CN107525798A - 一种测定偏钒酸钾废水中钒含量的方法 - Google Patents

一种测定偏钒酸钾废水中钒含量的方法 Download PDF

Info

Publication number
CN107525798A
CN107525798A CN201710707336.5A CN201710707336A CN107525798A CN 107525798 A CN107525798 A CN 107525798A CN 201710707336 A CN201710707336 A CN 201710707336A CN 107525798 A CN107525798 A CN 107525798A
Authority
CN
China
Prior art keywords
vanadium
content
potassium metavanadate
solution
concentrated hydrochloric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710707336.5A
Other languages
English (en)
Inventor
鲁冲
鲁爱霞
窦勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Renben Alloy Co Ltd
Original Assignee
Wuhu Renben Alloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Renben Alloy Co Ltd filed Critical Wuhu Renben Alloy Co Ltd
Priority to CN201710707336.5A priority Critical patent/CN107525798A/zh
Publication of CN107525798A publication Critical patent/CN107525798A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种测定偏钒酸钾废水中钒含量的方法,所述测定钒含量的方法包括以下步骤:以浓盐酸对偏钒酸钾进行消解;将消解后的含钒溶液定容;以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量。本发明中,所述浓盐酸的质量百分比浓度为37%,所述偏钒酸钾与浓盐酸的用量比为0.02‑0.1g/mL,可对定容后的溶液进行稀释,含钒溶液中的钒含量为8wt‑50wt%。本发明所提供的方法分析速度快,检测时间短,测定的范围满足相关环保标准和环保工作的要求或国标要求;方法具有普遍适用性,易于推广使用。

Description

一种测定偏钒酸钾废水中钒含量的方法
技术领域
本发明属于冶金领域,更具体地,涉及一种测定偏钒酸钾废水中钒含量的方法。
背景技术
钒具有生物活性,是人体所必需的微量元素之一。钒可减少龋齿发病率,对造血过程有一定积极作用,并减弱合成胆固醇的作用,使血管收缩,增强心室肌的收缩力,还有降低血压的作用。天然水中钒含量很低,浓度大约为(1~10)μg/L,对人和动植物一般不会产生毒害作用。钒常作合金钢的添加剂和化学工业中的催化剂使用,因此钢铁、石油、化工、染料、纺织、陶瓷、照相、电子等工业废水中钒含量较多,因而造成污染。钒能抑制合成胆固醇的某些酶的作用,增加肝内磷脂的氧化。吸入体内会影响消化及神经系统,损害心脏及肾脏。当钒的浓度为0.8mg/L时,水有异味;浓度为10mg/L时,可抑制氨化作用和硝化作用,并使污水的自净能力降低;当浓度为(10~20)mg/L时可抑制大豆等作物的生长。
钒的测定方法主要有石墨炉原子吸收法,可测定(0.05~1.0)mg/L的钒;钽试剂(BPHA)萃取分光光度法可用于废水和0.05mg/L以上地表水中钒的测定;催化极谱法灵敏度最高,可测定地表水中(0.0002~0.016)mg/L的钒。近年来等离子体无机质谱法也开始用于饮用水中钒的测定,其检出限可达0.07μg/L。
然而,现有技术的测定方法确存在着分析速度慢,检测周期长的缺点。
发明内容
为了解决上述问题,本发明提供了一种分析速度快,检测时间短的测定废水中钒含量的方法。
为了实现上述目的,本发明提供一种测定偏钒酸钾废水中钒含量的方法,所述测定钒含量的方法包括以下步骤:
以浓盐酸对偏钒酸钾进行消解;
将消解后的含钒溶液定容;
以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量。
本发明中,所述浓盐酸的质量百分比浓度为37%。
本发明中,每1mL浓盐酸中偏钒酸钾的用量为0.02-0.1g。
本发明中,可对定容后的溶液进行稀释。
本发明中,含钒溶液中的钒含量为8-50wt%。
与现有技术相比,本发明具有以下优点:
1、本发明所提供的方法分析速度快,检测时间短,测定的范围满足相关环保标准和环保工作的要求或国标要求;
2、方法具有普遍适用性,易于推广使用。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
本发明提供一种测定偏钒酸钾废水中钒含量的方法,所述测定钒含量的方法包括以下步骤:
以浓盐酸对偏钒酸钾进行消解;
将消解后的含钒溶液定容;
以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量。
本发明中,浓盐酸的质量百分比浓度为37%。
本发明中,每1mL浓盐酸中偏钒酸钾的用量为0.02-0.1g。
本发明中,可对定容后的溶液进行稀释。
本发明中,含钒溶液中的钒含量为8-50wt%。
实施例1
以浓盐酸对偏钒酸钾废水中的钒进行消解,得含钒溶液中的钒含量为8wt%;将消解后的含钒溶液定容至500mL,浓盐酸的质量百分比浓度为37%,每1mL浓盐酸中偏钒酸钾的用量为0.02g,以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量,符合国标标准。
实施例2
以浓盐酸对偏钒酸钾废水中的钒进行消解,得含钒溶液中的钒含量为50wt%;将消解后的含钒溶液定容至1000mL,浓盐酸的质量百分比浓度为37%,每1mL浓盐酸中偏钒酸钾的用量为0.1g,以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量,符合国标标准。
实施例3
以浓盐酸对偏钒酸钾废水中的钒进行消解,得含钒溶液中的钒含量为25wt%;将消解后的含钒溶液定容至500mL,浓盐酸的质量百分比浓度为37%,每1mL浓盐酸中偏钒酸钾的用量为0.08g,以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量,符合国标标准。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (5)

1.一种测定偏钒酸钾废水中钒含量的方法,其特征在于,所述测定钒含量的方法包括以下步骤:
以浓盐酸对偏钒酸钾进行消解;
将消解后的含钒溶液定容;
以电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量。
2.根据权利要求1所述的一种测定偏钒酸钾废水中钒含量的方法,其中,所述浓盐酸的质量百分比浓度为37%。
3.根据权利要求1所述的一种测定偏钒酸钾废水中钒含量的方法,其中,每1mL浓盐酸中偏钒酸钾的用量为0.02-0.1g。
4.根据权利要求1所述的一种测定偏钒酸钾废水中钒含量的方法,其中,可对定容后的溶液进行稀释。
5.根据权利要求1所述的一种测定偏钒酸钾废水中钒含量的方法,其中,含钒溶液中的钒含量为8-50wt%。
CN201710707336.5A 2017-08-17 2017-08-17 一种测定偏钒酸钾废水中钒含量的方法 Withdrawn CN107525798A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710707336.5A CN107525798A (zh) 2017-08-17 2017-08-17 一种测定偏钒酸钾废水中钒含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710707336.5A CN107525798A (zh) 2017-08-17 2017-08-17 一种测定偏钒酸钾废水中钒含量的方法

Publications (1)

Publication Number Publication Date
CN107525798A true CN107525798A (zh) 2017-12-29

Family

ID=60681337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710707336.5A Withdrawn CN107525798A (zh) 2017-08-17 2017-08-17 一种测定偏钒酸钾废水中钒含量的方法

Country Status (1)

Country Link
CN (1) CN107525798A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297802A (zh) * 2011-05-19 2011-12-28 武钢集团昆明钢铁股份有限公司 直接还原铁中钙、镁、铝、硅、钛和钒含量的测定方法
CN103217413A (zh) * 2013-04-15 2013-07-24 攀钢集团攀枝花钢铁研究院有限公司 测定偏钒酸钾中钾和/或偏钒酸钠中钠的分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297802A (zh) * 2011-05-19 2011-12-28 武钢集团昆明钢铁股份有限公司 直接还原铁中钙、镁、铝、硅、钛和钒含量的测定方法
CN103217413A (zh) * 2013-04-15 2013-07-24 攀钢集团攀枝花钢铁研究院有限公司 测定偏钒酸钾中钾和/或偏钒酸钠中钠的分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
袁挺侠: "电感耦合等离子体原子发射光谱法测定水中钡、铍、硼、钒、钴、钛、钼7 种微量元素", 《中国环境监测》 *
陈妍妍 等: "电感耦合等离子体原子发射光谱法测定水和废水中钡、铍、钴、钒", 《理化检验-化学分册》 *

Similar Documents

Publication Publication Date Title
Reckhow et al. Formation and degradation of dichloroacetonitrile in drinking waters
Lozano et al. Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes
Kopáček et al. Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies
Malecki-Brown et al. Alum application to improve water quality in a municipal wastewater treatment wetland: Effects on macrophyte growth and nutrient uptake
Porubsky et al. Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments
Carrey et al. Induced nitrate attenuation by glucose in groundwater: Flow-through experiment
Lacson et al. Fluoride network and circular economy as potential model for sustainable development-A review
Dacera et al. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes
Shraim et al. Dental clinics: a point pollution source, not only of mercury but also of other amalgam constituents
JP2010082600A (ja) 土壌及び/又は地下水の浄化方法
Aremu et al. Physicochemical properties of well, borehole and stream waters in Kubwa, Bwari Area Council, FCT, Nigeria.
Igwilo et al. Toxicological study of the Anam river in Otuocha, Anambra state, Nigeria
Rangasamy et al. Chromium contamination in soil and groundwater due to tannery wastes disposals at Vellore district of Tamil Nadu
Zbiljić et al. Hydrodynamic chronoamperometric method for the determination of H2O2 using MnO2-based carbon paste electrodes in groundwater treated by Fenton and Fenton-like reagents for natural organic matter removal
Lou et al. Generation of disinfection by-products (DBPs) at two advanced water treatment plants
Sakizadeh et al. Health risk assessment of Fe, Mn, Cu, Cr in drinking water in some wells and springs of Shush and Andimeshk, Khuzestan Province, Southern Iran
Wiessner et al. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland
Loganathan Ozone-based advanced oxidation processes for the removal of harmful algal bloom (HAB) toxins: a review
CN107525798A (zh) 一种测定偏钒酸钾废水中钒含量的方法
MacCrehan et al. Making chlorine greener: Performance of alternative dechlorination agents in wastewater
CN107462568A (zh) 一种测定偏钒酸钠废水中钒含量的方法
Nguyen et al. Selectiveness of copper and polypyrrole modified copper electrodes for nitrate electroreduction: a comparative study and application in ground water
Vera et al. ICP-quadrupole MS for accurate determination of chromium in environmental and food matrices
Fonkou et al. Heavy metal concentrations in some biotic and abiotic components of the Olezoa Wetland Complex (Yaounde-Cameroon, West Africa)
Silveira et al. Structural and functional spatial dynamics of microbial communities in aerated and non-aerated horizontal flow treatment wetlands

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20171229