处理模块连接,数据预处理模块连接与性能试验标定模块连接,性能试验标定模块与数据计算分析模块连接。As shown in Figure 1, a kind of condenser thermal load online monitoring system of the present embodiment is used for online monitoring the heat consumption rate of the condenser in the thermal power generation unit, and the system includes an online data collection module, a data preprocessing module, The performance test calibration module, the data calculation and analysis module and the terminal display module, the online data collection module is connected with the data preprocessing module, the data preprocessing module is connected with the performance test calibration module, and the performance test calibration module is connected with the data calculation and analysis module.
在线数据收集模块包括若干个压力温度传感器、机组自带的发电机出口处的电功率计和供热抽汽管道上的流量传感器,,在线数据收集模块用于收集压力和温度等在线数据,数据预处理模块用于对在线数据进行预处理,性能试验标定模块用于存储通过高精度ASME试验标定过的基准数据,并接收预处理后的数据,且根据预处理后的数据得到主蒸汽体积流量和再热蒸汽质量流量等基准数据,数据计算分析模块包括数据转换模块和数据计算模块,数据转换模块用于通过水和蒸汽性质计算软件包将压力温度传感器收集的压力和温度数据转换为密度和焓值等数据,数据计算模块用于对在线数据与基准数据进行计算分析得到汽轮机热耗率。终端显示模块与数据计算分析模块连接,用于接收热耗率数据并进行显示。The online data collection module includes several pressure and temperature sensors, the electric power meter at the generator outlet of the unit and the flow sensor on the heating and extraction pipeline. The online data collection module is used to collect online data such as pressure and temperature. The processing module is used to preprocess the online data, and the performance test calibration module is used to store the benchmark data calibrated by the high-precision ASME test, receive the preprocessed data, and obtain the main steam volume flow rate and Reheat steam mass flow and other benchmark data, the data calculation and analysis module includes a data conversion module and a data calculation module, the data conversion module is used to convert the pressure and temperature data collected by the pressure and temperature sensor into density and enthalpy through the water and steam property calculation software package Value and other data, the data calculation module is used to calculate and analyze the online data and benchmark data to obtain the heat rate of the steam turbine. The terminal display module is connected with the data calculation and analysis module for receiving and displaying the heat rate data.
如图2所示,应用本实施例的监测系统的火力发电机组包括锅炉1、主蒸汽管路、再热蒸汽管路、冷再蒸汽管路、高压缸2、中压缸3、低压缸4、发电机5、凝汽器6、凝泵7、低压加热器8、除氧器9、给水泵10、第一高压加热器11、第二高压加热器12、第三高压加热器13、最终给水管路14、过热减温器15、再热减温器16、再减水管路17、一段抽汽管路 18、供热抽汽管路19和供热抽汽回水管路24、过热减温器15和再热减温器16设置于锅炉1 内,过热减温器15的出口通过主蒸汽管路与高压缸2的入口连接,高压缸2出口通过冷再蒸汽管路与再热减温器16的入口连接,再热减温器16的出口通过再热蒸汽管路与中压缸3的入口连接,中压缸3的出口与低压缸4入口连接,低压缸4出口与凝汽器6连接,凝泵7、低压加热器8、除氧器9和给水泵10沿水流方向依次设置于凝汽器6与高压加热器之间,高压加热器通过最终给水管路14与过热减温器15的入口连接,供热抽汽回水管路24连接于低压加热器8和除氧器9之间,供热抽汽管路19连接于中压缸3出口处,一段抽汽管路18一端连接于高压缸2上,另一端与第一高压加热器13进汽口连接,再减水管路17位于给水泵 10和再热减温器16之间,并与给水泵10和再热减温器16连接,第二高压加热器12进汽口与冷再蒸汽管路连接,在主蒸汽管路、再热蒸汽管路、供热抽汽管路、供热抽汽回水管路、最终给水管路、冷再蒸汽管路、再热减温水管路、再热减温器的入口与出口以及高压加热器的进水口、出水口、进汽口和疏水口处均设有压力温度传感器。As shown in Figure 2, the thermal power generation unit applying the monitoring system of this embodiment includes a boiler 1, a main steam pipeline, a reheat steam pipeline, a cold resteam pipeline, a high-pressure cylinder 2, a medium-pressure cylinder 3, and a low-pressure cylinder 4 , generator 5, condenser 6, condensate pump 7, low-pressure heater 8, deaerator 9, feed water pump 10, first high-pressure heater 11, second high-pressure heater 12, third high-pressure heater 13, and finally Water supply pipeline 14, superheat desuperheater 15, reheat desuperheater 16, rewater reduction pipeline 17, one-stage steam extraction pipeline 18, heat supply and steam extraction pipeline 19, heat supply and steam extraction return water pipeline 24, superheat desuperheater The superheater 15 and the reheat desuperheater 16 are arranged in the boiler 1, the outlet of the superheater desuperheater 15 is connected with the inlet of the high-pressure cylinder 2 through the main steam pipeline, and the outlet of the high-pressure cylinder 2 is connected with the reheat desuperheater through the cold resteam pipeline. The inlet of the thermostat 16 is connected, the outlet of the reheat desuperheater 16 is connected to the inlet of the medium pressure cylinder 3 through the reheat steam pipeline, the outlet of the medium pressure cylinder 3 is connected to the inlet of the low pressure cylinder 4, and the outlet of the low pressure cylinder 4 is connected to the condensing steam Condenser 6, condensate pump 7, low-pressure heater 8, deaerator 9 and feed water pump 10 are sequentially arranged between the condenser 6 and the high-pressure heater along the water flow direction. The inlet of the thermostat 15 is connected, the heat supply and extraction steam return pipeline 24 is connected between the low pressure heater 8 and the deaerator 9, the heat supply and extraction pipeline 19 is connected to the outlet of the medium pressure cylinder 3, and a section of steam extraction pipeline 18, one end is connected to the high-pressure cylinder 2, and the other end is connected to the steam inlet of the first high-pressure heater 13, and the water reduction pipeline 17 is located between the feedwater pump 10 and the reheat desuperheater 16, and is connected to the feedwater pump 10 and the reheater desuperheater 16. The desuperheater 16 is connected, and the steam inlet of the second high-pressure heater 12 is connected with the cold resteam pipeline. The final feed water pipeline, cold resteam pipeline, reheat desuperheating water pipeline, the inlet and outlet of the reheat desuperheater, and the water inlet, water outlet, steam inlet and drain of the high pressure heater are all equipped with pressure and temperature sensor.
利用上述检测系统的汽轮机热耗率在线测量方法,是基于热力性能试验数据和系统能量守恒定律提出的,包括如下步骤:The online measurement method of steam turbine heat rate using the above-mentioned detection system is proposed based on the thermal performance test data and the law of conservation of system energy, including the following steps:
(1)通过高精度热力性能试验标定监测系统中计算所需基准数据(1) Calculate the required benchmark data in the monitoring system through high-precision thermal performance test calibration
①通过高精度的热力性能试验测试若干组不同综合阀位对应的主蒸汽体积流量,如公式 (1)所示:①Through the high-precision thermal performance test, the main steam volume flow rate corresponding to several groups of different comprehensive valve positions is tested, as shown in the formula (1):
式中:ψ为综合阀位值,单位为%;Q为主蒸汽体积流量,单位为m3/h;In the formula: ψ is the comprehensive valve position value, the unit is %; Q is the main steam volume flow rate, the unit is m 3 /h;
②通过变汽温试验测试高中压缸合缸处的过桥漏汽量Dg;对于高中压分缸机组,不需要测试该项,此时默认该项数值为0;②Test the bridge leakage D g at the combined cylinder of the high and medium pressure cylinders through the variable steam temperature test; for the high and medium pressure split cylinder unit, this item does not need to be tested, and the value of this item is 0 by default at this time;
(2)采集汽轮机综合阀位值,通过对公式(1)所述的两列数据进行线性插值获取当前综合阀位值ψi对应的主蒸汽体积流量Qi;(2) Collect the comprehensive valve position value of the steam turbine, and obtain the main steam volume flow Q i corresponding to the current comprehensive valve position value ψ i by performing linear interpolation on the two columns of data described in formula (1);
同时将采集到的主蒸汽压力值Pm和主蒸汽温度值tm,通过水和蒸汽性质计算软件包计算出主蒸汽密度ρm,将主蒸汽的体积流量转换成主蒸汽质量流量Fm;At the same time, the collected main steam pressure value P m and main steam temperature value t m are calculated through the water and steam property calculation software package to calculate the main steam density ρ m , and convert the volume flow rate of the main steam into the main steam mass flow rate F m ;
(3)通过公式(3)计算主给水流量,(3) Calculate the main feedwater flow rate by formula (3),
Fw=Fm-D0 公式(3)F w =F m -D 0 formula (3)
式中:Fw为主给水流量,单位为t/h;Fm为主蒸汽流量,单位为t/h;D0为炉侧汽水工质排出量,为一常数,单位为t/h;In the formula: F w is the main feed water flow, the unit is t/h; F m is the main steam flow, the unit is t/h; D 0 is the steam and water working medium discharge on the boiler side, which is a constant, and the unit is t/h;
(4)采集第一高加进水压力P1j、进水温度t1j、出水压力P1c、出水温度t1c、进汽压力P1、进汽温度t1、疏水压力Ps1、疏水温度ts1等参数,并通过水和蒸汽性质计算软件包计算出#1高加进水焓值h1j、出水焓值h1c、进汽焓值h1、疏水焓值hs1,将其代入公式(4)计算1段抽汽流量F1;(4) Collect the inlet water pressure P 1j , inlet water temperature t 1j , outlet water pressure P 1c , outlet water temperature t 1c , inlet steam pressure P 1 , inlet steam temperature t 1 , drain pressure P s1 , drain temperature t s1 and other parameters, and calculate #1 high inlet water enthalpy value h 1j , outlet water enthalpy value h 1c , inlet steam enthalpy value h 1 , hydrophobic enthalpy value h s1 through the water and steam property calculation software package, and substitute them into the formula ( 4) Calculate the steam extraction flow F 1 of stage 1 ;
式中:Fw为主给水流量,单位为t/h;h1c为第一高加出水焓值,单位为kJ/kg;h1j为第一高加进水焓值,单位为kJ/kg;h1为第一高加进汽焓值,单位为kJ/kg;hs1为第一高加疏水焓值,单位为kJ/kg;In the formula: F w is the main feed water flow rate, the unit is t/h; h 1c is the first highest added water enthalpy value, the unit is kJ/kg; h 1j is the first highest added water enthalpy value, the unit is kJ/kg ; h 1 is the enthalpy value of the first high addition steam, the unit is kJ/kg; h s1 is the first high addition hydrophobic enthalpy value, the unit is kJ/kg;
(5)采集第二高加进水压力P2j、进水温度t2j、出水压力P2c、出水温度t2c、进汽压力P2、进汽温度t2、疏水压力Ps2、疏水温度ts2等参数,并通过水和蒸汽性质计算软件包计算出第二高加进水焓值h2j、出水焓值h2c、进汽焓值h2、疏水焓值hs2,将其代入公式(5)计算2段抽汽流量F2,其中第二高加的出水压力P2c、出水温度t2c与第一高加的进水压力P1j、进水温度t1j取同样的数值;(5) Collect the second highest water inlet pressure P 2j , inlet water temperature t 2j , outlet water pressure P 2c , outlet water temperature t 2c , inlet steam pressure P 2 , inlet steam temperature t 2 , drain pressure P s2 , drain temperature t s2 and other parameters, and calculate the second highest incoming water enthalpy value h 2j , outgoing water enthalpy value h 2c , incoming steam enthalpy value h 2 , and hydrophobic enthalpy value h s2 through the water and steam property calculation software package, and substitute them into the formula ( 5) Calculate the steam extraction flow F 2 in the second stage, where the outlet water pressure P 2c and outlet water temperature t 2c of the second high-pressure generator are the same as the inlet water pressure P 1j and inlet water temperature t 1j of the first high-pressure generator;
式中:Fw为主给水流量,单位为t/h;h2j为第二高加进水焓值,单位为kJ/kg;h2c为第二高加出水焓值,单位为kJ/kg;hs1为第一高加疏水焓值,单位为kJ/kg;hs2为第二高加疏水焓值,单位为kJ/kg;In the formula: F w is the main feed water flow rate, the unit is t/h; h 2j is the second highest added water enthalpy value, the unit is kJ/kg; h 2c is the second highest added water enthalpy value, the unit is kJ/kg ; h s1 is the first high addition hydrophobic enthalpy, the unit is kJ/kg; h s2 is the second high addition hydrophobic enthalpy, the unit is kJ/kg;
(6)将上面计算所得的主蒸汽流量Fm、1段抽汽流量F1、2段抽汽流量F2,以及门杆漏汽量Dm、过桥漏汽量Dg、高压缸后轴封漏汽量Dz等参数代入公式(6)计算冷再热蒸汽流量 Fcr (6) Calculate the main steam flow rate F m , the first-stage extraction steam flow rate F 1 , the second-stage extraction steam flow rate F 2 , and the door rod leakage D m , the bridge leakage D g , and the high-pressure cylinder Substitute parameters such as shaft seal steam leakage D z into formula (6) to calculate cold reheat steam flow F cr
Fcr=Fm-F1-F2-Dm-Dg-Dz 公式(6)F cr =F m -F 1 -F 2 -D m -D g -D z formula (6)
其中,门杆漏汽量Dm和高压缸后轴封漏汽量Dz按照设计值处理;Among them, the steam leakage amount D m of the door rod and the steam leakage amount D z of the rear shaft seal of the high-pressure cylinder are handled according to the design values;
(6)通过采集再热减温器前的压力Pzq和温度tzq、再热减温器后的压力Pzh和温度tzh、再热减温水的压力Prhs和温度trhs,分别通过水和蒸汽性质计算软件包计算出再热减温器前的蒸汽焓值hzq、再热减温器后的蒸汽焓值hzh、再热减温水的焓值hrhs,并代入公式(7)计算再热减温水量Frhs (6) By collecting the pressure P zq and temperature t zq before the reheat desuperheater, the pressure P zh and temperature t zh after the reheat desuperheater, and the pressure P rhs and temperature t rhs of the reheat desuperheater water, respectively through The water and steam property calculation software package calculates the steam enthalpy value h zq before the reheat desuperheater, the steam enthalpy value h zh after the reheat desuperheater, and the enthalpy value h rhs of the reheat desuperheater water, and substitutes them into the formula (7 ) to calculate the amount of reheating and desuperheating water F rhs
式中:Fcr为冷再热蒸汽流量,单位为t/h;hzh为再热减温器后的蒸汽焓值,单位为kJ/kg; hzq为再热减温器前的蒸汽焓值,单位为kJ/kg;hrhs为再热减温水焓值,单位为kJ/kg;In the formula: F cr is the cold reheat steam flow rate, the unit is t/h; h zh is the steam enthalpy value after the reheat desuperheater, the unit is kJ/kg; h zq is the steam enthalpy before the reheat desuperheater value, the unit is kJ/kg; h rhs is the enthalpy value of reheating and desuperheating water, the unit is kJ/kg;
将公式(6)计算出的冷再蒸汽流量Fcr、公式(7)计算的再热减温水量Frhs,代入公式(8)计算再热蒸汽流量Fr Substitute the cold re-steam flow rate F cr calculated by formula (6) and the reheated desuperheating water volume F rhs calculated by formula (7) into formula (8) to calculate the reheat steam flow rate F r
Fr=Fcr+Frhs 公式(8)F r =F cr +F rhs formula (8)
(7)将采集系统采集到的主蒸汽压力Pm、主蒸汽温度tm、再热蒸汽压力Pr、再热蒸汽温度tr、最终给水压力Pw、最终给水温度tw、冷再蒸汽压力Pcr、冷再蒸汽温度tcr、再热减温水压力Prhs、再热减温水温度trhs、供热抽汽压力Pcq、供热抽汽温度tcq、供热抽汽回水压力Phs、供热抽汽回水温ths度等参数输入到水和水蒸汽性质计算软件包分别计算出主蒸汽焓值hm、再热蒸汽焓值hr、最终给水焓值hfw、冷再蒸汽焓值hcr、再热减温水焓值hrhs、供热抽汽焓值hcq、供热抽汽回水焓值hhs;然后将给水泵电机功率Wf、凝泵电机功率Wn、供热抽汽流量Fcq、计算所得主蒸汽流量Fm、公式(3)计算所得主给水流量Fw、公式(8)计算所得再热蒸汽流量 Fr、公式(6)计算所得冷再蒸汽流量Fcr、公式(7)计算所得再热减温水流量Frhs、以及对应的焓值等参数代入公式(9)计算机组目前运行工况下的汽轮机系统获得的热量Q0 (7) Collect the main steam pressure P m , main steam temperature t m , reheat steam pressure P r , reheat steam temperature t r , final feedwater pressure P w , final feedwater temperature t w , cold resteam Pressure P cr , cold re-steam temperature t cr , reheat desuperheating water pressure P rhs , reheat desuperheating water temperature t rhs , heating extraction steam pressure P cq , heating extraction steam temperature t cq , heating extraction steam return water pressure P hs , heat supply extraction steam return water temperature t hs degree etc. are input into water and steam property calculation software package to calculate main steam enthalpy h m , reheat steam enthalpy h r , final feedwater enthalpy h fw , cooling Reheat steam enthalpy h cr , reheat desuperheating water enthalpy h rhs , heating extraction steam enthalpy h cq , heating extraction steam return water enthalpy h hs ; then feed water pump motor power W f , condensate pump motor power W n , heating extraction steam flow rate F cq , main steam flow rate F m calculated by formula (3), main feed water flow rate F w calculated by formula (3), reheat steam flow rate F r calculated by formula (8), cold water flow rate calculated by formula (6) Resteam flow rate F cr , reheating and desuperheating water flow rate F rhs calculated by formula (7), and the corresponding enthalpy value are substituted into formula (9) to calculate the heat Q 0 obtained by the steam turbine system under the current operating condition of the computer group
Q0=Fmhm+Frhr-Fwhw-Fcrhcr-Frhshrhs-Fcq(hcq-hhs)+3600(Wf+Wn)ηT 公式(9)Q 0 =F m h m +F r h r -F w h w -F cr h cr -F rhs h rhs -F cq (h cq -h hs )+3600(W f +W n )η T formula ( 9)
式中:Q0为汽轮机系统获得的热量,单位为kJ/h,Wf为给水泵电机功率,单位为kW; Wn为凝泵电机功率,单位为kW;ηT为功热转换效率,取常数,单位为%;In the formula: Q 0 is the heat obtained by the steam turbine system, the unit is kJ/h, W f is the power of the feed pump motor, the unit is kW; W n is the power of the condensate pump motor, the unit is kW; η T is the power-to-heat conversion efficiency, Take a constant, the unit is %;
(9)依据系统能量守恒的原理依据公式(10)计算凝汽器热负荷(9) Calculate the heat load of the condenser according to the principle of system energy conservation and formula (10)
式中:Qn为汽轮机系统获得的热量,单位为kJ/h;Wc为发电机功率,单位为t/h;ηg为发电机效率,单位为%;ηm为机械效率,是经验值,当做常数处理,单位为%。In the formula: Q n is the heat obtained by the steam turbine system, the unit is kJ/h; W c is the generator power, the unit is t/h; η g is the generator efficiency, the unit is %; η m is the mechanical efficiency, which is experience The value is treated as a constant, and the unit is %.
上述计算方法通过以凝结水流量为基准的ASME性能试验标定不同阀位对应的主蒸汽体积流量,以此试验数据为基础,借助其他压力和温度等辅助测量数据计算热力系统的主蒸汽流量、主给水流量、再热蒸汽流量等参数,进而获得进入汽轮机系统的总能量;依据系统能量守恒定律,从进入汽轮机系统的总能量中扣除发电机功率及各项损失后即获得凝汽器热负荷,从而使最终得到的热负荷数据精确度高,实时性好,且不受系统隔离影响。The above calculation method calibrates the main steam volume flow rate corresponding to different valve positions through the ASME performance test based on the condensate flow rate. Based on this test data, the main steam flow rate and main steam flow rate of the thermal system are calculated with the help of other auxiliary measurement data such as pressure and temperature. Feed water flow, reheat steam flow and other parameters, and then obtain the total energy entering the steam turbine system; according to the law of conservation of system energy, the heat load of the condenser is obtained after deducting the generator power and various losses from the total energy entering the steam turbine system, As a result, the final thermal load data has high accuracy, good real-time performance, and is not affected by system isolation.
本发明的一种凝汽器热负荷在线检测系统及测量方法不局限于上述各实施例,凡采用等同替换方式得到的技术方案均落在本发明要求保护的范围内。The online detection system and measurement method for the heat load of the condenser of the present invention are not limited to the above-mentioned embodiments, and all technical solutions obtained by adopting equivalent replacement methods fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710141817.4A CN107543733A (en) | 2017-03-10 | 2017-03-10 | A kind of condenser duty on-line monitoring system and measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710141817.4A CN107543733A (en) | 2017-03-10 | 2017-03-10 | A kind of condenser duty on-line monitoring system and measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107543733A true CN107543733A (en) | 2018-01-05 |
Family
ID=60966756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710141817.4A Pending CN107543733A (en) | 2017-03-10 | 2017-03-10 | A kind of condenser duty on-line monitoring system and measuring method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107543733A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109211439A (en) * | 2018-10-18 | 2019-01-15 | 国电南京电力试验研究有限公司 | A kind of exhaust enthalpy of low pressure cylinder of steam turbine value on-line monitoring system and method |
CN109447483A (en) * | 2018-11-01 | 2019-03-08 | 国电科学技术研究院有限公司 | A kind of calculation method of low-level (stack-gas) economizer to Specific Heat Consumption For Steam Turbine Unit influence amount |
CN111027186A (en) * | 2019-11-25 | 2020-04-17 | 山东鲁能软件技术有限公司 | Performance diagnosis method and system for moisture separator reheater in running state |
CN112555803A (en) * | 2020-12-08 | 2021-03-26 | 西安热工研究院有限公司 | Thermoelectric generator set feed water bypass and variable main reheat steam temperature wide-range adjusting system |
CN113111600A (en) * | 2021-03-24 | 2021-07-13 | 中冶华天工程技术有限公司 | On-line analysis method for cleanliness of condenser cooling pipe of saturated steam generator set |
CN113566188A (en) * | 2021-07-30 | 2021-10-29 | 中国恩菲工程技术有限公司 | Boiler drum liquid level three-impulse control method, system, equipment and storage medium |
CN114674585A (en) * | 2022-03-23 | 2022-06-28 | 华电电力科学研究院有限公司 | Heating capacity measuring method, device and system |
CN114993727A (en) * | 2022-05-31 | 2022-09-02 | 国能国华(北京)燃气热电有限公司 | Method and device for detecting heat load of condenser, storage medium, and electronic device |
CN117029910A (en) * | 2023-07-26 | 2023-11-10 | 秦皇岛秦热发电有限责任公司 | Enthalpy exergy monitoring device for thermodynamic system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201705397U (en) * | 2010-03-27 | 2011-01-12 | 苏州华瑞能泰发电技术有限公司 | Steam turbine on-line heat rate monitoring device for thermal power plants |
CN103048020A (en) * | 2013-01-22 | 2013-04-17 | 山东电力集团公司电力科学研究院 | Main steam flow online calculation method of power station based on performance testing data |
CN103487272A (en) * | 2013-09-25 | 2014-01-01 | 国家电网公司 | Method for calculating steam admission enthalpy of air-cooling condenser of direct air-cooling unit |
CN104048842A (en) * | 2014-05-29 | 2014-09-17 | 华中科技大学 | On-line monitoring method for heat rate of steam turbine on basis of soft measurement technology |
CN104615857A (en) * | 2015-01-05 | 2015-05-13 | 广东电网有限责任公司电力科学研究院 | Method for determining heat loads of condenser of condensing steam turbine |
CN105158007A (en) * | 2015-10-15 | 2015-12-16 | 中国大唐集团科学技术研究院有限公司华东分公司 | Coal consumption ordering test method based on gap bridge steam leakage rate |
CN105865662A (en) * | 2016-04-15 | 2016-08-17 | 国网天津市电力公司 | Method for on-line monitoring of heat consumption rate of pure condensing turbine set |
CN207623031U (en) * | 2017-03-10 | 2018-07-17 | 国电科学技术研究院 | A kind of condenser duty on-line monitoring system |
-
2017
- 2017-03-10 CN CN201710141817.4A patent/CN107543733A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201705397U (en) * | 2010-03-27 | 2011-01-12 | 苏州华瑞能泰发电技术有限公司 | Steam turbine on-line heat rate monitoring device for thermal power plants |
CN103048020A (en) * | 2013-01-22 | 2013-04-17 | 山东电力集团公司电力科学研究院 | Main steam flow online calculation method of power station based on performance testing data |
CN103487272A (en) * | 2013-09-25 | 2014-01-01 | 国家电网公司 | Method for calculating steam admission enthalpy of air-cooling condenser of direct air-cooling unit |
CN104048842A (en) * | 2014-05-29 | 2014-09-17 | 华中科技大学 | On-line monitoring method for heat rate of steam turbine on basis of soft measurement technology |
CN104615857A (en) * | 2015-01-05 | 2015-05-13 | 广东电网有限责任公司电力科学研究院 | Method for determining heat loads of condenser of condensing steam turbine |
CN105158007A (en) * | 2015-10-15 | 2015-12-16 | 中国大唐集团科学技术研究院有限公司华东分公司 | Coal consumption ordering test method based on gap bridge steam leakage rate |
CN105865662A (en) * | 2016-04-15 | 2016-08-17 | 国网天津市电力公司 | Method for on-line monitoring of heat consumption rate of pure condensing turbine set |
CN207623031U (en) * | 2017-03-10 | 2018-07-17 | 国电科学技术研究院 | A kind of condenser duty on-line monitoring system |
Non-Patent Citations (1)
Title |
---|
刘利 等: "汽轮机性能试验规程 ASME PTC 6.2 的特点及适用范围" * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109211439A (en) * | 2018-10-18 | 2019-01-15 | 国电南京电力试验研究有限公司 | A kind of exhaust enthalpy of low pressure cylinder of steam turbine value on-line monitoring system and method |
CN109211439B (en) * | 2018-10-18 | 2023-08-22 | 国能南京电力试验研究有限公司 | Steam turbine low-pressure cylinder exhaust steam enthalpy value online monitoring system and method |
CN109447483B (en) * | 2018-11-01 | 2021-11-12 | 国电科学技术研究院有限公司 | Method for calculating influence quantity of low-temperature economizer on heat consumption rate of steam turbine unit |
CN109447483A (en) * | 2018-11-01 | 2019-03-08 | 国电科学技术研究院有限公司 | A kind of calculation method of low-level (stack-gas) economizer to Specific Heat Consumption For Steam Turbine Unit influence amount |
CN111027186A (en) * | 2019-11-25 | 2020-04-17 | 山东鲁能软件技术有限公司 | Performance diagnosis method and system for moisture separator reheater in running state |
CN111027186B (en) * | 2019-11-25 | 2023-12-01 | 山东鲁软数字科技有限公司 | Performance diagnosis method and system for steam-water separation reheater in running state |
CN112555803A (en) * | 2020-12-08 | 2021-03-26 | 西安热工研究院有限公司 | Thermoelectric generator set feed water bypass and variable main reheat steam temperature wide-range adjusting system |
CN112555803B (en) * | 2020-12-08 | 2022-11-22 | 西安热工研究院有限公司 | A thermal power unit feed water bypass and main transformer reheat steam temperature wide-area adjustment system |
CN113111600A (en) * | 2021-03-24 | 2021-07-13 | 中冶华天工程技术有限公司 | On-line analysis method for cleanliness of condenser cooling pipe of saturated steam generator set |
CN113566188A (en) * | 2021-07-30 | 2021-10-29 | 中国恩菲工程技术有限公司 | Boiler drum liquid level three-impulse control method, system, equipment and storage medium |
CN114674585A (en) * | 2022-03-23 | 2022-06-28 | 华电电力科学研究院有限公司 | Heating capacity measuring method, device and system |
CN114674585B (en) * | 2022-03-23 | 2024-01-12 | 华电电力科学研究院有限公司 | Heat supply capacity measuring method, device and system |
CN114993727A (en) * | 2022-05-31 | 2022-09-02 | 国能国华(北京)燃气热电有限公司 | Method and device for detecting heat load of condenser, storage medium, and electronic device |
CN117029910A (en) * | 2023-07-26 | 2023-11-10 | 秦皇岛秦热发电有限责任公司 | Enthalpy exergy monitoring device for thermodynamic system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107543733A (en) | A kind of condenser duty on-line monitoring system and measuring method | |
CN107201921B (en) | Steam turbine heat consumption rate online monitoring system and measuring method | |
CN100437015C (en) | On-line monitoring method for variation of through-flow gap of steam turbine | |
CN104048842B (en) | A kind of thermal loss of steam turbine rate on-line monitoring method based on soft-measuring technique | |
CN102967464B (en) | The improved method of evaluating performance of condensing turbine high back pressure | |
CN108691585B (en) | A calculation method for the efficiency of the low-pressure cylinder of a condensing steam turbine | |
CN103487272A (en) | Method for calculating steam admission enthalpy of air-cooling condenser of direct air-cooling unit | |
CN107577859A (en) | A Condenser Fouling Online Monitoring Method | |
CN103048020B (en) | Main steam flow online calculation method of power station based on performance testing data | |
CN109388844B (en) | Correction calculation method for energy-saving effect of low-pressure economizer | |
CN111079302A (en) | A low-pressure cylinder efficiency measurement system and method | |
JP3965275B2 (en) | Thermal efficiency diagnosis method and apparatus for thermal power plant | |
CN211454603U (en) | Low-pressure cylinder efficiency measuring and calculating system | |
CN105225008A (en) | A kind of method predicting thermodynamic system of steam tur internal operation parameter | |
CN109460885B (en) | Power generation energy consumption evaluation method for energy balance unit of thermal power plant | |
CN111521430B (en) | Waste heat boiler performance test method | |
CN111400875B (en) | Steam turbine unit operation economy evaluation method and system | |
CN113062779A (en) | A kind of feed pump steam turbine performance monitoring system and monitoring method | |
CN207623031U (en) | A kind of condenser duty on-line monitoring system | |
CN111929065B (en) | Method for measuring thermal economy of driving steam turbine | |
CN113221477B (en) | Heat balance calculation method for determining circulating water flow | |
CN112127958A (en) | Device and method for determining steam extraction parameters of nuclear turbine | |
CN105787195A (en) | Calculation Method of Inlet Steam Flow of External Steam Cooler in Feedwater Heating System | |
CN113984976B (en) | A system and method for monitoring steam turbine exhaust dryness based on circulating cooling water | |
CN109187036B (en) | Main steam flow calculation method of main pipe back pressure type steam turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 210046 Qixia, Jiangsu Province, Wonderland Road, No. 10, Applicant after: GUODIAN SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd. Applicant after: GUODIAN NANJING ELECTRIC POWER TEST RESEARCH Co.,Ltd. Address before: 210046 Qixia, Jiangsu Province, Wonderland Road, No. 10, Applicant before: Guodian Science and Technology Research Institute Applicant before: NANJING ELECTRICAL EQUIPMENT QUALITY PERFORMANCE TEST CENTER |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180105 |
|
RJ01 | Rejection of invention patent application after publication |