CN107511309A - 一种控温变色皮革的制备方法 - Google Patents

一种控温变色皮革的制备方法 Download PDF

Info

Publication number
CN107511309A
CN107511309A CN201710977026.5A CN201710977026A CN107511309A CN 107511309 A CN107511309 A CN 107511309A CN 201710977026 A CN201710977026 A CN 201710977026A CN 107511309 A CN107511309 A CN 107511309A
Authority
CN
China
Prior art keywords
leather
preparation
temperature
changing
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710977026.5A
Other languages
English (en)
Inventor
霍峰蔚
谢瑞杰
邹冰花
陈媛媛
杜勤杰
张所瀛
郑冰
吴建生
李盛
张伟娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710977026.5A priority Critical patent/CN107511309A/zh
Publication of CN107511309A publication Critical patent/CN107511309A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/12Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to leather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/0652Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)

Abstract

本发明公开了一种控温皮革的制备方法,其制备过程如下,将导电材料通过一定方法与皮革进行复合,其中皮革的一侧涂覆至少一层可逆的热致变色油墨。该方法结合了皮革的制备工艺,采用常用、简易的复合导电材料的方法,实现了皮革导电电阻的控制,并在此基础上实现了皮革材料的温度控制,开发了皮革热致变色的新型功能,有望实现其在可穿戴电子器件、传感、柔性显示等领域的应用。

Description

一种控温变色皮革的制备方法
技术领域
本发明涉及柔性电子的技术领域,特别涉及一种控温变色皮革的制备方法。
背景技术
柔性电子作为下一代电子消费的趋势,受到越来越多的关注。相比传统硅电子,柔性电子基底是影响其性能及功能的关键因素。现行赋予柔性电子器件柔性的方法主要是通过调节基底结构如网状结构,波浪状结构,以及通过分散导电活性物质在高分子中制备导电基底两种方法。对于后一种方法,高分子基底透气性差,难以被生物降解,因此近年来以织物等天然纤维为基底的柔性电子得到迅猛发展。皮革作为人类发明的最古老的材料之一拥有诸多优点,例如,透气性好,有良好的生物可降解性,生物兼容性,结实耐磨,拥有致密的三维网状结构等,具有作为柔性电子基底的巨大潜力。同时,结合现有的成熟的皮革加工工艺,很容易实现柔性器件的低成本大面积制备。但由于皮革其本身的绝缘性,基于皮革的柔性智能器件鲜有报道,仅仅限于可用于操作手机触摸屏的手套等,开发基于皮革的功能性柔性电子器件不仅将大大提高皮革产品的附加值,还可以进一步提高相关可穿戴柔性电子器件的舒适性和环保性。现行报道中赋予皮革导电性的方法主要有原位聚合导电高分子,气相沉积金属法等,这些方法对仪器设备的要求极高、不易实现基于皮革的功能性柔性电子器件低成本、高质量的规模化。
发明内容
本发明的目的在于提供一种控温变色皮革的制备方法,解决上述现有技术问题中的一个或者多个。
本发明提供一种控温变色皮革的制备方法,其制备过程如下:将导电材料通过一定方法与皮革进行复合,其中皮革的一侧涂覆至少一层可逆的热致变色油墨。利用导电材料的电阻热的特性,通过电阻和电流的控制实现对皮革温度的调节。皮革的一侧涂覆的至少一层可逆的热致变色油墨,实现控温皮革的变色功能。
在一些实施方式中,皮革包括蓝湿皮,天然革,人造革,合成革。
在一些实施方式中,导电材料包括纳米金属材料,纳米碳材料,导电聚合物中的至少一种。
其中,纳米金属材料包括银纳米线,铜纳米线,金纳米线等,纳米碳材料包括石墨烯,单壁碳纳米管,多壁碳纳米管,炭黑等,导电聚合物包括聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚对苯撑、聚对苯撑乙烯和聚双炔等。
在一些实施方式中,导电材料与皮革的复合方法包括抽滤,浸渍,旋涂,喷涂,印刷中的一种或几种的组合。
在一些实施方式中,导电材料与皮革的复合后制得的导电皮革可通过控制导电材料的量和排布方式对皮革的电阻进行有效的控制,电阻大小为1Ω/cm2-10000Ω/cm2。其中电阻的优选范围为10Ω/cm2-100Ω/cm2
在一些实施方式中,导电材料与皮革的复合后制得的导电皮革所用的工作电压为人体的安全的电压,是1V-35V,在固定电阻下通过电压的调控即可实现温度的控制,在恒电压条件下,通过导电材料的电阻的调控亦可实现温度的调控,温度可控范围为10℃-124℃。
在一些实施方式中,本发明的方法制备的控温皮革可用于热激发智能器件领域,将可逆的热致变色墨水涂在该皮革上,通一定的电压后,可以激发皮革可逆变色。
本发明的有益效果:
1、本发明方法简单,可进行大面积制备。
2、本发明可跟现有的皮革加工技术和设备相结合,不需要额外的技术和设备。
3、本发明的控温变色皮革可作为柔性电子的基底,其厚度薄、重量轻,具有足够的柔性,即使将其卷成柱状仍可正常工作。其潜在应用领域可包括:温度传感器、广告牌、电子图书,热疗等,具有巨大的应用潜力。
附图说明
图1为实施例1不同的CNT添加量的皮革所对应电阻值;
图2为实施例1不同电阻的皮革对于不同电压的温度响应;
图3为实施例1的效果图;
图4为实施例2的效果图。
具体实施方式
下面结合实施例对本发明作进一步描述。以下实施例只是用于更加清楚地说明本发明的性能,而不能仅局限于下面的实施例。
实施例1
将单壁碳纳米管通过加表面活性剂的方法进行分散,得到浓度为0.1mg/mL的单壁碳纳米管水分散液,再利用抽滤的方法与牛二层蓝湿皮进行复合。
当抽滤70mL分散液时,电阻为14Ω/cm2时,所加电压是12V时,温度可达124℃,所加电压为0V时,温度为10℃,如图3所示,当在皮革的另一侧涂覆可在45℃变色的红色温致变色油墨,可以实现在8V的时候快速变色,断电后恢复。
如图1所示,本实施例可通过控制单壁碳纳米管水分散液的量调控皮革的电阻。
如图2所示,当电阻分别为14,17,66,108,1179Ω/cm2时,电压与温度的关系。在固定的电阻下,通过调控所加电压可调控皮革的温度。由图2可知,当导电材料与皮革的复合后制得的导电皮革电阻越小,通过电压控温的灵敏度越高,因此,导电皮革的电阻范围优选10Ω/cm2-100Ω/cm2
实施例2
将0.1mg/mL的铜纳米线通过喷涂的方法与人造革进行复合。通过控制铜纳米的量调控皮革的电阻。当喷涂的量为10mL时,其电阻为12Ω/cm2时,所加电压是8V,温度可达60℃。
当在皮革的另一侧涂覆可在45℃变色的红色温致变色油墨,再在其上涂覆一层35℃变色的黑色温致变色油墨,如图4所示,当加6V的电压的时候,皮革由黑色变为红色,继续增压至8V,颜色由红色变为无色,撤掉电压后,颜色先变为红色再变为黑色。
实施例3
将1.3wt%的PEDOT:PSS通过旋涂的方法与合成革进行复合。通过控制PEDOT:PSS的量调控皮革的电阻。当旋涂的量为5g时,其电阻为65Ω/cm2时,所加电压是10V,温度可达40℃。在皮革的另一侧涂覆一层35℃变色的黑色温致变色油墨,当加10V的电压的时候,皮革可由黑色变为无色。
本发明提供的实施方案结合了皮革的制备工艺,采用常用、简易的复合导电材料的方法,实现了皮革导电电阻的控制,并在此基础上实现了皮革材料的温度控制,开发了皮革热致变色的新型功能,有望实现其在可穿戴电子器件、传感、柔性显示等领域的应用。
以上表述仅为本发明的优选方式,应当指出,对本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些也应视为本发明的保护范围之内。

Claims (6)

1.一种控温变色皮革的制备方法,其特征在于,将导电材料与皮革进行复合,并在所述皮革的一侧涂覆有至少一层可逆的热致变色油墨。
2.根据权利要求1所述的一种控温变色皮革的制备方法,其特征在于,所述皮革为蓝湿皮、天然革、人造革、合成革中的至少一种。
3.根据权利要求1所述的一种控温变色皮革的制备方法,其特征在于,所述导电材料为纳米金属材料、纳米碳材料、导电聚合物中的至少一种。
4.根据权利要求1所述的一种控温变色皮革的制备方法,其特征在于,所述导电材料与皮革的复合方法包括抽滤、浸渍、旋涂、喷涂、印刷中的一种或几种的组合。
5.根据权利要求1所述的一种控温变色皮革的制备方法,其特征在于,所述导电材料与皮革复合后,所述皮革的电阻大小为1Ω/cm2-10000Ω/cm2
6.根据权利要求5所述的一种控温变色皮革的制备方法,其特征在于,所述导电材料与皮革复合后,所述皮革的电阻大小为10Ω/cm2-100Ω/cm2
CN201710977026.5A 2017-10-19 2017-10-19 一种控温变色皮革的制备方法 Pending CN107511309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710977026.5A CN107511309A (zh) 2017-10-19 2017-10-19 一种控温变色皮革的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710977026.5A CN107511309A (zh) 2017-10-19 2017-10-19 一种控温变色皮革的制备方法

Publications (1)

Publication Number Publication Date
CN107511309A true CN107511309A (zh) 2017-12-26

Family

ID=60727043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710977026.5A Pending CN107511309A (zh) 2017-10-19 2017-10-19 一种控温变色皮革的制备方法

Country Status (1)

Country Link
CN (1) CN107511309A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359754A (zh) * 2018-02-11 2018-08-03 南京工业大学 一种新型可调控发光皮革
CN108382008A (zh) * 2018-02-11 2018-08-10 南京工业大学 一种可用于机械力传感检测的皮革

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027081A (ja) * 1998-07-01 2000-01-25 Mikio Nakajima 熱可逆変色性皮革及びその製造方法
CN2568684Y (zh) * 2002-03-30 2003-08-27 王全杰 导电皮革
CN1858139A (zh) * 2006-06-01 2006-11-08 肖忠渊 带碳纤维电加热体的印刷、喷涂或书写材料
CN1978671A (zh) * 2006-11-24 2007-06-13 陕西科技大学 一种皮革隐身材料及其制备方法
CN202439295U (zh) * 2012-03-05 2012-09-19 福建万华实业有限公司 一种导电皮革
CN103097553A (zh) * 2010-10-12 2013-05-08 奥托立夫开发公司 导电性皮革以及方向盘
CN104988762A (zh) * 2015-07-24 2015-10-21 黄建生 一种温控变色皮革及其生产工艺
CN106190097A (zh) * 2016-07-21 2016-12-07 广东工业大学 一种热致变色隐形机器人
CN106773437A (zh) * 2017-03-14 2017-05-31 武汉纺织大学 一种电致变色织物及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027081A (ja) * 1998-07-01 2000-01-25 Mikio Nakajima 熱可逆変色性皮革及びその製造方法
CN2568684Y (zh) * 2002-03-30 2003-08-27 王全杰 导电皮革
CN1858139A (zh) * 2006-06-01 2006-11-08 肖忠渊 带碳纤维电加热体的印刷、喷涂或书写材料
CN1978671A (zh) * 2006-11-24 2007-06-13 陕西科技大学 一种皮革隐身材料及其制备方法
CN103097553A (zh) * 2010-10-12 2013-05-08 奥托立夫开发公司 导电性皮革以及方向盘
CN202439295U (zh) * 2012-03-05 2012-09-19 福建万华实业有限公司 一种导电皮革
CN104988762A (zh) * 2015-07-24 2015-10-21 黄建生 一种温控变色皮革及其生产工艺
CN106190097A (zh) * 2016-07-21 2016-12-07 广东工业大学 一种热致变色隐形机器人
CN106773437A (zh) * 2017-03-14 2017-05-31 武汉纺织大学 一种电致变色织物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359754A (zh) * 2018-02-11 2018-08-03 南京工业大学 一种新型可调控发光皮革
CN108382008A (zh) * 2018-02-11 2018-08-10 南京工业大学 一种可用于机械力传感检测的皮革

Similar Documents

Publication Publication Date Title
Hu et al. High-performance strain sensors based on bilayer carbon black/PDMS hybrids
Tseghai et al. PEDOT: PSS-based conductive textiles and their applications
Guo et al. PEDOT: PSS “wires” printed on textile for wearable electronics
Sadi et al. Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing
Hassan et al. Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives
Islam et al. Textile sensors for wearable applications: A comprehensive review
Fan et al. Highly robust, transparent, and breathable epidermal electrode
Grancarić et al. Conductive polymers for smart textile applications
Luo et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer
Xu et al. Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics
Hong et al. UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags
Tang et al. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths
Hwang et al. Highly stretchable and transparent electrode film based on SWCNT/Silver nanowire hybrid nanocomposite
Lund et al. Conducting materials as building blocks for electronic textiles
Wang et al. Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications
Kong et al. Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics
CN104934551B (zh) 一种柔性电极层及其制备方法、显示基板、显示装置
Ko et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics
EP3424053A1 (en) Liquid wire
Ding et al. Durability study of thermal transfer printed textile electrodes for wearable electronic applications
Liu et al. Real-time acid rain sensor based on a triboelectric nanogenerator made of a PTFE–PDMS composite film
Pan et al. Silver-coated poly (dimethylsiloxane) beads for soft, stretchable, and thermally stable conductive elastomer composites
Raman et al. Intrinsically conducting polymers in flexible and stretchable resistive strain sensors: a review
Bai et al. Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring
Madhavan Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171226

RJ01 Rejection of invention patent application after publication