CN107490819B - Single mode optical fiber with ultra-low attenuation and large effective area - Google Patents

Single mode optical fiber with ultra-low attenuation and large effective area Download PDF

Info

Publication number
CN107490819B
CN107490819B CN201710725561.1A CN201710725561A CN107490819B CN 107490819 B CN107490819 B CN 107490819B CN 201710725561 A CN201710725561 A CN 201710725561A CN 107490819 B CN107490819 B CN 107490819B
Authority
CN
China
Prior art keywords
optical fiber
refractive index
fiber
layer
effective area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710725561.1A
Other languages
Chinese (zh)
Other versions
CN107490819A (en
Inventor
李鹏
王瑞春
汪洪海
朱继红
张磊
毛明锋
姚钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Optical Fibre and Cable Co Ltd
Original Assignee
Yangtze Optical Fibre and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Optical Fibre and Cable Co Ltd filed Critical Yangtze Optical Fibre and Cable Co Ltd
Priority to CN201710725561.1A priority Critical patent/CN107490819B/en
Publication of CN107490819A publication Critical patent/CN107490819A/en
Application granted granted Critical
Publication of CN107490819B publication Critical patent/CN107490819B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The invention relates to a single-mode optical fiber with ultra-low attenuation and large effective area, which comprises a core layer and a cladding layer and is characterized in that the radius R of the core layer15.5 to 7.5 μm, relative refractive index difference △ n1The core layer is coated with an inner cladding layer, a sunken inner cladding layer, an auxiliary outer cladding layer and an outer cladding layer from inside to outside in sequence, and the radius R of the inner cladding layer of the optical fiber is-0.02-0.10%214 to 17 μm, relative refractive index difference △ n2Is-0.40 to-0.15 percent, and the radius R of the depressed inner cladding315 to 19 μm, relative refractive index difference △ n3Is-0.8-0.3%, and the auxiliary outer cladding radius R435 to 52 μm, relative refractive index difference △ n4Is-0.50 to-0.20%, and the relative refractive index difference of the obtained outer cladding is △ n5Is-0.50 to-0.20 percent. The invention has the advantages of large effective area, low attenuation, and good bending loss and dispersion performance. The optical fiber has a sufficiently small cabled cutoff wavelength.

Description

Single mode optical fiber with ultra-low attenuation and large effective area
Technical Field
The invention relates to a single-mode optical fiber with ultralow attenuation and large effective area, which is used for a long-distance, large-capacity and high-speed communication transmission system and belongs to the technical field of optical fiber communication.
Background
With the continuous promotion of wired and wireless access bandwidths and the rapid development of technologies such as mobile internet, cloud computing, big data and the like, the global bandwidth demand is increased explosively, and 400G will be the direction for upgrading and building the next generation backbone network in the future. How to further increase the transmission capacity on the basis of 400G transmission signals is a focus of attention of various system equipment vendors and operators.
In the 100G and over 100G era, the nonlinear effect and the optical fiber attenuation become main factors restricting the improvement of the transmission performance of the system, and a receiving end adopts a coherent receiving and digital signal processing technology (DSP) and can digitally compensate the dispersion and Polarization Mode Dispersion (PMD) accumulated in the whole transmission process in an electric domain; the Baud rate of the signal is reduced by adopting polarization mode multiplexing and various high-order modulation modes, such as PM-QPSK, PDM-16QAM, PDM-32QAM, even PDM-64QAM and CO-OFDM. However, the higher order modulation method is very sensitive to the nonlinear effect, and thus, higher requirements are put on the optical signal to noise ratio (OSNR). The introduction of the low-loss large-effective-area optical fiber can bring the effects of improving the OSNR and reducing the nonlinear effect to the system. When a high power density system is used, the nonlinear coefficient is a parameter for evaluating the performance of the system due to the nonlinear effect, and is defined as n2/Aeff. Wherein n is2Is the nonlinear refractive index, A, of the transmission fibereffIs the effective area of the transmission fiber. Increasing the effective area of the transmission fiber can reduce nonlinear effects in the fiber.
Currently, the effective area of a common single-mode optical fiber used in terrestrial transmission system lines is only about 80 μm2Left and right. In the land long-distance transmission system, the requirement for the effective area of the optical fiber is higher, and the general effective area is 100 μm2The above. In order to reduce the laying cost and reduce the use of repeaters as much as possible, the effective area of the transmission fiber is preferably 130um in unrepeatered transmission system such as submarine transmission system2The above. However, in the current design of the refractive index profile of a large effective area optical fiber, the large effective area is often obtained by increasing the diameter of the optical core layer used for transmitting optical signals. The scheme has certain design difficulty. On the one hand, the core layer of the optical fiber and the cladding layer close to the core layer mainly determine the basic performance of the optical fiber, and occupy a large proportion of the manufacturing cost of the optical fiber, and if the radial dimension of the design is too large, the manufacturing cost of the optical fiber is inevitably increased, and the price of the optical fiber is increasedLattice, will be an obstacle to the widespread use of such optical fibers. On the other hand, compared with the common single-mode fiber, the increase of the effective area of the fiber can bring about the deterioration of other parameters of the fiber: for example, the cut-off wavelength of the optical fiber will increase, and if the cut-off wavelength is too large, it is difficult to ensure the single mode state of the optical signal in the transmission band of the optical fiber; in addition, the refractive index profile of the fiber, if improperly designed, can also lead to degradation of parameters such as bending performance and dispersion.
Another characteristic of the optical fiber that limits large-capacity transmission over long distances is attenuation, and currently, the attenuation of the conventional g.652.d optical fiber is generally 0.20dB/km, and the laser energy is gradually reduced after long-distance transmission, so that the signal needs to be amplified again in the form of a relay. And relative to the cost of the optical fiber cable, the related equipment and maintenance cost of the relay station is more than 70 percent of the whole link system, so if a low-attenuation or ultra-low-attenuation optical fiber is involved, the transmission distance can be effectively prolonged, and the construction and maintenance cost is reduced. Through relevant calculation, if the attenuation of the optical fiber is reduced from 0.20 to 0.16dB/km, the construction cost of the whole link is reduced by about 30 percent.
In summary, developing and designing an ultra-low attenuation large effective area optical fiber is an important issue in the field of optical fiber manufacturing. Document US2010022533 proposes a design of a large effective area fiber, which uses a pure silicon core design, does not co-dope germanium and fluorine in the core layer, and uses fluorine-doped silica as the outer cladding layer in order to obtain a lower rayleigh coefficient. For the design of the pure silicon core, the complicated viscosity matching must be carried out in the optical fiber, and the extremely low speed is required to be adopted in the drawing process, so that the attenuation increase caused by the defects in the optical fiber caused by high-speed drawing is avoided, and the manufacturing process is extremely complicated.
Document EP2312350 proposes a large effective area fiber design with an impure silicon core design, which adopts a stepped depressed cladding structure design, and a pure silica outer cladding structure design, and the related properties can meet the requirements of large effective area fibers g.654.b and D. However, in the design, the maximum radius of the fluorine-doped cladding portion is 40 μm, and although the cutoff wavelength of the optical fiber can be guaranteed to be 1530nm or less, the micro-bending performance and the macro-bending performance of the optical fiber are deteriorated due to the smaller fluorine-doped radius, so that the attenuation is increased during the optical fiber cabling process, and the relevant bending performance is not mentioned in the literature.
Document CN10232392A describes an optical fiber with a larger effective area. The effective area of the optical fiber reaches 150 mu m2However, the core layer design of the conventional germanium-fluorine co-doping mode is adopted, and the performance index of the cut-off wavelength is sacrificed. It allows cable cut-off wavelengths above 1450nm, in the described embodiment of which the cabled cut-off wavelength reaches even above 1800 nm. In practical applications, it is difficult to ensure that the optical fiber is cut off in the application band due to the excessively high cut-off wavelength, and thus it is impossible to ensure that the optical signal is in a single mode state during transmission. Therefore, such optical fibers may face a number of practical problems in applications. The invention does not allow for an optimal combination of fiber parameters (e.g., effective area, cut-off wavelength, etc.) and fiber manufacturing costs.
In the profile design and manufacturing method of the conventional optical fiber, the core layer uses a large amount of Ge/F codoping, and in order to obtain the optimal macrobending performance, the relative refractive index of the core layer is generally larger than 0.35%, namely the core layer is more Ge-doped, so that large Rayleigh scattering is brought, and the attenuation of the optical fiber is increased.
Document CN20140759087 proposes a single mode fiber design with ultra-low attenuation and large effective area. The design is characterized in that the design is provided with a sunken core layer, the section of the design is complex, the control difficulty in the actual production process is high, the production efficiency is low, and the production cost is increased.
The attenuation of the quartz fiber at 600nm-1600nm is mainly from Rayleigh scattering, and the attenuation α caused by Rayleigh scatteringRCan be calculated from the following formula:
Figure BDA0001385935390000031
wherein λ is the wavelength (μm), and R is the Rayleigh scattering coefficient (dB/km/μm)4) (ii) a P is light intensity; benrui (Benrui)Since B is a constant corresponding to the identification of the Rich scattering coefficient, attenuation α due to Rayleigh scattering can be obtained by determining the Rayleigh scattering coefficient RR(dB/km). Rayleigh scattering is caused by density fluctuations on the one hand and concentration fluctuations on the other hand. The rayleigh scattering coefficient R can then be expressed as:
R=Rd+Rc
in the above formula, RdAnd RcRespectively, the rayleigh scattering coefficient changes due to density fluctuations and concentration fluctuations. Wherein R iscIn order to have a concentration fluctuation factor which is mainly influenced by the doping concentration of the glass part of the fiber, theoretically less Ge and F or other doping is used, RcThe smaller the size, the reason why some foreign enterprises adopt pure silicon core design to realize ultra-low attenuation performance is.
However, it should be noted that the rayleigh scattering coefficient also includes another parameter Rd。RdVirtual temperature T with glassFRelated to and changing with structural changes and temperature changes of the glass. Fictive temperature T of glassFIs a physical parameter characterizing the structure of the glass, defined as the temperature at which the structure of the glass is no longer adjusted to reach a certain equilibrium state, by rapidly cooling the glass from a certain temperature T' to room temperature. When T'>TF(softening temperature of glass), the glass is in equilibrium at every instant because the viscosity of the glass is small and the glass structure is easy to adjust, so TFT'; when T'<Tg(glass transition temperature) T is a temperature at which the viscosity of the glass is high, the structure of the glass is difficult to adjust, and the structural adjustment of the glass lags behind the temperature changeF>T'; when T isg<T’<Tf(softening temperature of the glass), the shorter the time it takes for the glass to equilibrate, depending on the composition of the glass and the cooling rate, TF>T' or TF<T'。
In order to ensure total reflection of the fiber when using a pure silicon core design, the inner cladding must be matched using a relatively low index F-doped inner cladding to ensure that a sufficient index difference is maintained between the core and inner cladding.The viscosity of the core layer part of the pure silicon core is relatively high, and the viscosity of the inner cladding layer part doped with a large amount of F is low, so that the viscosity matching imbalance of the optical fiber structure is caused, the virtual temperature of the optical fiber with the pure silicon core structure is rapidly increased, and the R of the optical fiber is causeddAnd (4) increasing. Thus not only canceling out RcThe reduction benefits are more likely to cause fiber attenuation reversal anomalies.
In order to ensure that the core viscosity of the pure silicon core optical fiber is matched with the viscosity of the outer cladding, the core viscosity can be optimized by using a method of doping alkali metal in the core. Document US20100195999a1 discloses a method for adding alkali metal to a core layer, and solves the problem of R caused by viscosity mismatch by changing the viscosity of a part of the core layer of an optical fiber and the relaxation time of the core layer structure under the condition of keeping a pure silicon core of the core layer of the optical fiberdIncreasing and thereby reducing the rayleigh scattering coefficient of the fiber as a whole. However, although the method can effectively reduce the attenuation of the optical fiber, the method is complex relative to the process preparation, the core rod needs to be processed in multiple batches, and the requirement on the control of the alkali metal doping concentration is extremely high, so that the method is not beneficial to the large-scale preparation of the optical fiber.
Document CN201310394404 proposes a design of an ultra-low attenuation optical fiber, which uses an outer cladding design of pure silica, but because it uses a typical step-profile structure, does not use a depressed inner cladding design to optimize the bending of the optical fiber, and its core layer is not doped with Ge, it may cause viscosity loss in the preform preparation, so that it can be found that its attenuation and bending levels are relatively poor.
Disclosure of Invention
The following are definitions and descriptions of some terms involved in the present invention:
relative refractive index difference △ ni:
From the axis of the core of the optical fiber, the layer defined as the layer closest to the axis is the core layer and the outermost layer of the optical fiber is defined as the outer cladding of the optical fiber, depending on the change in refractive index.
Relative index difference △ n between layers of optical fiberiAs defined by the following equation,
Figure BDA0001385935390000041
wherein n isiIs the refractive index of the core, and ncIs the refractive index of pure silica.
The relative index difference contribution △ Ge of the Ge doping of the fiber core is defined by the following equation,
Figure BDA0001385935390000042
wherein n isGeThe refractive index of the pure silica core after doping Ge is adopted; n iscIs the refractive index of pure silica.
Effective area Aeff of optical fiber
Figure BDA0001385935390000043
Where E is the electric field associated with propagation and r is the distance from the axis to the point of electric field distribution.
The cable cutoff wavelength λ cc.
IEC (International electrotechnical Commission) Standard 60793-1-44 defines: the cable cutoff wavelength λ cc is the wavelength at which the optical signal no longer propagates as a single mode signal after 22 meters of propagation in the fiber. Data were acquired during the test by winding the fiber around one 14cm radius turn and two 4cm radius turns.
The microbending test Method refers to the Method of the Method B specified in IEC TR 62221-.
The invention aims to solve the technical problem of designing a single-mode optical fiber with ultralow attenuation and large effective area, which not only has large effective area and low attenuation, but also has better bending loss and dispersion performance.
The present invention has been made to solve the above-mentioned problemsThe technical scheme is as follows: comprises a core layer and a cladding layer, and is characterized in that the radius R of the core layer15.5 to 7.5 μm, relative refractive index difference △ n1The core layer is coated with an inner cladding layer, a sunken inner cladding layer, an auxiliary outer cladding layer and an outer cladding layer from inside to outside in sequence, and the radius R of the inner cladding layer of the optical fiber is-0.02-0.10%214 to 17 μm, relative refractive index difference △ n2Is-0.40 to-0.15 percent, and the radius R of the depressed inner cladding315 to 19 μm, relative refractive index difference △ n3Is-0.8-0.3%, and the auxiliary outer cladding radius R435 to 52 μm, relative refractive index difference △ n4Is-0.50 to-0.20%, and the relative refractive index difference of the obtained outer cladding is △ n5Is-0.50 to-0.20 percent.
According to the scheme, the sunken inner cladding has a sunken curve in a rectangular, trapezoidal or V shape, and the width w of the sunken inner cladding11-4 μm, and the width of the depressed inner cladding refers to the width of the bit line in V-shaped and trapezoidal shapes.
According to the scheme, the core layer is a silica glass layer doped with germanium, fluorine and alkali metals or a silica glass layer doped with germanium and alkali metals, wherein the relative refractive index contribution of germanium is 0.01-0.15%, and the content of alkali metals is 100-3000 ppm.
According to the scheme, the alkali metal in the core layer is one or more of lithium, sodium, potassium, rubidium, cesium and francium alkali metal ions.
According to the scheme, the effective area of the optical fiber at the wavelength of 1550nm is 130-155 mu m2
According to the scheme, the cabled cutoff wavelength of the optical fiber is equal to or less than 1530 nm.
According to the scheme, the dispersion of the optical fiber at the wavelength of 1550nm is equal to or less than 23ps/nm x km and equal to or more than 17ps/nm x km, and the dispersion slope of the optical fiber at the wavelength of 1550nm is equal to or less than 0.07ps/nm2Km and equal to or greater than 0.05ps/nm2-km, the dispersion of the fiber at a wavelength of 1625nm being equal to or less than 27ps/nm km.
According to the scheme, the attenuation of the optical fiber at the wavelength of 1550nm is equal to or less than 0.174 dB/km; preferably equal to or less than 0.165 dB/km.
According to the scheme, the microbending loss of the optical fiber at the wavelength of 1700nm is equal to or less than 5 dB/km. Microbending refers to the occurrence of some distortion in the fiber with a radius of curvature comparable to the cross-sectional dimension of the fiber.
According to the scheme, at the wavelength of 1550nm, the macrobending loss of 10 turns of R15mm bending radius bending is equal to or less than 0.25dB, and the macrobending loss of 100 turns of R30mm bending radius bending is equal to or less than 0.1 dB.
According to the scheme, the Mode Field Diameter (MFD) of the optical fiber at the wavelength of 1550nm is 12.3-15 mu m.
The invention has the beneficial effects that: 1. by adopting the core layer design of doping germanium or germanium fluorine and alkali metal, the viscosity matching in the optical fiber is reasonably designed, the defects in the optical fiber preparation process are reduced, and the attenuation parameters of the optical fiber are reduced. 2. Reasonable fluorine-doped sunken structure of the optical fiber is designed, and the optical fiber has a profile equal to or larger than 130 mu m through reasonable design of each core layer of the optical fiber2Has an effective area of up to 155 mu m2. 3. The optical fiber section adopts a deeper and narrower sunken cladding structure, so that the optical fiber has a small enough cabled cutoff wavelength to ensure the single mode state of optical signals in c-band transmission application, and has good bending performance, and the leakage of the base film under the bending condition can be limited. 4. The outermost outer cladding structure adopts the design of the fluorine-doped cladding, so that the viscosity matching inside the optical fiber is more reasonable, the manufacturing process is relatively simple, the manufacturing period is shorter, and the manufacturing efficiency of the optical fiber is improved.
Drawings
FIG. 1 is a graph showing the refractive index profile of an embodiment of the present invention with a V-shaped depressed cladding.
FIG. 2 is a graph showing the refractive index profile of an embodiment of a cladding with a trapezoidal dip according to the present invention.
FIG. 3 is a graph of the refractive index profile of an embodiment of the present invention with a rectangular depressed cladding.
Detailed Description
The present invention will be described in further detail with reference to the following examples and accompanying drawings.
The composite material comprises a core layer and a cladding layer, wherein the core layer is a silica glass layer doped with germanium, fluorine and alkali metals or a silica glass layer doped with germanium and alkali metals, and the core layer is coated with an inner cladding layer, a sunken inner cladding layer, an auxiliary outer cladding layer and an outer cladding layer from inside to outside in sequence. The outer cladding layer is a fluorine-doped outer cladding layer, and the diameter of the outer cladding layer is 125 microns.
Table one lists the refractive index profile parameters for the preferred embodiment of the invention, wherein 5 embodiments are listed for each of three different depressed cladding designs (V-shaped, trapezoidal, and rectangular); wherein K is the content of the potassium element in the core layer. And the second table shows the optical transmission characteristics corresponding to the first optical fiber.
TABLE I optical fiber Profile parameters of embodiments of the present invention
Figure BDA0001385935390000061
TABLE II optical fiber parameters of the examples of the invention
Figure BDA0001385935390000062
Figure BDA0001385935390000071

Claims (8)

1. A single-mode optical fiber with ultra-low attenuation and large effective area comprises a core layer and a cladding layer, and is characterized in that the radius R of the core layer15.5 to 7.5 μm, relative refractive index difference △ n1The core layer is coated with an inner cladding layer, a sunken inner cladding layer, an auxiliary outer cladding layer and an outer cladding layer from inside to outside in sequence, and the radius R of the inner cladding layer of the optical fiber is-0.02-0.10%214 to 17 μm, relative refractive index difference △ n2Is-0.40 to-0.15 percent, and the radius R of the depressed inner cladding315 to 19 μm, relative refractive index difference △ n3Is-0.8-0.3%, and the auxiliary outer cladding radius R435 to 52 μm in relative termsDifference in refractive index △ n4The relative refractive index difference of the outer cladding is-0.50 to-0.20 percent, and the relative refractive index difference of the outer cladding is △ n5Is-0.50% -0.20%; the sunken inner cladding has a trapezoidal or V-shaped sunken curve, and the width w of the sunken inner cladding11-4 μm, the width of the depressed inner cladding refers to the width of the bit line, attenuation of the optical fiber at 1550nm is equal to or less than 0.163dB/km, and the relative refractive index difference △ n of each layer of the optical fiberiAs defined by the following equation,
Figure FDA0002244332930000011
wherein n isiIs the refractive index of the core, and ncIs the refractive index of pure silica.
2. The single mode optical fiber of claim 1, wherein the core layer is a silica glass layer co-doped with Ge, F and alkali metals or a silica glass layer co-doped with Ge and alkali metals, wherein the relative refractive index contribution of Ge is 0.01% -0.15% and the alkali metal content is 100-3000 ppm.
3. The single mode optical fiber of claim 2, wherein the alkali metal in said core is one or more of lithium, sodium, potassium, rubidium, cesium, francium alkali metal ions.
4. The single mode optical fiber of claim 1 or 2 having an ultra-low attenuation large effective area, wherein the effective area of said fiber at 1550nm wavelength is 130 to 155 μm2
5. The ultra-low attenuation, large effective area single mode optical fiber of claim 1 or 2 wherein said fiber has a cabled cutoff equal to or less than 1530 nm; the mode field diameter of the optical fiber at the wavelength of 1550nm is 12.3-15 μm.
6. The single mode optical fiber of claim 1 or 2 having ultra-low attenuation and large effective area, wherein said fiber has dispersion at 1550nm equal to or less than 23ps/nm km and equal to or greater than 17ps/nm km, and said fiber has dispersion slope at 1550nm equal to or less than 0.07ps/nm2Km and equal to or greater than 0.05ps/nm2-km, the dispersion of the fiber at a wavelength of 1625nm being equal to or less than 27ps/nm km.
7. The single mode optical fiber of claim 1 or 2, wherein said fiber has a microbend loss at 1700nm of 5dB/km or less.
8. The single mode optical fiber of claim 1 or 2, wherein said fiber has a macrobend loss at 1550nm for 10 bends at R15mm bend radius of 0.25dB or less and a macrobend loss at 100 bends at R30mm bend radius of 0.1dB or less.
CN201710725561.1A 2017-08-22 2017-08-22 Single mode optical fiber with ultra-low attenuation and large effective area Active CN107490819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710725561.1A CN107490819B (en) 2017-08-22 2017-08-22 Single mode optical fiber with ultra-low attenuation and large effective area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710725561.1A CN107490819B (en) 2017-08-22 2017-08-22 Single mode optical fiber with ultra-low attenuation and large effective area

Publications (2)

Publication Number Publication Date
CN107490819A CN107490819A (en) 2017-12-19
CN107490819B true CN107490819B (en) 2020-05-05

Family

ID=60645488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710725561.1A Active CN107490819B (en) 2017-08-22 2017-08-22 Single mode optical fiber with ultra-low attenuation and large effective area

Country Status (1)

Country Link
CN (1) CN107490819B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683232A (en) * 2019-02-22 2019-04-26 长飞光纤光缆股份有限公司 Single mode optical fiber with ultralow attenuation large effective area
CN109683233A (en) * 2019-02-26 2019-04-26 长飞光纤光缆股份有限公司 A kind of single mode optical fiber with ultralow attenuation large effective area
CN110333572B (en) * 2019-04-15 2020-11-24 长飞光纤光缆股份有限公司 Low-attenuation graded orbital angular momentum optical fiber
CN110824610B (en) * 2019-11-29 2021-06-18 江苏亨通光导新材料有限公司 Bending insensitive single mode fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342711B1 (en) * 1998-12-17 2002-10-25 엘지전선 주식회사 Dispersion shifted fiber with triple clad
CN104991307A (en) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 Single-mode fiber with ultra-low attenuation and large effective area
CN106291808A (en) * 2016-09-18 2017-01-04 长飞光纤光缆股份有限公司 A kind of ultralow attenuation large effective area single-mode fiber
CN106443875A (en) * 2016-08-22 2017-02-22 长飞光纤光缆股份有限公司 Ultra-low attenuation bend insensitive single-mode fiber
CN106772788A (en) * 2017-02-23 2017-05-31 中天科技精密材料有限公司 A kind of cutoff wavelength displacement single-mode fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997073A (en) * 2017-05-04 2017-08-01 长飞光纤光缆股份有限公司 A kind of ultralow attenuation large effective area single-mode fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342711B1 (en) * 1998-12-17 2002-10-25 엘지전선 주식회사 Dispersion shifted fiber with triple clad
CN104991307A (en) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 Single-mode fiber with ultra-low attenuation and large effective area
CN106443875A (en) * 2016-08-22 2017-02-22 长飞光纤光缆股份有限公司 Ultra-low attenuation bend insensitive single-mode fiber
CN106291808A (en) * 2016-09-18 2017-01-04 长飞光纤光缆股份有限公司 A kind of ultralow attenuation large effective area single-mode fiber
CN106772788A (en) * 2017-02-23 2017-05-31 中天科技精密材料有限公司 A kind of cutoff wavelength displacement single-mode fiber

Also Published As

Publication number Publication date
CN107490819A (en) 2017-12-19

Similar Documents

Publication Publication Date Title
US10151873B2 (en) Single mode optical fiber with ultra-low attenuation and bend insensibility
CN107422415B (en) Single-mode fiber with ultralow attenuation and large effective area
US10209437B2 (en) Single-mode optical fiber with ultra low attenuation and large effective area
KR101941353B1 (en) Single-mode fiber with ultra-low attenuation and large effective area
CN107490819B (en) Single mode optical fiber with ultra-low attenuation and large effective area
US10018779B2 (en) Bending-insensitive single-mode fiber with ultra low attenuation
CN109298482B (en) Large-effective-area single-mode optical fiber with low attenuation and low bending loss
KR102106677B1 (en) Ultra-low attenuation single-mode fiber
CN104459876A (en) Single-mode optical fiber with ultralow attenuation and large effective area
CN104898201A (en) Ultralow attenuation large-effective-area single-mode optical fiber
CN114397727A (en) Ultralow-attenuation large-effective-area single-mode fiber
WO2023240881A1 (en) Land-type g.654.e optical fiber and manufacturing process therefor
CN109683233A (en) A kind of single mode optical fiber with ultralow attenuation large effective area
CN104880766B (en) A kind of ultralow decay single-mode fiber
CN104765098B (en) A kind of single-mode fiber having compared with lower attenuation coefficient
CN109683232A (en) Single mode optical fiber with ultralow attenuation large effective area
CN110244402B (en) Design and manufacturing method of single-mode fiber with ultralow loss and large effective area
CN115963596A (en) Single-mode optical fiber suitable for electric power super-long distance optical transmission
CN115542454A (en) Ultralow-loss single-mode optical fiber
CN116908957A (en) G.654.E optical fiber and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant