CN107490606B - 具有自供电微加热器的气体感测装置 - Google Patents

具有自供电微加热器的气体感测装置 Download PDF

Info

Publication number
CN107490606B
CN107490606B CN201610855423.0A CN201610855423A CN107490606B CN 107490606 B CN107490606 B CN 107490606B CN 201610855423 A CN201610855423 A CN 201610855423A CN 107490606 B CN107490606 B CN 107490606B
Authority
CN
China
Prior art keywords
sensed layer
measuring device
gas measuring
gas
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610855423.0A
Other languages
English (en)
Other versions
CN107490606A (zh
Inventor
萨伊德·阿兹米
伊拉恩·法尔贾米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thiessens Dainow Co
Original Assignee
Thiessens Dainow Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/178,407 external-priority patent/US10178963B1/en
Application filed by Thiessens Dainow Co filed Critical Thiessens Dainow Co
Publication of CN107490606A publication Critical patent/CN107490606A/zh
Application granted granted Critical
Publication of CN107490606B publication Critical patent/CN107490606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • G01N27/185Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested using a catharometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0054Ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4972Determining alcohol content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)

Abstract

提供一种具有用于在确定在空气或者呼吸样本中存在一个或者多个气体时减少功率使用和增强效率的自供电微加热器的气体感测装置。气体感测装置包括衬底、耦合到衬底的感测层以及可操作地连接到感测层和具有至少一个薄片的加热器元件。该薄片由锌粉和活性炭的均匀混合物制成。来自环境空气的氧被配置为在放热反应中与锌粉中的锌离子相互作用以生成热能,该热能用于在感测层加热至希望的温度,由此允许在希望的温度的感测层检测空气样本中的一种或者多种气体的存在或者比率。

Description

具有自供电微加热器的气体感测装置
有关申请
本申请要求对通过引用将全部内容结合于此、提交于2016年6月9日的第15/178,407号美国非临时专利申请的优先权。
技术领域
这里的实施例主要地涉及用于确定在空气样本或者呼吸样本中存在的气体的设备。
背景技术
人类呼吸是复杂的并且在典型样本中估计具有多达200种不同的气体成分。这些气体中的一些气体存在数量小、比如十亿分之1-100(ppb),这带来需要准确方法和设备恰当地检测这些成分。
在本领域中可用的若干技术比如化学电阻分析用来确定在样本中存在的气体的比率。在这些分析中,在样本中的气体与传感器相互作用,这使传感器的电阻性质改变。化学传感器的感测材料一般地被加热至在50-700摄氏度这一范围内的高温。该加热过程增加化学传感器在某些温度对存在的气体的选择性和灵敏度。通过测量一个或者多个化学传感器在各种温度的电阻,可以估计在样本中存在的气体的比率。因此,在执行化学电阻分析时关键的是通过使用微加热器元件将每个传感器加热至特定温度。
对于气体感测应用来说,已经广泛地报道开发微加热器(微热板)作为用于微传感器的平台。然而,微加热器的成本和设计有挑战性,特别是对于便携和一次性气体感测应用而言。例如必须在两个电绝缘构件(例如SiO2层)内嵌入蛇形多晶硅加热器或者其它传导材料,厚度为若干微米。另外,制作具有迅速加热或者冷却特性而表面易于清洁的低功率传感器带来许多挑战。当前微加热器具有这些限制并且需要额外电源、比如电池或者电源插座来操作。这限制设备的实用性并且给操作者带来若干负担。
这样,需要一种解决现有技术的限制、有减少的功率要求的低功率气体感测装置,该气体感测装置包括自供电微加热器。
发明内容
提供一种具有用于在确定在空气或者呼吸样本中存在一种或者多种气体时减少功率使用和增强效率的自供电微加热器的气体感测装置。气体感测装置包括衬底、耦合到衬底的感测层以及可操作地连接到感测层和包括至少一个薄片的加热器元件,该薄片包括锌粉和活性炭的均匀混合物,其中来自环境空气的氧被配置为在放热反应中与锌粉中的锌离子相互作用以生成热能,该热能用于将感测层加热至希望的温度,由此允许在希望的温度的感测层检测空气或者呼吸样本中的一种或者多种气体的存在或者比率。
附图说明
以下将参照附图做出对本发明的一些实施例的具体描述,其中,附图公开本发明的一个或者多个实施例。
图1描绘气体感测装置的某些实施例的示意图;
图2描绘气体感测装置的热生成机制的某些实施例的示意图;
图3描绘氨气感测装置的某些实施例的示意图;
图4描绘乙醇气体感测装置的某些实施例的示意图;以及
图5描绘丙酮气体感测装置的某些实施例的示意图。
具体实施方式
如图1中描绘的那样,气体感测装置包括微加热器10、热敏电阻器12和感测层14并且被配置为确定呼吸样本或者空气样本中的气体的比率和/或存在。微加热器10可操作地经由电路连接到感测层14和热敏电阻器12。感测层14可以由构件、比如金属接头16耦合到热敏电阻器12和/或微加热器10。
在某些实施例中,感测层14耦合到优选地由玻璃或者其它柔性聚合物制成的衬底(未示出)。在一个实施例中,感测层14通过使用喷墨印刷工艺来耦合到衬底。衬底也被配置为容纳和/或支撑微加热器10。在某些实施例中,感测层14可以是包括任何数目和类型的材料的传感器阵列,这些材料包括但不限于半传导氧化物,比如WO3、MoO3、SnO2、TiO2和Sb:SnO2,聚合物、比如聚苯胺和聚吡咯以及金属催化剂、比如Pd、Pt、Ni、Cu、Ag和Fe。这些示例感测材料用于确定在空气或者人类呼吸样本中某些化合物的存在、比如丙酮、乙醇、甲醇、二氧化碳、氧化氮等。
微加热器10是由嵌入到适当的基于聚合物的粘结剂系统、比如天然和/或合成橡胶、聚砜、丙烯酸聚合物、环氧树脂、聚苯乙烯、聚四氟乙烯或者基于水的琼脂粘结剂中的、锌粉和活性炭的均匀混合物制成的自供电加热器。均匀混合物被卷成薄片以形成微加热器10。在一个备选实施例中,微加热器10可以由通过将锌粉纳米颗粒、活性炭和聚合粘结剂混合成稳定墨来形成。在这一实施例中,将使用喷墨印刷技术使稳定墨直接沉积在衬底上。
如图2中描绘的那样,来自环境空气的氧18与在微加热器10中存在的锌离子相互作用以产生包括氧化锌和热能的输出22。这一放热反应由下式表示:2Zn+O2→2ZnO,其中ΔHf=-1.28kcal/g。输出22的热能能够将感测层14加热至希望的温度而无需外部电源、比如电源插座、电池等。在微加热器10的均匀混合物中的活性炭包括有孔结构,这改善在整个混合物内的氧循环以增强微加热器10的加热特性。此外,活性炭是传导成分,该传导成分允许用户(未示出)在加热过程期间测量元件的传导率改变。
可以通过优化微加热器10或者喷墨印刷层中的薄片的厚度和组成厚度来调整放热反应的动力学。通过调整在微加热器10中的锌离子与氧18之间的反应,用户可以优化适合用于由感测层14感测的气体的温度范围。备选地,可以变化使用的成分,即氧化锌和活性炭的比率以如希望的那样调整放热反应的动力学。
热敏电阻器12通过使用喷墨印刷工艺来耦合到微加热器10并且优选地由半传导金属氧化物如NiO、掺杂晶态陶瓷如BaTiOx3或者聚合物如自恢复保险丝(Polyswitch)制成。热敏电阻器12、具有依赖于温度的电阻的电阻器、被配置为自调节微加热器10。这允许对于气体感测应用适当地调整感测层14的温度。在某些实施例中,热敏电阻器12可以包括可以如希望的那样在各种配置中组装的热敏电阻器阵列(未示出)。
在操作中,如图1中描绘的那样组装气体感测装置。微加热器10被配置为在来自环境空气的氧18与在微加热器10中存在的锌离子相互作用时生成热能。生成的热能将感测层14加热至希望的温度。这增加感测层14在希望的温度对某些气体的选择性和灵敏度。在一个实施例中,至少一个电阻传感器(未示出)耦合到感测层14以测量在微加热器10加热该层时该层中的温度。由于感测层14在特定温度的电阻性质在存在某些气体时改变,所以可以确定在空气或者呼吸样本中含有的气体的存在和/或比率。
图3-5示出了备选的实施例,其中感测层14能够检测空气或者呼吸样本中的不同气体。图3描绘包括氨感测层26和氨感测金属接触28的感测层,该感测层允许气体感测装置在氨感测层26被加热至特定温度时检测氨24。图4描绘包括乙醇感测层32和乙醇感测金属接触34的感测层,该感测层允许气体感测装置在乙醇感测层32被加热至特定温度时检测乙醇30。图5描绘包括丙酮感测层38和丙酮感测金属接触40的感测层,该感测层允许气体感测装置在丙酮感测层38被加热至特定温度时检测丙酮36。应当认识氨感测层26、乙醇感测层32、丙酮感测层38或者其它感测层可以被组合在一起以形成传感器阵列以允许气体感测装置检测空气或者呼吸样本中的多种气体的存在和/或比率。
在某些实施例中,计算机处理器(未示出)可以可操作地连接到感测层14、热敏电阻器12和电阻传感器以记录和/或分析与对气体或者呼吸样本中的气体的检测关联的任何操作数据。通过分析在不同温度在感测层14中的一个或者多个气体感测层的电阻改变,可以确定空气样本中的气体的存在和/或比率。
应当认识到,这里在若干实施例中描述的气体感测装置的部件可以包括本领域中的任何备选的已知材料并且可以是任何颜色、大小和/或尺度。应当认识到,可以使用本领域中的任何已知技术来制造和组装这里描述的气体感测装置的部件。
本领域普通技术人员可以认识到,许多设计配置可享有本发明系统的功能益处。因此,假定存在本发明的实施例的广泛多种配置和布置,本发明的范围被所附权利要求的广度所反映而不受上文所述实施例之限制。

Claims (7)

1.一种具有用于在确定在空气样本中存在一种或者多种气体时减少功率使用和增强效率的自供电微加热器的气体感测装置,所述气体感测装置包括:
衬底;
耦合到所述衬底的感测层;以及
加热器元件,其可操作地连接到所述感测层并且包括至少一个薄片,所述薄片包括锌粉和活性炭的均匀混合物,其中,来自环境空气的氧被配置为在放热反应中与所述锌粉中的锌离子相互作用以生成热能,该热能用于将所述感测层加热至希望的温度,由此允许所述感测层在所述希望的温度检测所述空气样本中的所述一种或者多种气体的存在或者比率。
2.根据权利要求1所述的气体感测装置,还包括可操作地连接到所述加热器元件的热敏电阻器。
3.根据权利要求2所述的气体感测装置,其中所述热敏电阻器由从由半传导金属氧化物、掺杂晶态陶瓷和聚合物构成的组中选择的材料制成。
4.根据权利要求2所述的气体感测装置,还包括可操作地连接到所述感测层的电阻传感器,其中,所述电阻传感器被配置为测量所述感测层中的电阻。
5.根据权利要求4所述的气体感测装置,其中所述感测层包括传感器阵列,其中,所述传感器阵列包括氨感测层。
6.根据权利要求4所述的气体感测装置,其中所述感测层包括传感器阵列,其中,所述传感器阵列包括乙醇感测层。
7.根据权利要求4所述的气体感测装置,其中所述感测层包括传感器阵列,其中,所述传感器阵列包括丙酮感测层。
CN201610855423.0A 2016-06-09 2016-09-27 具有自供电微加热器的气体感测装置 Active CN107490606B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/178,407 US10178963B1 (en) 2016-06-09 2016-06-09 Gas collection apparatus and method to analyze a human breath sample
US15/178,407 2016-06-09
US15/195,644 2016-06-28
US15/195,644 US10012639B1 (en) 2016-06-09 2016-06-28 Gas-sensing apparatus with a self-powered microheater

Publications (2)

Publication Number Publication Date
CN107490606A CN107490606A (zh) 2017-12-19
CN107490606B true CN107490606B (zh) 2019-11-05

Family

ID=60643274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610855423.0A Active CN107490606B (zh) 2016-06-09 2016-09-27 具有自供电微加热器的气体感测装置

Country Status (3)

Country Link
US (1) US10012639B1 (zh)
CN (1) CN107490606B (zh)
HK (1) HK1250059A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696459A (zh) * 2019-01-08 2019-04-30 北京京东方专用显示科技有限公司 气体传感器、控制方法和存储介质
TWI730656B (zh) * 2020-03-06 2021-06-11 國立臺灣師範大學 電熱加熱裝置
CN111323346B (zh) * 2020-04-20 2020-11-13 山东诺方电子科技有限公司 一种大气颗粒物检测装置及方法
CN111323345B (zh) * 2020-04-20 2022-08-02 爱舍环境科技(成都)有限公司 一种大气颗粒物检测方法
EP4033233A1 (en) * 2021-01-22 2022-07-27 Infineon Technologies AG Gas sensing device with a gas filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478201A (zh) * 2000-12-07 2004-02-25 松下电器产业株式会社 气体传感器、气体浓度的检测方法及装置
CN1732383A (zh) * 2002-11-01 2006-02-08 霍尼韦尔国际公司 气体传感器
CN101171508A (zh) * 2005-03-07 2008-04-30 传感电子公司 固态气体传感器的温度反馈控制
CN101443635A (zh) * 2006-03-10 2009-05-27 霍尼韦尔国际公司 热质量气体流量传感器及其制造方法
CN104977327A (zh) * 2014-04-08 2015-10-14 ams国际有限公司 气体传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130344609A1 (en) * 2012-06-21 2013-12-26 Felix Mayer Chemical sensor in a portable electronic device
JP6146795B2 (ja) * 2013-01-06 2017-06-14 木村 光照 酸素を含む水素吸収膜を用いた水素ガスセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478201A (zh) * 2000-12-07 2004-02-25 松下电器产业株式会社 气体传感器、气体浓度的检测方法及装置
CN1732383A (zh) * 2002-11-01 2006-02-08 霍尼韦尔国际公司 气体传感器
CN101171508A (zh) * 2005-03-07 2008-04-30 传感电子公司 固态气体传感器的温度反馈控制
CN101443635A (zh) * 2006-03-10 2009-05-27 霍尼韦尔国际公司 热质量气体流量传感器及其制造方法
CN104977327A (zh) * 2014-04-08 2015-10-14 ams国际有限公司 气体传感器

Also Published As

Publication number Publication date
HK1250059A1 (zh) 2018-11-23
CN107490606A (zh) 2017-12-19
US10012639B1 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
CN107490606B (zh) 具有自供电微加热器的气体感测装置
Long et al. In situ localized growth of porous tin oxide films on low power microheater platform for low temperature CO detection
Moon et al. Semiconductor‐type MEMS gas sensor for real‐time environmental monitoring applications
Courbat et al. Drop-coated metal-oxide gas sensor on polyimide foil with reduced power consumption for wireless applications
EP2677314A2 (en) Chemical sensor in a portable electronic device
CN106662509A (zh) 化学物质浓缩器以及化学物质检测装置
Hsiao et al. Printed micro-sensors for simultaneous temperature and humidity detection
US10533962B2 (en) Miniature gas sensor and method for manufacturing the same
Choi et al. Batch-fabricated CO gas sensor in large-area (8-inch) with sub-10 mW power operation
Xu et al. A high-performance three-dimensional microheater-based catalytic gas sensor
KR100809421B1 (ko) 나노 크기의 감지물질을 갖는 다중가스 감지센서 및 이를이용한 감지방법
CN104977327B (zh) 气体传感器
Khorami et al. Ammonia sensing properties of (SnO 2–ZnO)/polypyrrole coaxial nanocables
Siegele et al. Optimized integrated micro-hotplates in CMOS technology
Khanna et al. Design and electro-thermal simulation of a polysilicon microheater on a suspended membrane for use in gas sensing
Selvakumar et al. A Novel MEMS microheater based alcohol gas sensor using nanoparticles
Barmpakos et al. A fully printed flexible multidirectional thermal flow sensor
Benedict et al. Low power gas sensor array on flexible acetate substrate
Wang et al. Design and fabrication of a MEMS-based gas sensor containing WO3 sensitive layer for detection of NO2
Kathirvelan et al. Design, Simulation and Analysis of platinum micro heaters on Al2O3 substrate for sensor applications
Sekhar et al. Trace detection of 2, 4, 6-trinitrotoluene using electrochemical gas sensor
Kumar et al. Design of Low Power Ni-chrome-Platinum Micro-Heater for MEMS-Based Gas Sensor in UAV Applications
Roy et al. Electro thermal analysis and fabrication of low cost microheater using a nickel alloy for low temperature MEMS based gas sensor application
Kartik et al. Design, Simulation and Optimisation of an Arrayed Gas Sensor using Metal Oxide based Nanowires
Cvejin et al. Planar impedancemetric NO sensor with thick film perovskite electrodes based on samarium cobaltite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1250059

Country of ref document: HK

CB02 Change of applicant information

Address after: American California

Applicant after: Thiessens DAINOW company

Address before: Wilmington, Germany

Applicant before: Thiessens DAINOW company

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant