CN107505277A - 一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法 - Google Patents

一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法 Download PDF

Info

Publication number
CN107505277A
CN107505277A CN201710694504.1A CN201710694504A CN107505277A CN 107505277 A CN107505277 A CN 107505277A CN 201710694504 A CN201710694504 A CN 201710694504A CN 107505277 A CN107505277 A CN 107505277A
Authority
CN
China
Prior art keywords
core
nanometer particle
golden nanometer
ascorbic acid
dna2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710694504.1A
Other languages
English (en)
Inventor
樊之雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710694504.1A priority Critical patent/CN107505277A/zh
Publication of CN107505277A publication Critical patent/CN107505277A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,属于纳米生物技术检测领域。本发明包括:金纳米粒子修饰Hg2+的一段适配体DNA,抗坏血酸偶联Hg2+的另一段适配体DNA,在Hg2+存在的条件下形成包含抗坏血酸的T‑Hg2+‑T错配结构,Au@Ag核壳纳米粒子的形成以及紫外吸收光谱的测定。本方法操作简单方便,能够实现Hg2+高灵敏、高特异性、高实用性的检测,是一种具有重大开发前景的纳米传感检测方法。

Description

一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法
技术领域
一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,属于纳米生物技术检测领域。
背景技术
汞是环境中一种生物毒性极强的重金属污染物,普遍存在于自然界中,它能够被生物富集并在生物体内累积,可以通过食物链转移到人体内,由于汞具有高毒性,因此对人体健康造成重大的危害。人体内累积的微量汞无法通过自身排泄进行代谢,将直接导致心脏、肝脏、甲状腺疾病,损伤中枢神经系统、呼吸系统,慢性汞中毒,甚至引发恶性肿瘤的形成。2001年美国环保局(EFA)发布,在饮用水中汞离子的含量不能超过2ppb(10nM),因此需要不断开发高灵敏的Hg2+检测方法。
传统的Hg2+检测方法主要是基于仪器检测,主要包括冷蒸汽原子荧光光谱(CV-AFS)、原子吸收光谱(AAS)、电感耦合等离子体原子发射光谱(ICP-AES)、电感耦合等离子体质谱(ICP-MS)。这些方法往往存在仪器昂贵、分析周期长、样品预处理复杂、检测费用高等问题,已经难以适应汞离子检测的方便、快捷、灵敏度等方面的要求。近年来随着生物传感器检测技术的不断发展,一些列简便高灵敏的生物传感器得到不断开发,并且成为今后生物检测领域的新途径和新的检测方法的发展方向。
抗Hg2+的适配体对Hg2+具有高亲和性和高特异性的识别能力,Hg2+的适配体是一对富含胸腺嘧啶碱基的单链DNA序列,在Hg2+存在的条件下,两条单链DNA分子形成T-Hg2+-T碱基错配结构,因此将Hg2+适配体结合纳米粒子载体将开发多种纳米生物传感器,例如:比色传感器、化学发光传感器、表面增强的拉曼光谱传感器、表面等离子共振传感器、磁共振传感器等。金纳米粒子具有良好的光电性质、化学性质和生物兼容性,并且易于表面修饰。不同粒径的金纳米粒子的紫外吸收峰不同,若在金纳米粒子表面包裹一层银壳结构,形成的新的Au@Ag核壳纳米粒子将同时出现金和银的紫外吸收峰。
本发明是借助于T-Hg2+-T碱基错配作用将DNA上偶联的抗坏血酸包裹在金纳米粒子的表面,通过抗坏血酸对硝酸银的还原作用,在金纳米粒子的表面形成一层银壳结构,并且不同Hg2+浓度下金纳米粒子表面的银壳厚度不同,通过测定反应后体系中紫外吸收的变化,从而实现对Hg2+含量的检测。
发明内容
要解决的技术问题:基于传统的仪器检测Hg2+的方法存在仪器昂贵、分析周期长、样品预处理复杂、检测费用高等问题,已经难以适应汞离子检测的方便、快捷、高灵敏度等方面的要求。
技术方案:本发明公开了一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,包括如下具体步骤:
(1)金纳米粒子修饰Hg2+的一段适配体DNA
将新合成的金纳米粒子在12000r/min的转速条件下离心去除上清,并用pH8.0 0.01 M的Tris-HCl缓冲液将其进行重悬并浓缩四倍,测得浓缩后的金纳米粒子的浓度为10nM,以用于DNA的偶联;取1mL浓缩后的金纳米粒子,然后加入100μL 10μM的DNA1,使得DNA1的终浓度为1μM,DNA1和金纳米粒子以100:1的摩尔比在室温条件下进行过夜偶联反应,将反应后的金纳米粒子在12000r/min的转速条件下离心以除去未结合的DNA1,然后将其用pH8.00.01 M的Tris-HCl缓冲液进行重悬,从而得到修饰后的金纳米粒子;
DNA 1: 5’-SH-AAAAAAGTGACCATTTTTGCAGTG-3’。
(2)抗坏血酸偶联Hg2+的另一段适配体DNA
称取50mg抗坏血酸于圆底烧瓶中,用2mL吡啶溶剂将其进行溶解,然后加入34mg琥珀酸酐,在室温下避光搅拌反应2天,然后将反应后的溶液用旋转蒸发仪旋干,再加入5mL pH6.5的0.01M 2-吗啉代乙磺酸缓冲液将其溶解,置于磁力搅拌反应器上,然后加入150mg碳二亚胺和100mg N-羟基琥珀酰亚胺,在磁力搅拌的状态下将抗坏血酸琥珀酰酯进行活化,反应时间为2-4h;取pH7.4 0.01M的磷酸盐缓冲液溶解的浓度为1μM的氨基修饰的DNA2 500μL,将500μL活化好的抗坏血酸琥珀酰酯加入到DNA2中,在振荡的条件下反应4-6h,得到抗坏血酸偶联的DNA2;
DNA2:5’-NH2-AAAAAACACTGCTTTTTTGGTCAC-3’。
(3)在Hg2+存在的条件下形成包含抗坏血酸的T-Hg2+-T错配结构
将1mL步骤(1)中修饰DNA1的金纳米粒子探针和1mL步骤(2)中偶联好的DNA2按照1:1的体积比混合,分装到PCR管中每管100μL,然后在每管中分别加入浓度为0.5ng mL-1、5ng mL-1、10ng mL-1、50ng mL-1、100ng mL-1、200ng mL-1的Hg2+,在室温下孵育反应4h后,使得DNA1和DNA2与Hg2+充分结合形成T-Hg2+-T错配结构;将反应体系在12000r/min的条件下离心去除未结合的DNA2,然后再向每管加入100μL超纯水将金纳米粒子进行重悬。
(4)Au@Ag核壳纳米粒子的形成以及紫外吸收光谱的测定
将步骤(3)中得到的金纳米粒子溶液的pH用NaOH水溶液调整到9.0,然后向每管中加入包含200mM聚乙烯吡咯烷酮的1M硝酸银溶液50μL,在缓慢振荡的条件下反应1-3h,借助于金纳米粒子表面的抗坏血酸作为还原剂将硝酸银进行还原,并在金纳米粒子的表面形成一层银壳,从而形成Au@Ag核壳纳米粒子;将不同Hg2+浓度下的Au@Ag核壳纳米粒子分别在520nm和400nm的波长下进行紫外测定,从而得到A520/A400的紫外吸收比值,并建立Hg2+浓度和A520/A400的对应关系。
本发明所述的基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法所用的金纳米粒子的粒径为15nm。
本发明所述的基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法步骤(2)中抗坏血酸琥珀酰酯的活化时间为3h。
本发明所述的基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法步骤(2)中抗坏血酸琥珀酰酯加入到DNA2后的反应时间为5h。
本发明所述的基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法步骤(4)中抗坏血酸还原硝酸银的时间为2h。
本发明所述的15nm的金纳米粒子通过柠檬酸三钠还原氯金酸的方法进行合成,合成步骤:将三口瓶用王水浸泡过夜,然后用超纯水清洗干净,在洁净的三口瓶中加入95mL的超纯水,再加入2.5mL质量浓度为0.4%的氯金酸,磁力搅拌并加热沸腾,7-8min后加入2.5mL质量浓度为1%的柠檬酸三钠,溶液从无色变为红色后停止加热,继续搅拌15min,即得到15nm金纳米粒子。
有益效果:本发明提供了一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,借助于T-Hg2+-T碱基错配作用将DNA上偶联的抗坏血酸包裹在金纳米粒子的表面,抗坏血酸对硝酸银具有还原作用,在不同浓度Hg2+存在的条件下,金纳米粒子表面形成的银壳厚度不同,通过测定不同Hg2+浓度下A520/A400的紫外吸收比值,从而间接对Hg2+含量进行测定。
附图说明
图1 Au@Ag核壳纳米粒子的TEM图。
图2不同Hg2+浓度下Au@Ag核壳纳米粒子的紫外吸收光谱图。
图3 Hg2+检测的标准曲线。
具体实施方式
实施例1
一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,包括如下具体步骤:
(1)金纳米粒子修饰Hg2+的一段适配体DNA
将新合成的粒径为15nm金纳米粒子在12000r/min的转速条件下离心去除上清,并用pH8.0 0.01 M的Tris-HCl缓冲液将其进行重悬并浓缩四倍,测得浓缩后的金纳米粒子的浓度为10nM,以用于DNA的偶联;取1mL浓缩后的金纳米粒子,然后加入100μL 10μM的DNA1,使得DNA1的终浓度为1μM,DNA1和金纳米粒子以100:1的摩尔比在室温条件下进行过夜偶联反应,将反应后的金纳米粒子在12000r/min的转速条件下离心以除去未结合的DNA1,然后将其用pH8.0 0.01 M的Tris-HCl缓冲液进行重悬,从而得到修饰后的金纳米粒子;
DNA 1: 5’-SH-AAAAAAGTGACCATTTTTGCAGTG-3’。
(2)抗坏血酸偶联Hg2+的另一段适配体DNA
称取50mg抗坏血酸于圆底烧瓶中,用2mL吡啶溶剂将其进行溶解,然后加入34mg琥珀酸酐,在室温下避光搅拌反应2天,然后将反应后的溶液用旋转蒸发仪旋干,再加入5mL pH6.5的0.01M 2-吗啉代乙磺酸缓冲液将其溶解,置于磁力搅拌反应器上,然后加入150mg碳二亚胺和100mg N-羟基琥珀酰亚胺,在磁力搅拌的状态下将抗坏血酸琥珀酰酯进行活化,反应时间为3h;取pH7.4 0.01M的磷酸盐缓冲液溶解的浓度为1μM的氨基修饰的DNA2 500μL,将500μL活化好的抗坏血酸琥珀酰酯加入到DNA2中,在振荡的条件下反应5h,得到抗坏血酸偶联的DNA2。
DNA2:5’-NH2-AAAAAACACTGCTTTTTTGGTCAC-3’。
(3)在Hg2+存在的条件下形成包含抗坏血酸的T-Hg2+-T错配结构
将1mL步骤(1)中修饰DNA1的金纳米粒子探针和1mL步骤(2)中偶联好的DNA2按照1:1的体积比混合,分装到PCR管中每管100μL,然后在每管中分别加入浓度为0.5ng mL-1、5ng mL-1、10ng mL-1、50ng mL-1、100ng mL-1、200ng mL-1的Hg2+,在室温下孵育反应4h后,使得DNA1和DNA2与Hg2+充分结合形成T-Hg2+-T错配结构;将反应体系在12000r/min的条件下离心去除未结合的DNA2,然后再向每管加入100μL超纯水将金纳米粒子进行重悬。
(4)Au@Ag核壳纳米粒子的形成以及检测灵敏度研究
将步骤(3)中得到的金纳米粒子溶液的pH用NaOH水溶液调整到9.0,然后向每管中加入包含200mM聚乙烯吡咯烷酮的1M硝酸银溶液50μL,在缓慢振荡的条件下反应2h,借助于金纳米粒子表面的抗坏血酸作为还原剂将硝酸银进行还原,并在金纳米粒子的表面形成一层银壳,从而形成Au@Ag核壳纳米粒子;分别测定不同Hg2+浓度下的Au@Ag核壳纳米粒子在520nm和400nm的波长下的紫外吸收值,以Hg2+浓度为横坐标,A520/A400为纵坐标建立两者之间的标准曲线,并通过计算得出Hg2+的最低检测限为0.3ng mL-1
(5)特异性研究
将其它五种重金属离子(Zn2+、Mg2+、Cu2+、Pb2+、Mn2+)用此方法进行检测,测定0.5 ngmL-1的检测浓度下,观察金纳米粒子表面银壳的形成结构,并测定反应体系中紫外吸收的变化,结果显示,金纳米粒子表面没有形成银壳结构,从而说明其它重金属离子没有与T-T错配碱基相互作用,不能用于其他重金属离子的检测,因此此方法对Hg2+检测具有较高的特异性。
(6)添加回收实验
在含有0.5 ng mL-1 Hg2+的饮用水中,测定了添加不同浓度Hg2+后的添加回收结果,在1.5、2.8、5.4、6.2和10.5ng mL-1的添加浓度下,Hg2+的回收率在94.3%-97.6%范围内,回收结果表明此方法可以用于实际水样品中的Hg2+含量分析。

Claims (5)

1.一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,其特征在于包括如下具体步骤:
(1)金纳米粒子修饰Hg2+的一段适配体DNA
将新合成的金纳米粒子在12000r/min的转速条件下离心去除上清,并用pH8.0 0.01 M的Tris-HCl缓冲液将其进行重悬并浓缩四倍,测得浓缩后的金纳米粒子的浓度为10nM,以用于DNA的偶联;取1mL浓缩后的金纳米粒子,然后加入100μL 10μM的DNA1,使得DNA1的终浓度为1μM,DNA1和金纳米粒子以100:1的摩尔比在室温条件下进行过夜偶联反应,将反应后的金纳米粒子在12000r/min的转速条件下离心以除去未结合的DNA1,然后将其用pH8.00.01 M的Tris-HCl缓冲液进行重悬,从而得到修饰后的金纳米粒子;
DNA 1: 5’-SH-AAAAAAGTGACCATTTTTGCAGTG-3’;
(2)抗坏血酸偶联Hg2+的另一段适配体DNA
称取50mg抗坏血酸于圆底烧瓶中,用2mL吡啶溶剂将其进行溶解,然后加入34mg琥珀酸酐,在室温下避光搅拌反应2天,然后将反应后的溶液用旋转蒸发仪旋干,再加入5mL pH6.5的0.01M 2-吗啉代乙磺酸缓冲液将其溶解,置于磁力搅拌反应器上,然后加入150mg碳二亚胺和100mg N-羟基琥珀酰亚胺,在磁力搅拌的状态下将抗坏血酸琥珀酰酯进行活化,反应时间为2-4h;取pH7.4 0.01M的磷酸盐缓冲液溶解的浓度为1μM的氨基修饰的DNA2 500μL,将500μL活化好的抗坏血酸琥珀酰酯加入到DNA2中,在振荡的条件下反应4-6h,得到抗坏血酸偶联的DNA2;
DNA2:5’-NH2-AAAAAACACTGCTTTTTTGGTCAC-3’;
(3)在Hg2+存在的条件下形成包含抗坏血酸的T-Hg2+-T错配结构
将1mL步骤(1)中修饰DNA1的金纳米粒子探针和1mL步骤(2)中偶联好的DNA2按照1:1的体积比混合,分装到PCR管中每管100μL,然后在每管中分别加入浓度为0.5ng mL-1、5ng mL-1、10ng mL-1、50ng mL-1、100ng mL-1、200ng mL-1的Hg2+,在室温下孵育反应4h后,使得DNA1和DNA2与Hg2+充分结合形成T-Hg2+-T错配结构;将反应体系在12000r/min的条件下离心去除未结合的DNA2,然后再向每管加入100μL超纯水将金纳米粒子进行重悬;
(4)Au@Ag核壳纳米粒子的形成以及紫外吸收光谱的测定
将步骤(3)中得到的金纳米粒子溶液的pH用NaOH水溶液调整到9.0,然后向每管中加入包含200mM聚乙烯吡咯烷酮的1M硝酸银溶液50μL,在缓慢振荡的条件下反应1-3h,借助于金纳米粒子表面的抗坏血酸作为还原剂将硝酸银进行还原,并在金纳米粒子的表面形成一层银壳,从而形成Au@Ag核壳纳米粒子;将不同Hg2+浓度下的Au@Ag核壳纳米粒子分别在520nm和400nm的波长下进行紫外测定,从而得到A520/A400的紫外吸收比值,并建立Hg2+浓度和A520/A400的对应关系。
2.根据权利要求1所述的一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,其特征在于所述的金纳米粒子的粒径为15nm。
3.根据权利要求1所述的一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,其特征在于所述的步骤(2)中抗坏血酸琥珀酰酯的活化时间为3h。
4.根据权利要求1所述的一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,其特征在于所述的步骤(2)中抗坏血酸琥珀酰酯加入到DNA2后的反应时间为5h。
5.根据权利要求1所述的一种基于Au@Ag核壳纳米粒子的合成检测Hg2+的方法,其特征在于所述的步骤(4)中抗坏血酸还原硝酸银的时间为2h。
CN201710694504.1A 2017-08-15 2017-08-15 一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法 Pending CN107505277A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710694504.1A CN107505277A (zh) 2017-08-15 2017-08-15 一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710694504.1A CN107505277A (zh) 2017-08-15 2017-08-15 一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法

Publications (1)

Publication Number Publication Date
CN107505277A true CN107505277A (zh) 2017-12-22

Family

ID=60691046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710694504.1A Pending CN107505277A (zh) 2017-08-15 2017-08-15 一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法

Country Status (1)

Country Link
CN (1) CN107505277A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519358A (zh) * 2018-03-14 2018-09-11 华东师范大学 一种基于新型金纳米颗粒检测Hg2+的方法
CN115902196A (zh) * 2023-03-03 2023-04-04 山东康华生物医疗科技股份有限公司 一种chi3l1检测试剂盒及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FERDAOUS MAÂTOUK 等: "An electrochemical DNA biosensor for trace amounts of mercury ion quantification", 《JOURNAL OF WATER AND HEALTH》 *
SI-JIA LIU 等: "Electrochemical Sensor for Mercury(II) Based on Conformational Switch Mediated by Interstrand Cooperative Coordination", 《ANALYTICAL CHEMISTRY》 *
XINHUI LOU 等: "Self-Assembled DNA Monolayer Buffered Dynamic Ranges of Mercuric Electrochemical Sensor", 《ANALYTICAL CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519358A (zh) * 2018-03-14 2018-09-11 华东师范大学 一种基于新型金纳米颗粒检测Hg2+的方法
CN115902196A (zh) * 2023-03-03 2023-04-04 山东康华生物医疗科技股份有限公司 一种chi3l1检测试剂盒及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection
Liu et al. Recent advances in sensors for tetracycline antibiotics and their applications
Song et al. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants
Willner et al. Nanomaterial enabled sensors for environmental contaminants
Zhang et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization
Zhou et al. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@ Au-aptamer separation and antibody-protein A orientation recognition
Ma et al. SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles
Luo et al. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme
Wang et al. Colorimetric aptasensing of ochratoxin A using Au@ Fe3O4 nanoparticles as signal indicator and magnetic separator
Qiu et al. Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg (II) with sensitivity enhancement
Lin et al. Gold nanoparticle probes for the detection of mercury, lead and copper ions
Liu et al. A magnetic relaxation switching and visual dual-mode sensor for selective detection of Hg2+ based on aptamers modified Au@ Fe3O4 nanoparticles
Li et al. Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags
Brahmkhatri et al. Recent progress in detection of chemical and biological toxins in Water using plasmonic nanosensors
Wang et al. Label-free colorimetric biosensing of copper (II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes
Wu et al. Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag+ ion
Liu et al. Highly selective, colorimetric detection of Hg2+ based on three color changes of AuNPs solution from red through sandy beige to celandine green
US20170219572A1 (en) Lspr-based high sensitivity aptamer sensor using intercalation agent
Roushani et al. Development of a dual-recognition strategy for the aflatoxin B1 detection based on a hybrid of aptamer-MIP using a Cu2O NCs/GCE
Rong et al. Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food
Yu et al. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals
CN109813701A (zh) 一种快速无标签表面增强拉曼散射检测金黄色葡萄球菌和大肠埃希菌的方法
Li-Na et al. Synthesis and applications of gold nanoparticle probes
CN107505277A (zh) 一种基于Au@Ag核壳纳米粒子的合成检测汞离子的方法
Qi et al. One-step homogeneous non-stripping chemiluminescence metal immunoassay based on catalytic activity of gold nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171222