CN107490140A - Air conditioner and energy efficiency calculating method - Google Patents

Air conditioner and energy efficiency calculating method Download PDF

Info

Publication number
CN107490140A
CN107490140A CN201710772727.5A CN201710772727A CN107490140A CN 107490140 A CN107490140 A CN 107490140A CN 201710772727 A CN201710772727 A CN 201710772727A CN 107490140 A CN107490140 A CN 107490140A
Authority
CN
China
Prior art keywords
refrigerant
heat exchanger
temperature
enthalpy
air conditioner
Prior art date
Application number
CN201710772727.5A
Other languages
Chinese (zh)
Inventor
戚文端
杨亚新
刘燕飞
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Priority to CN201710772727.5A priority Critical patent/CN107490140A/en
Publication of CN107490140A publication Critical patent/CN107490140A/en

Links

Abstract

The invention discloses an air conditioner and an energy efficiency calculating method. The energy efficiency calculating method comprises the following steps of: obtaining a current working condition of the air conditioner, power of a compressor and power consumption power of the air conditioner, and obtaining heat dissipating amount Qloss of a housing of the compressor; obtaining temperatures t1, t2, t4 and t7 of an air return hole of the compressor, an air exhaust hole of the compressor, a first end of an outdoor heat exchanger and a first end of an indoor heat exchanger, wherein t1 is generated according to t4 and an indoor environment temperature; when the current working condition of the air conditioner is a refrigerating condition, correspondingly generating a refrigerant enthalpy value h1 of the air return hole, a refrigerant enthalpy value h2 of the air exhaust hole, a refrigerant enthalpy value h4 of the first end of the outdoor heat exchanger and a refrigerant enthalpy value h7 of the first end of the indoor heat exchanger according to t1, t2, t4 and t7; generating refrigerating amount of the air conditioner according to power of the compressor, Qloss, h1, h2, h4 and h7; and generating energy efficiency of the air conditioner according to power consumption power and refrigerating amount of the air conditioner.

Description

空调器及其能效计算方法 Its calculation method of the air conditioner energy efficiency

技术领域 FIELD

[0001] 本发明涉及空调器技术领域,特别涉及一种空调器的能效计算方法、一种空调器和一种非临时性计算机可读存储介质。 [0001] Technical Field The present invention relates to an air conditioner, and particularly relates to an air conditioner energy efficiency calculation method, an air conditioner and a non-transitory computer-readable storage medium.

背景技术 Background technique

[0002] 空调器是否节能舒适是用户较为关注的问题。 [0002] the energy efficiency of air conditioners and comfortable user is more concerned about the issue.

[0003] 目前的空调器在运行时由于无法获知能效的变化情况,因而难以维持在较佳的运行状态,制冷制热效果和节能性能均不够理想。 [0003] It is because the air conditioner during operation can not know the changes of energy efficiency, it is difficult to maintain the preferred operating state, and cooling and heating effect of the energy saving performance are not ideal.

发明内容 SUMMARY

[0004] 本发明旨在至少在一定程度上解决上述技术中的技术问题之一。 [0004] The present invention aims to address at least some extent one of the above-described technical problems in the art. 为此,本发明的一个目的在于提出一种空调器的能效计算方法,能够实时准确地检测到空调器的能效。 To this end, an object of the present invention is to propose a method for calculating the energy efficiency of the air conditioner can be accurately detected in real time the energy efficiency of the air conditioner.

[0005] 本发明的第二个目的在于提出一种空调器。 [0005] A second object of the present invention is to provide an air conditioner.

[0006] 本发明的第三个目的在于提出一种非临时性计算机可读存储介质。 [0006] A third object of the present invention is to provide a non-transitory computer-readable storage medium.

[0007] 本发明的第四个目的在于提出另一种空调器的能效计算方法。 [0007] A fourth object of the present invention is to propose another method of calculating the energy efficiency of the air conditioner.

[0008] 本发明的第五个目的在于提出另一种空调器。 [0008] A fifth object of the present invention is to propose another air conditioner.

[0009] 本发明的第六个目的在于提出另一种非临时性计算机可读存储介质。 [0009] A sixth object of the present invention is to propose another non-transitory computer-readable storage medium.

[0010] 为达到上述目的,本发明第一方面实施例提出的一种空调器的能效计算方法包括以下步骤:获取空调器的当前工况、压缩机的功率和空调器耗电功率;获取压缩机的壳体散热量Qiciss;获取压缩机中回气口的回气口温度h、所述压缩机中排气口的排气口温度〇、室外换热器第一端的室外换热器第一端温度Ϊ4和室内换热器第一端的室内换热器第一端温度切,其中,所述回气口温度h根据室内环境温度t9和室外换热器第一端温度t4生成;当所述空调器的当前工况为制冷工况时,根据所述压缩机中回气口的回气口温度h生成回气口的制冷剂焓值h,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4和根据所述室内换热器第一端的室内换热器第一端温度t7生 Calculation of energy efficiency [0010] To achieve the above object, an air conditioner of the first aspect of the embodiment set forth embodiment of the present invention comprises the steps of: obtaining current operating conditions of the air conditioner, the compressor power and power consumption of the air conditioner; Get compression housing heat dissipation machine Qiciss; obtaining compressor return air inlet port of the return air temperature H, the compressor exhaust port exhaust temperature billion, a first end of the outdoor heat exchanger of a first end of the outdoor heat exchanger Ϊ4 temperature and the indoor heat exchanger a first end of a first indoor heat exchanger temperature cut end, wherein said return air inlet temperature h t4 generated according to a first end of the indoor temperature and the outdoor heat exchanger temperature t9; the air conditioner when making the current operating conditions of the cooling conditions, according to the return air inlet temperature of the return air inlet of the refrigerant compressor h enthalpy value h to generate the return air opening, t2 generated based on the exhaust temperature in the exhaust port of the compressor the refrigerant enthalpy value of the exhaust port h2, according to a first terminal of the first end of the outdoor heat exchanger temperature of the outdoor heat exchanger t4 generating a first end of the outdoor heat exchanger of the refrigerant and enthalpy change according to the chamber h4 an indoor heat exchanger a first end of a first end of the raw temperature t7 成室内换热器第一端的制冷剂焓值h7;根据所述压缩机的功率、所述压缩机的壳体散热量Qlciss、所述回气口的制冷剂焓值lu、排气口的制冷剂焓值h2、室外换热器第一端的制冷剂焓值h4和室内换热器第一端的制冷剂焓值h7生成空调器的制冷量;以及根据所述空调器耗电功率和所述制冷量生成所述空调器的能效。 The refrigerant into the indoor heat exchanger of the first end of the enthalpy H7; The power of the compressor, the amount of heat of the compressor housing Qlciss, the return port of the refrigerant enthalpy LU, cooling vent agent enthalpy h2, a first end of the outdoor heat exchanger refrigerant enthalpy h4 and the first end of the indoor heat exchanger the enthalpy of the refrigerant to generate refrigeration air conditioner h7; and according to the air conditioner and the power consumption said cooling capacity of the air conditioner to generate energy efficiency.

[0011] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率、空调器耗电功率和压缩机的壳体散热量,并获取压缩机中回气口、排气口、室外换热器第一端和室内换热器第一端的温度,以及在空调器处于制冷工况时根据上述各个位置的温度生成上述各个位置的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量、 上述各个位置的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提尚制冷效果的目的。 [0011] The air conditioner according to an embodiment of the present invention, the energy efficiency calculation method, by acquiring the current operating conditions of the air conditioner, power, power consumption of the air conditioner and the heat dissipation of the compressor housing of the compressor, and the compressor back to obtain port, an exhaust port, a first end of the temperature of the outdoor heat exchanger and the indoor heat exchanger a first end, and when the air conditioner is in the cooling condition above the temperature at various locations to generate the value of the enthalpy of the refrigerant according to respective positions, then binding power of the compressor, the amount of heat of the compressor housing, air-conditioner refrigerant enthalpy and consumption power of the respective positions of the energy efficiency of the air conditioner obtained, makes it possible to accurately detect in real time the energy efficiency of the air conditioner, thereby facilitating the purpose of the real-time optimization of the energy efficiency of the air conditioner operating state to save energy, and still provide the cooling effect of the air conditioner.

[0012] 另外,根据本发明上述实施例提出的空调器的能效计算方法还可以具有如下附加的技术特征: [0012] Further, the energy efficiency of the air conditioner according to the above calculation method proposed embodiment of the present invention may also have the following additional technical features:

[0013] 根据本发明的一个实施例,根据所述压缩机中回气口的回气口温度t生成回气口的制冷剂焓值Iu具体包括:获取室内换热器中部的室内换热器中部温度t6;根据所述回气口温度^和室内换热器中部温度U生成吸气过热度Δ tl;根据所述吸气过热度Δ tl和室内换热器中部温度U生成回气口制冷剂焓值的修正因子D1;根据所述室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值brt娜;根据所述回气口制冷剂焓值的修正因子D1、所述饱和制冷剂的焓值生成所述制冷剂焓值h1(3进一步地,根据以下公式生成吸气温度下饱和制冷剂的洽值: 獅=ai+a2t6+a3 t26+a4t36+a5,其中,ai_a5为制冷剂对应的饱和区系数。 [0013] According to one embodiment of the present invention, the temperature of the return air in the return air inlet port of said compressor refrigerant enthalpy t generate the return air opening Iu comprises: obtaining a temperature of the indoor heat exchanger middle of the middle of the indoor heat exchanger t6 ; U suction superheat generated in accordance with the return air inlet temperature ^ temperature of the indoor heat exchanger and the central Δ tl; Δ tl and a central temperature of the indoor heat exchanger U generates a correction value of the return air inlet enthalpy of the refrigerant according to the degree of suction superheat factor D1; T6 generating brt Na enthalpy saturated suction temperature of the refrigerant at the middle according to the temperature of the indoor heat exchanger; D1 the correction factor of the return air inlet enthalpy of the refrigerant, the refrigerant enthalpy saturated value generation the refrigerant enthalpy h1 (3 further, the contact generates a value of the saturation temperature of the refrigerant in the intake air according to the following formula: lion = ai + a2t6 + a3 t26 + a4t36 + a5, wherein, ai_a5 refrigerant saturation region corresponding coefficient.

[00M]进一步地,根据以下公式生成吸气温度下饱和制冷剂的焓值hr棚ί: [00M] Further, the value of enthalpy of formation hr shed ί saturated refrigerant in the intake air temperature according to the following formula:

[0015] ]111^_ = 31+32七6+331:26+341:36+35,其中,31-35为制冷剂对应的饱和区系数〇 [0015]] _ ^ 111 = 31 + 32 + 331 6 seven: + 26 341: 36 + 35, wherein the 31-35 region is a saturated refrigerant coefficient corresponding square

[0016] 进一步地,根据以下公式生成回气口制冷剂焓值的修正因子D1: [0016] Further, the correction factor to generate the return air port D1 enthalpy of the refrigerant according to the following formula:

Figure CN107490140AD00081

其中, Cb-Cl6为制冷剂对应的过热区系数。 Wherein, Cb-Cl6 refrigerant superheat region corresponding coefficient.

[0018] 进一步地,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括:根据所述室内换热器第一端温度t7和所述室内换热器中部温度U生成过热度Δ t7;根据所述过热度Δ t7和所述室内换热器中部温度U生成室内换热器第一端制冷剂焓值的修正因子D7;根据所述室内换热器第一端制冷剂焓值的修正因子D7和所述饱和制冷剂的焓值生成所述制冷剂焓值h7。 [0018] Further, t7 generate the indoor heat exchanger the enthalpy of the refrigerant in accordance with a first end of the first end of the first indoor heat exchanger-side indoor heat exchanger temperature h7 comprises: according to the indoor heat exchanger a first temperature end and the indoor heat exchanger t7 central U generating superheat temperature Δ t7; Δ t7 and a first end of the indoor heat exchanger refrigerant enthalpy U generating part temperature of the indoor heat exchanger based on the degree of superheat the correction factor D7; enthalpy correction factor according to a first terminal D7 of the enthalpy of the refrigerant and the indoor heat exchanger the refrigerant generates the saturated refrigerant enthalpy h7.

[0019] 进一步地,根据以下公式生成室内换热器第一端制冷剂焓值的修正因子D7: [0019] Further, the correction factor to generate a first end of the indoor heat exchanger the enthalpy of the refrigerant according to the following formula D7:

Figure CN107490140AD00082

,其中,d 1- d 6 为制冷剂对应的过热区系数。 Wherein, d 1- d 6 corresponding to the refrigerant superheating zone coefficient.

[0021] 根据本发明的一个实施例,所述根据所述压缩机中排气口的排气口温度t2生成所述排气口的制冷剂焓值匕具体包括:获取室外换热器中部的室外换热器中部温度t3;根据所述压缩机中排气口的排气口温度t2和所述室外换热器中部温度t3生成排气过热度A t2;根据所述排气过热度At2和所述室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2:根据所述室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值hsR饱ί;根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h樂侧^^生成所述排气口的制冷剂焓值h2。 [0021] According to one embodiment of the present invention, t2 is generated according to the exhaust temperature in the exhaust port of the compressor of the exhaust port of the enthalpy of the refrigerant dagger comprises: acquiring the outdoor heat exchanger of the central the middle of the outdoor heat exchanger temperature t3; t3 t2 generating exhaust superheat a compressor in accordance with the exhaust port and an exhaust port temperature t2 central temperature of the outdoor heat exchanger; according to the exhaust gas and the degree of superheat At2 the central temperature of the outdoor heat exchanger t3 generating a correction factor D2 vent refrigerant enthalpy: the enthalpy of saturated ί t3 hsR generate saturated refrigerant temperature at the exhaust gas temperature based on the middle of the outdoor heat exchanger; according to the correction factor D2 vent enthalpy of the refrigerant, the refrigerant enthalpy of the exhaust h2 saturated refrigerant enthalpy value h ^^ generating music side of the exhaust port temperature.

[0022] 进一步地,根据以下公式生成排气口制冷剂焓值的修正因子D2: [0022] Further, the correction factor D2 generates an exhaust port of the enthalpy of the refrigerant according to the following formula:

[0023] [0023]

Figure CN107490140AD00083

其中, Cb-Cl6为制冷剂对应的过热区系数。 Wherein, Cb-Cl6 refrigerant superheat region corresponding coefficient.

[0024] 根据本发明的一个实施例,根据以下公式生成所述室外换热器第一端的制冷剂焓值h4: [0024] According to an embodiment of the present invention, generated according to the following equation to the outdoor heat exchanger refrigerant enthalpy h4 first end:

[0025] [0025]

Figure CN107490140AD00084

其中,C1-C4为制冷剂对应的过冷区系数。 Wherein, C1-C4 supercooled region corresponding to a coefficient of the refrigerant.

[0026] 根据本发明的一个实施例,根据以下公式生成空调器的制冷量: [0026] The amount of a cooling embodiment, the generation of the air conditioner according to the following equation in accordance with the present invention:

Figure CN107490140AD00091

,其中,0»糧为所述空调器制冷量,Psm为压缩机的功率。 Wherein 0 »grain as the cooling capacity of the air conditioner, the power compressor of Psm.

[0027] 根据本发明的一个实施例,根据以下公式生成压缩机的壳体散热量Qioss: [0027] The embodiment of a heat dissipation case of the present invention, the compressor according to the following equation generating Qioss:

[0028] [0028]

Figure CN107490140AD00092

Figure CN107490140AD00093

,其中,Am/ι为压缩机壳体的表面积,t8为室外换热器翅片处的温度。 Wherein, Am / ι surface area of ​​the compressor housing, an outdoor temperature t8 at the heat exchanger fins.

[0029] 根据本发明的一个实施例,根据以下公式生成所述回气口温度t: [0029] According to an embodiment of the present invention, generating the return air inlet temperature t according to the following formula:

[0030] ti = a*t9+b*t4+c*f,f为压缩机运行频率,a,b,c为拟合系数。 [0030] ti = a * t9 + b * t4 + c * f, f is the operating frequency of the compressor, a, b, c of fitting coefficients.

[0031] 为达到上述目的,本发明第二方面实施例提出的一种空调器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现本发明第一方面实施例提出的空调器的能效计算方法。 [0031] To achieve the above object, an air conditioner of the second aspect of the embodiment set forth embodiment of the present invention includes a computer program memory, a processor and a memory and running on the processor in the memory, the processor the computer program, when executed, implement embodiments of the proposed method of calculating the energy efficiency of the air conditioner of the embodiment of the first aspect of the present invention.

[0032] 根据本发明实施例的空调器,能够实时准确地对能效进行检测。 [0032] The air conditioner according to an embodiment of the present invention, real time accurately detect energy efficiency.

[0033] 为达到上述目的,本发明第三方面实施例提出的一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明第一方面实施例提出的空调器的能效计算方法。 [0033] To achieve the above object, a non-transitory computer-readable storage medium of embodiment proposed embodiment of a third aspect of the present invention, a computer program stored thereon, a first aspect of the present invention is implemented when executed by the processor of the computer program Example embodiments of the proposed air conditioner energy efficiency calculation.

[0034] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提尚制冷效果的目的。 [0034]-readable storage medium by executing a computer program stored therein, can be accurately detected in real time the energy efficiency of the air conditioner, the air conditioner according to facilitate optimizing the energy efficiency of the air conditioner is running in real-time non-transitory computer according to an embodiment of the present invention state, to achieve energy saving and yet provide refrigeration effect.

[0035] 为达到上述目的,本发明第四方面实施例提出的另一种空调器的能效计算方法包括以下步骤:获取空调器的当前工况、压缩机的功率和空调器耗电功率;获取压缩机的壳体散热量Qiciss;获取压缩机中回气口的回气口温度t、所述压缩机中排气口的排气口温度t2、 室内换热器第二端的室内换热器第二端温度^和室内换热器第一端的室内换热器第一端温度t7,其中,所述回气口温度t根据室内环境温度t9和室外换热器第一端温度t4生成;当所述空调器的当前工况为制热工况时,根据所述压缩机中回气口的回气口温度七生成回气口的制冷剂焓值Iu,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2, 根据所述室内换热器第二端的室内换热器第二端温度t5生成室内换热器第二端的制冷剂焓值h5和根据所述室内换热器第一端的室内换热器第一端温度t7 Calculation of energy efficiency [0035] To achieve the above object, an air conditioner of another embodiment of the fourth aspect of the forth embodiment of the present invention comprises the steps of: obtaining current operating conditions of the air conditioner, the air conditioner compressor power and power consumption; Get heat radiation amount of the compressor housing Qiciss; obtaining compressor return air inlet port of the return air temperature t, the exhaust temperature in the exhaust port of the compressor t2, the second end of the second indoor heat exchanger-side indoor heat exchanger ^ temperature and the first end of the indoor heat exchanger a first end of the indoor heat exchanger temperature T7, wherein said return air inlet temperature t t4 generated according to a first end of the indoor temperature and the outdoor heat exchanger temperature t9; the air conditioner when when the current condition is for heating condition, according to the return air inlet temperature in the compressor return air inlet port seven generating return refrigerant enthalpy values ​​Iu, according to the exhaust temperature in the exhaust port of said compressor t2 generating an exhaust port of the refrigerant enthalpy h2, according to a second end of the temperature of the indoor heat exchanger of the indoor heat exchanger a second end of the second end t5 generates the indoor heat exchanger and the refrigerant enthalpy h5 based on the indoor heat exchanger the first end is a first end of the indoor heat exchanger temperature t7 成室内换热器第一端的制冷剂焓值h7;根据所述压缩机的功率、所述压缩机的壳体散热量Qlciss、所述回气口的制冷剂焓值Iu、排气口的制冷剂焓值h2、室内换热器第二端的制冷剂焓值h5和室内换热器第一端的制冷剂焓值h7生成空调器的制热量;以及根据所述空调器耗电功率和所述制热量生成所述空调器的能效。 The refrigerant into the indoor heat exchanger of the first end of the enthalpy H7; The power of the compressor, the amount of heat of the compressor housing Qlciss, the return port of the refrigerant enthalpy values ​​Iu, cooling vent agent enthalpy h2, the second end of the indoor heat exchanger refrigerant enthalpy h5 and the first end of the indoor heat exchanger refrigerant enthalpy heat capacity generated h7 air conditioner; and according to the air conditioner and the power consumption generating the heat capacity of the air conditioner energy efficiency.

[0036] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率、空调器耗电功率和压缩机的壳体散热量,并获取压缩机中回气口、排气口、室内换热器第二端和室内换热器第一端的温度,以及在空调器处于制热工况时根据上述各个位置的温度生成上述各个位置的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量、 上述各个位置的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提尚制热效果的目的。 [0036] The air conditioner according to an embodiment of the present invention, the energy efficiency calculation method, by acquiring the current operating conditions of the air conditioner, power, power consumption of the air conditioner and the heat dissipation of the compressor housing of the compressor, and the compressor back to obtain port, an exhaust port, the temperature of the indoor heat exchanger a first end and a second end of the indoor heat exchanger, and a refrigerant enthalpy value of the respective positions of each generated in accordance with the temperature of the air conditioner is in position when heating condition, then combined power of the compressor, heat capacity of the compressor housing, air-conditioner refrigerant enthalpy and consumption power of the respective positions of the energy efficiency of the air conditioner obtained, makes it possible to accurately detect in real time the energy efficiency of the air conditioner, so that facilitate real-time to optimize the operating state of the air conditioner air conditioner efficiency, to save energy and provide thermal effect is still manufactured object.

[0037] 另外,根据本发明上述实施例提出的空调器的能效计算方法还可以具有如下附加的技术特征: [0037] Further, the energy efficiency of the air conditioner according to the above calculation method proposed embodiment of the present invention may also have the following additional technical features:

[0038] 根据本发明的一个实施例,所述根据所述压缩机中回气口的回气口温度t生成回气口的制冷剂焓值Iu具体包括:获取室外换热器中部的室外换热器中部温度t3;根据所述回气口温度^和所述室外换热器中部温度t3生成吸气过热度At1;根据所述吸气过热度At1 和所述室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1;根据所述室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气搁ϊ;根据所述回气口制冷剂焓值的修正因子D1、所述吸气温度下饱和制冷剂的焓值hn_n生成所述回气口的制冷剂焓值Iu。 [0038] According to one embodiment of the present invention, in the compressor according to the return port of the return air inlet temperature t enthalpy of the refrigerant to generate the return air opening Iu comprises: acquiring the middle of the middle of the outdoor heat exchanger Outdoor heat exchanger temperature t3; t3 generated in accordance with the suction superheat At1 return air inlet and the outdoor temperature ^ temperature of the middle heat exchanger; T3 generates a return air inlet of the refrigerant in accordance with the suction superheat of the outdoor At1 and middle temperature heat exchanger enthalpy modifier D1; T3 generating a saturated suction temperature of the refrigerant at the middle according to the temperature of the outdoor heat exchanger the enthalpy value h intake resting ϊ; D1 the correction factor of the return air inlet enthalpy of the refrigerant, the saturated refrigerant enthalpy hn_n generating the return refrigerant enthalpy values ​​Iu intake air temperature at the air inlet.

[0039] 进一步地,根据以下公式生成所述吸气温度下饱和制冷剂的焓值hr棚ί: [0039] Further, according to the following formula to generate the enthalpy of the refrigerant hr shed saturated suction temperature at ί:

[0040] [0040]

Figure CN107490140AD00101

,其中制冷剂对应的饱和区系数。 Wherein the refrigerant saturation region corresponding coefficients.

[0041] 进一步地,根据以下公式生成所述回气口制冷剂焓值的修正因子D1: [0041] Further, the correction factor to generate said return port D1 enthalpy of the refrigerant according to the following formula:

[0042] [0042]

Figure CN107490140AD00102

其中,Cb-Cl6为制冷剂对应的过热区系数。 Wherein, Cb-Cl6 refrigerant superheat region corresponding coefficient.

[0043] 进一步地,所述根据所述压缩机中排气口的排气口温度t2生成所述排气口的制冷剂焓值h2具体包括:获取室内换热器中部的室内换热器中部温度t6;根据所述室内换热器中部的室内换热器中部温度t6和所述压缩机中排气口的排气口温度t2生成排气过热度A t2; 根据所述排气过热度At2和所述室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2;根据所述室内换热器中部的室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值如汽姻ϊ;根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值生成所述排气口的制冷剂焓值h2。 [0043] Further, according to the exhaust temperature in the exhaust port of the compressor refrigerant enthalpy generation t2 of the exhaust port h2 comprises: acquiring central indoor heat exchanger of the indoor heat exchanger middle temperature t6; T2 generation exhaust superheat a t2 exhaust temperature according to the indoor heat exchanger and the central temperature t6 the compressor discharge port of said indoor heat exchanger middle; exhaust gas according to the degree of superheat At2 said central chamber and generating a temperature correction factor t6 D2 vent enthalpy of the refrigerant heat exchanger; t6 generate enthalpy saturated refrigerant temperature at the middle of the exhaust gas temperature based on the middle of the indoor heat exchanger of the indoor heat exchanger the steam marriage ϊ; D2 based on the correction factor of the enthalpy of the exhaust port of the refrigerant, the refrigerant enthalpy of exhaust gas enthalpy h2 generating saturated refrigerant temperature at the exhaust port.

[0044] 进一步地,根据以下公式生成所述排气口制冷剂焓值的修正因子D2: [0044] Further, the exhaust port to generate the correction factor D2 enthalpy of the refrigerant according to the following formula:

[0045] [0045]

Figure CN107490140AD00103

其中, Cb-Cl6为制冷剂对应的过热区系数。 Wherein, Cb-Cl6 refrigerant superheat region corresponding coefficient.

[0046] 进一步地,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括:根据所述室内换热器中部的室内换热器中部温度t6和所述室内换热器第一端温度t7生成过热度Δ切;根据所述过热度Δ t7和所述室内换热器中部温度U生成室内换热器第一端制冷剂焓值的修正因子D7;根据所述室内换热器第一端制冷剂焓值的修正因子D7、所述排气温度下饱和制冷剂的焓值生成所述室内换热器第一端的制冷剂焓值h7。 [0046] Further, t7 generate the indoor heat exchanger the enthalpy of the refrigerant in accordance with a first end of the first end of the first indoor heat exchanger-side indoor heat exchanger temperature h7 comprises: according to the indoor heat exchanger the central part temperature of the indoor heat exchanger and the indoor heat exchanger t6 a first end of the superheat temperature to generate [Delta] t7 cut; [Delta] t7, and the indoor heat exchanger U generating part temperature of the indoor heat exchanger based on the degree of superheat of enthalpy of the indoor heat exchanger to generate a first correction factor according to a first end of the enthalpy of the refrigerant in the indoor heat exchanger D7, the exhaust gas at the saturation temperature of the refrigerant; correction factor enthalpy of the refrigerant end D7 One end of the refrigerant enthalpy h7.

[0047] 进一步地,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7: [0047] Further, the correction factor to generate a first end D7 enthalpy of the refrigerant of the indoor heat exchanger in accordance with the following formula:

[0048] [0048]

Figure CN107490140AD00104

其中,di-cU 为制冷剂对应的过热区系数。 Wherein, di-cU refrigerant superheat region corresponding coefficient.

Figure CN107490140AD00105

[0049] 根据本发明的一个实施例,根据以下公式计算所述室内换热器第二端的制冷剂焓值h5: [0049] According to one embodiment of the present invention, the enthalpy of the refrigerant is calculated h5 second end of the indoor heat exchanger in accordance with the following formula:

[0050] ,其中,C1-C4为制冷剂对应的过冷区系数。 [0050] wherein, C1-C4 refrigerant supercooling region corresponding coefficients.

[0051] 根据本发明的一个实施例,根据如下公式生成所述空调器的制热量: [0051] According to an embodiment of the present invention, the heating capacity of the air conditioner generated according to the formula:

[0052] [0052]

Figure CN107490140AD00106

其中,Q$^为所述空调器制热量,Pjaw为压缩机功率。 Wherein, Q $ ^ is the heat capacity of the air conditioner, Pjaw compressor power.

[0053] 根据本发明的一个实施例,根据以下公式生成压缩机的壳体散热量Qioss: [0053] The embodiment of a heat dissipation case of the present invention, the compressor according to the following equation generating Qioss:

Figure CN107490140AD00111

Figure CN107490140AD00112

其中,Am/Ι为压缩机壳体的表面积,ts为室外换热器翅片处的温度。 Wherein, Am / Ι surface area of ​​the compressor housing, ts is the temperature of the outdoor heat exchanger fins.

[0055] 根据本发明的一个实施例,根据以下公式生成所述回气口温度t: [0055] According to an embodiment of the present invention, generating the return air inlet temperature t according to the following formula:

[0056] ti = a*tg+b*t4+c*f,f为压缩机运行频率,a,b,c为拟合系数。 [0056] ti = a * tg + b * t4 + c * f, f is the operating frequency of the compressor, a, b, c of fitting coefficients.

[0057] 为达到上述目的,本发明第五方面实施例提出的另一种空调器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现本发明第四方面实施例提出的空调器的能效计算方法。 [0057] To achieve the above object, an air conditioner of another embodiment of a fifth aspect of the forth embodiment of the present invention includes a computer program memory, a processor and a memory and running on the processor in the memory, the processing when the computer program is executed, implement embodiments of the proposed energy efficiency calculation method of the air conditioner of the fourth aspect of the present invention.

[0058] 根据本发明实施例的空调器,能够实时准确地对能效进行检测。 [0058] The air conditioner according to an embodiment of the present invention, real time accurately detect energy efficiency.

[0059] 为达到上述目的,本发明第六方面实施例提出的另一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明第四方面实施例提出的空调器的能效计算方法。 [0059] To achieve the above object, another non-transitory computer-readable storage medium according to a sixth aspect of the forth embodiment of the present invention, a computer program stored thereon, a fourth implement the present invention when executed by a processor of the computer program the air conditioner of the embodiment implementing the proposed energy efficiency calculation.

[0060] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。 [0060]-readable storage medium by executing a computer program stored therein, can be accurately detected in real time the energy efficiency of the air conditioner, the air conditioner according to facilitate optimizing the energy efficiency of the air conditioner is running in real-time non-transitory computer according to an embodiment of the present invention state to save energy, and improve the heating effect of the object.

附图说明 BRIEF DESCRIPTION

[0061] 图1为根据本发明实施例的空调器的能效计算方法的流程图; [0061] FIG. 1 is a flowchart showing an air conditioner according to an embodiment of the present invention, the energy efficiency calculation method;

[0062] 图2为根据本发明一个实施例的空调器的结构示意图; [0062] FIG. 2 is a schematic view of a structure of an air conditioner according to an embodiment of the present invention;

[0063] 图3为根据本发明实施例的空调器的能效计算系统的方框示意图; [0063] FIG. 3 is a block diagram of the system is calculated based on the energy efficiency of the air conditioner of the embodiment of the present invention;

[0064] 图4为根据本发明实施例的另一种空调器的能效计算方法的流程图; [0064] FIG 4 is a flowchart showing an air conditioner according to another embodiment of the present invention, the energy efficiency calculation method;

[0065] 图5为根据本发明实施例的另一种空调器的能效计算系统的方框示意图。 [0065] FIG. 5 is a block diagram of the system is calculated based on the energy efficiency of an air conditioner of another embodiment of the present invention.

具体实施方式 Detailed ways

[0066] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 [0066] Example embodiments of the present invention is described in detail below, exemplary embodiments of the embodiment shown in the accompanying drawings, wherein same or similar reference numerals designate the same or similar elements or elements having the same or similar functions. 下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。 By following with reference to the embodiments described are exemplary, and are intended for explaining the present invention and should not be construed as limiting the present invention.

[0067] 下面结合附图来描述本发明实施例的空调器及其能效计算方法。 [0067] Next, an air conditioner and energy efficiency calculation method of an embodiment of the present invention will be described in conjunction with the accompanying drawings.

[0068] 图1为根据本发明实施例的空调器的能效计算方法的流程图。 [0068] FIG. 1 is a flowchart showing an air conditioner according to an embodiment of the present invention, the energy efficiency calculation method.

[0069] 如图1所示,本发明实施例的空调器的能效计算方法,包括以下步骤: [0069] 1, the air conditioner of the present embodiment of the invention, the energy efficiency calculation method, comprising the steps of:

[0070] SlOl,获取空调器的当前工况、压缩机的功率和空调器耗电功率。 [0070] SlOl, acquires the current operating conditions of the air conditioner, the air conditioner compressor power and power consumption.

[0071] 可通过空调器的电控系统实时监测空调器的当前工况、压缩机的功率和空调器耗电功率Pftfe。 [0071] The current operating conditions by the air conditioner can be electrically controlled real-time monitoring system of the air conditioner, the air conditioner compressor and power consumption of the power Pftfe.

[0072] S102,获取压缩机的壳体散热量Qi〇ss。 [0072] S102, obtaining the amount of heat of the compressor housing Qi〇ss.

[0073] S103,获取压缩机中回气口的回气口温度t、压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4和室内换热器第一端的室内换热器第一端温度切,其中,回气口温度根据室内环境温度t9和室外换热器第一端温度t4生成。 [0073] S103, acquires the compressor return air inlet port of the return air temperature t, the exhaust port of the compressor exhaust temperature t2, the first end of the outdoor heat exchanger of a first end of the outdoor heat exchanger and an indoor temperature change t4 an indoor heat exchanger a first end of a first cut end temperature, wherein the temperature of the return air port t4 generated according to a first end of the indoor temperature and the outdoor heat exchanger temperature t9.

[0074] 本发明实施例的空调器可为单级蒸汽压缩式空调器,如图2所示,本发明实施例的空调器可包括压缩机、四通阀、室外换热器、节流元件和室内换热器。 [0074] Example embodiments of the present invention is an air conditioner may be a single-stage vapor compression type air conditioner, shown in Figure 2, the air conditioner of the embodiment of the present invention may include a compressor, a four-way valve, an outdoor heat exchanger, a throttle element and an indoor heat exchanger.

[0075] 在本发明的一个实施例中,可通过对流、辐射公式计算压缩机的壳体散热量Qiciss, 具体可根据以下公式生成压缩机的壳体散热量Qioss: [0075] In one embodiment of the present invention, the heat dissipation can be calculated compressor housing by convection, radiation formula Qiciss, the amount of heat generated Specific compressor housing according to the formula Qioss:

Figure CN107490140AD00121

[0077] 其中,为压缩机壳体的表面积,其可通过查取压缩机型号等获得;t8为室外换热器翅片处的温度,即室外环境温度,如图2所示,其可通过设置在室外换热器翅片处的室外温度传感器检测得到。 [0077] wherein the surface area of ​​the compressor housing, which can be obtained by taking check type compressor and the like; T8 as the temperature of the outdoor heat exchanger fins, i.e., outdoor temperature, as shown in FIG. 2, which may be obtained outdoor temperature sensor detecting the outdoor heat exchanger fins by setting.

[0078] 在本发明的一个实施例中,可通过在对应温度检测点分别设置温度传感器以检测该温度检测点的温度。 [0078] In one embodiment of the present invention may be provided by the corresponding temperature sensor to the temperature detection points are detected temperature of the temperature detection point. 具体地,如图2所示,可通过在压缩机中回气口处设置回气口温度传感器以检测回气口温度七、在压缩机中排气口处设置排气口温度传感器以检测排气口温度t2、在室外换热器第一端处设置室外换热器第一端温度传感器以检测室外换热器第一端温度t4在室内换热器第一端处设置室内换热器第一端温度传感器以检测室内换热器第一端温度t7以及在室内换热器翅片处设置室内温度传感器以检测室内环境温度t9。 Specifically, as shown in FIG. 2, through the return air inlet port disposed return air temperature sensor to detect the temperature of the return air port seven, exhaust temperature sensor provided at an exhaust port of the compressor to detect exhaust temperature in the compressor t2, provided the outdoor heat exchanger temperature sensor to a first end of a first end of the outdoor heat exchanger temperature detector disposed t4 a first end of the indoor heat exchanger temperature is at a first end at a first end of the indoor heat exchanger of the outdoor heat exchanger a sensor to detect a first end of the indoor heat exchanger and the temperature t7 indoor temperature sensor provided in the indoor heat exchanger fins to detect the indoor temperature at t9.

[0079] 其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。 [0079] wherein each temperature sensor is effective contact with the corresponding temperature detection spots in the wall of the refrigerant, and the refrigerant pipe wall, in particular a temperature sensor location to be insulated. 例如,可将温度传感器紧贴铜管设置, 并通过保温胶带对铜管进行缠绕密封。 For example, temperature sensors may be disposed close to the copper tube, and sealing of the wound copper tube through the insulation tape. 由此,能够提高温度检测的可靠性和准确性。 Accordingly, it is possible to improve the reliability and accuracy of temperature detection.

[0080] 在本发明的一个实施例中,可根据以下公式生成回气口温度t1: [0080] In one embodiment of the present invention may be generated back to the inlet temperature t1 according to the following formula:

[0081] ti = a*t9+b*t4+c*f,f为压缩机运行频率,a,b,c为拟合系数。 [0081] ti = a * t9 + b * t4 + c * f, f is the operating frequency of the compressor, a, b, c of fitting coefficients.

[0082] S104,当空调器的当前工况为制冷工况时,根据压缩机中回气口的回气口温度以生成回气口的制冷剂焓值Iu,根据压缩机中排气口的排气口温度^生成排气口的制冷剂焓值h2,根据室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4和根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7。 [0082] S104, when the current operating conditions of the air conditioner refrigerant condition, according to the return air back to the compressor inlet temperature to generate a gas inlet enthalpy of the refrigerant return values ​​Iu intake port, the exhaust port of the compressor exhaust port ^ enthalpy of the refrigerant temperature value generating exhaust port h2, the outdoor heat exchanger according to a first terminal of a first end of the outdoor heat exchanger temperature t4 to generate the outdoor heat exchanger refrigerant enthalpy h4 first end and according to the indoor heat exchanger the first end is a first end of the indoor heat exchanger temperature t7 generating a first end of the indoor heat exchanger refrigerant enthalpy h7.

[0083] 在此需要说明的是,当空调器的当前工况为制冷工况时,室外换热器作冷凝器,室外换热器第一端为冷凝器出口,室内换热器作蒸发器,室内换热器第一端为蒸发器出口,室内换热器第二端为蒸发器入口。 [0083] It should be noted here that, when the current operating conditions of the air conditioner is cooling conditions, the outdoor heat exchanger as a condenser, a first end of the outlet of the outdoor heat exchanger as a condenser, the indoor heat exchanger as an evaporator , a first end of the indoor heat exchanger as the evaporator outlet, the second end of the indoor heat exchanger to the evaporator inlet.

[0084] 由于不同温度检测点的制冷剂的状态不同,因此不同温度检测点的制冷剂的焓值不同。 [0084] Depending on the state of the refrigerant at different temperatures of the detection points, and therefore different values ​​of the enthalpy difference of the refrigerant temperature detection points. 在本发明的一个实施例中,可根据经验公式计算得到制冷剂的焓值。 In one embodiment of the present invention, the enthalpy can be calculated according to the empirical formula of the refrigerant.

[0085] 下面分别说明根据经验公式得到回气口的制冷剂焓值lu、排气口的制冷剂焓值h2、 室外换热器第一端的制冷剂焓值h4和室内换热器第一端的制冷剂焓值h7的具体过程。 [0085] The following illustrate obtain the return air port according to the empirical formula refrigerant enthalpy lu, the refrigerant enthalpy value of the exhaust port h2, a first end of the outdoor heat exchanger the enthalpy of the refrigerant and the indoor heat exchanger h4 first end specific enthalpy of the refrigerant in the process h7.

[0086] 对于压缩机中回气口的制冷剂焓值lu,当空调器的当前工况为制冷工况时,压缩机的回气口的制冷剂过热,可结合吸气过热度计算回气口的制冷剂焓值Iu。 [0086] For the enthalpy of the refrigerant compressor lu return air opening, when the current operating conditions of the air conditioner is cooling conditions, the return air inlet of the compressor refrigerant superheat may be calculated in conjunction with the return air intake port refrigerant superheat agent enthalpy Iu.

[0087] 具体地,可获取室内换热器中部的室内换热器中部温度t6,其中,如图2所示,室内换热器中部的室内换热器中部温度U可通过在室内换热器中部设置的室内换热器中部温度传感器检测得到。 [0087] Specifically, the indoor heat exchanger can be obtained a temperature t6 central middle of the heat exchanger chamber, wherein, as shown, the central temperature of the indoor heat exchanger in the middle of the indoor heat exchanger U by the indoor heat exchanger 2 the middle of the indoor heat exchanger temperature sensor arranged in the middle obtained.

[0088] 然后可根据回气口温度。 [0088] The temperature may then return port. 和室内换热器中部温度U生成吸气过热度At1,并根据吸气过热度AtjP室内换热器中部温度U生成回气口制冷剂焓值的修正因子D1,以及根据室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值hr侧Ϊ。 And the temperature of the indoor heat exchanger U central suction superheat generated At1, and generates the correction factor U D1 the return air inlet enthalpy of the refrigerant in accordance with the central suction superheat temperature AtjP indoor heat exchanger, and the temperature of the indoor heat exchanger in accordance with the central t6 generating a saturated suction temperature of the refrigerant enthalpy at Ϊ side hr. 其中,吸气过热度A ti为回气口温度。 Wherein A ti suction superheat temperature of the return air opening. 和室内换热器中部温度t6之差,即Atdt6l3回气口制冷剂焓值的修正因子 The difference between the middle temperature and the indoor heat exchanger t6, i.e. the correction factor Atdt6l3 return air inlet enthalpy of the refrigerant

Figure CN107490140AD00122

其中,di-d6为制冷剂对应的过热区系数。 Wherein, di-d6 refrigerant superheat region corresponding coefficient. 吸气温度下饱和制冷剂的焓值 The enthalpy of refrigerant in the saturated suction temperature

Figure CN107490140AD00131

,其中,&1-&5为制冷剂对应的饱和区系数。 Wherein, & amp; 1- & amp; coefficient of a saturation region 5 corresponding to the refrigerant.

[0089] 在生成回气口制冷剂焓值的修正因子0:、饱和制冷剂的焓值匕5^娜后,可进一步根据回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值生成制冷剂焓值In A1 = D1 · 叶ch,其中,ch为制冷剂对应的过热区系数。 After [0089] In generating a return air inlet of the refrigerant enthalpy correction factor 0 :, enthalpy of the saturated refrigerant dagger 5 ^ na, further according enthalpy correction factor D1 return air inlet enthalpy of the refrigerant, a saturated refrigerant generated the refrigerant enthalpy in A1 = D1 · leaf ch, wherein, ch refrigerant superheat region corresponding coefficient.

[0090] 同样地,对于室内换热器第一端的制冷剂焓值h7,当空调器的当前工况为制冷工况时,室内换热器第一端的制冷剂过热,可结合该位置制冷剂过热度计算室内换热器第一端的制冷剂焓值h7。 [0090] Similarly, the enthalpy of the refrigerant to a first end of the indoor heat exchanger H7, when the current operating conditions when the air conditioner is cooling condition, a first end of the indoor heat exchanger refrigerant superheat, this position may be combined calculating the degree of superheat of the refrigerant indoor heat exchanger refrigerant enthalpy first end h7.

[0091] 具体地,可根据室内换热器第一端温度t7和室内换热器中部温度U生成过热度Δ t7,并根据过热度At7和室内换热器中部温度U生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和制冷剂的焓值hnr娜]生成制冷剂:!:含值h7。 [0091] Specifically, the degree of superheat according to a first U generate indoor heat exchanger temperature t7 end part temperature of the indoor heat exchanger and a [Delta] t7, U and generates the first indoor heat exchanger superheat At7 The indoor heat exchanger temperature and central One end of the correction factor of the enthalpy of the refrigerant D7, and the correction factor value in accordance with the enthalpy of the refrigerant and a saturated D7 a first end of the enthalpy generated indoor heat exchanger refrigerant hnr Na] generated refrigerant:!: containing values ​​h7. 其中,A t7 = t7_t6, Wherein, A t7 = t7_t6,

Figure CN107490140AD00132

,其中,cb-ch为制冷剂对应的过热区系数。 Wherein, cb-ch refrigerant overheated region corresponding coefficients.

[0092] 对于压缩机中排气口的制冷剂焓值h2,当空调器的当前工况为制冷工况时,压缩机的排气口的制冷剂过热,可结合排气过热度计算排气口的制冷剂焓值h2。 [0092] The enthalpy of the refrigerant to the compressor exhaust port h2, when the current operating conditions of the air conditioner is cooling conditions, the exhaust port of the compressor refrigerant superheat, discharge superheat may be computed in conjunction with the exhaust gas the refrigerant enthalpy opening h2.

[0093] 具体地,可获取室外换热器中部的室外换热器中部温度t3,其中,如图2所示,室外换热器中部的室外换热器中部温度t3可通过在室外换热器中部设置的室外换热器中部温度传感器检测得到。 [0093] Specifically, the central temperature of the outdoor heat exchanger obtain t3 middle of the outdoor heat exchanger, in which, as shown, the central temperature of the outdoor heat exchanger t3 may be the middle of the outdoor heat exchanger by the outdoor heat exchanger 2 the middle of the outdoor heat exchanger temperature sensor arranged in the middle obtained.

[0094] 然后,可根据压缩机中排气口的排气口温度t#P室外换热器中部温度t3生成排气过热度A t2,并根据排气过热度Δ t2和室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2,以及根据室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值。 [0094] Then, the central # P t may be the outdoor heat exchanger temperature exhaust gas generated t3 t2 A superheat temperature of the compressor in accordance with the exhaust port of the exhaust port, and Δ t2 central outdoor heat exchanger and the exhaust superheat generating a temperature correction factor D2 t3 vent enthalpy of the refrigerant, and the enthalpy of the refrigerant at saturation t3 generating the exhaust gas temperature from the central temperature of the outdoor heat exchanger. 其中, 排气过热度A t2为压缩机中排气口的排气口温度t2和室外换热器中部温度t3之差,即A t2 = t2_t3。 Wherein the exhaust gas to superheat the compressor t2 A vent exhaust temperature difference between the middle temperature t2 and t3 of the outdoor heat exchanger, i.e., A t2 = t2_t3. 排气口制冷剂洽值的修正因^ Contact due to the correction values ​​vent refrigerant ^

Figure CN107490140AD00133

» >>

Figure CN107490140AD00134

其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient. 排气温度下饱和制冷剂的洽值h#餐卩=ai+a2t3+a3t23+a4t33+a5,其中,ai_a5为制冷剂对应的饱和区系数。 Contact the exhaust gas temperature at the refrigerant saturation value h meal Jie # = ai + a2t3 + a3t23 + a4t33 + a5, wherein, ai_a5 saturation region corresponding coefficient of the refrigerant.

[0095] 在生成排气口制冷剂焓值的修正因子02、排气温度下饱和制冷剂的焓值h排侧ϊ后, 可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值畑汽搁ϊ生成排气口的制冷剂焓值h2,h2 = D2 ·叶ch,其中,ch为制冷剂对应的过热区系数。 [0095] In generating an exhaust port of the refrigerant enthalpy correction factor 02, the discharge side of the enthalpy value h ϊ saturated refrigerant in the exhaust gas temperature can be further based on the correction factor D2 vent enthalpy of the refrigerant, the exhaust gas the enthalpy of the refrigerant at saturation temperatures of the refrigerant vapor enthalpy h2 Hata resting ϊ generated exhaust port, h2 = D2 · leaf ch, wherein, ch refrigerant superheat region corresponding coefficient.

[0096] 对于室外换热器第一端的制冷剂焓值h4,当空调器的当前工况为制冷工况时,室外换热器第一端的制冷剂过冷,可直接计算室外换热器第一端的制冷剂焓值h4: [0096] enthalpy of the refrigerant to a first end of the outdoor heat exchanger H4, when the condition for the refrigerant, a first end of the outdoor heat exchanger The refrigerant supercooling current condition of the air conditioner, the outdoor heat exchanger can be calculated directly a first end of the enthalpy of the refrigerant h4:

Figure CN107490140AD00135

其中,C1-C4为制冷剂对应的过冷区系数。 Wherein, C1-C4 supercooled region corresponding to a coefficient of the refrigerant.

[0097] 上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数: [0097] The saturation region coefficient of the refrigerant corresponding to the superheating area coefficients supercooling region coefficient of the type of the refrigerant is related in Table 1 show a saturation region coefficient of refrigerant R410A and R32 refrigerants corresponding to overheat area coefficient and too cold zone factor:

Figure CN107490140AD00141

[0099] 表I [0099] TABLE I

[0100] 由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。 [0100] Accordingly, each coefficient value may be obtained depending on the kind of the refrigerant and the correspondence relationship as in Table 1, to calculate the enthalpy of the refrigerant temperature detection value of each point.

[0101] 在本发明的其他实施例中,还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。 [0101] In other embodiments of the present invention, the calculation result may directly call software, or to obtain the enthalpy of the refrigerant temperature detection spots in each other ways. 举例而言,当空调器的当前工况为制冷工况时,还可根据空调器中的低压压力、回气口温度、室内换热器第一端温度t7分别得到回气口的制冷剂焓值hi和室内换热器第一端的制冷剂焓值h7,并可根据空调器中的高压压力、排气口温度t2、室外换热器第一端温度t4分别得到排气口的制冷剂焓值匕和室外换热器第一端的制冷剂焓值h4〇 For example, when the current operating conditions when the air conditioner is cooling condition, also in the air conditioner according to the low pressure, return air inlet temperature, the temperature of the indoor heat exchanger a first end of the return air port t7 respectively refrigerant enthalpy hi and the indoor heat exchanger refrigerant enthalpy H7 first end, and in accordance with the high pressure air conditioner, the exhaust temperature T2, a first end of the outdoor heat exchanger temperature t4 respectively vent refrigerant enthalpy a first end of the dagger and the outdoor heat exchanger refrigerant enthalpy h4〇

[0102] S105,根据压缩机的功率、压缩机的壳体散热量Qiciss、回气口的制冷剂焓值Iu、排气口的制冷剂焓值h2、室外换热器第一端的制冷剂焓值h4和室内换热器第一端的制冷剂焓值h7生成空调器的制冷量。 [0102] S105, according to the power of the compressor, the compressor of the heat dissipation case Qiciss, return air inlet of the refrigerant enthalpy values ​​Iu, the refrigerant enthalpy value of the exhaust port h2, the outdoor heat exchanger refrigerant enthalpy first end h4 value and the indoor heat exchanger refrigerant enthalpy first end h7 generate refrigeration air conditioner.

[0103] 具体地,可根据以下公式生成空调器的制冷量:,其中, Qm*为空调器制冷量,Psm为压缩机功率。 [0103] Specifically, the amount of cooling air conditioner may be generated according to the following formula: wherein, Qm * cooling capacity of the air conditioner, the compressor power of Psm.

Figure CN107490140AD00142

[0104] S106,根据空调器耗电功率和制冷量生成空调器的能效。 [0104] S106, the power consumption of the air conditioner according to energy efficiency and cooling capacity of the air conditioner generated.

[0105] 由于空调器的当前工况为制冷工况,因而可根据空调器耗电功率和制冷量生成空调器的制冷能效,具体地,空调器的制冷能效为空调器的制冷量与耗电功率之比,即EER = 継。 [0105] Since the current operating conditions of the air conditioner is cooling conditions, and thus the power consumption of the air conditioner cooling capacity generated refrigeration air-conditioner according to energy efficiency, in particular, the air conditioner refrigerant energy efficiency and cooling capacity of the air conditioner power consumption power ratio, i.e. EER = Ji.

[0106] 在生成空调器的制冷能效后,还可根据空调器的制冷能效对当前空调器的运行状态进彳丁调整。 [0106] After generating the refrigeration energy efficiency of the air conditioner, the air conditioner may refrigeration energy efficiency of the current operating state of the air conditioner to adjust the stimulation was butoxy. 举例而目,可在空调器的制冷能效$父低时提尚压缩机的功率,以提尚空调器的制冷能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。 For example the head may be in the energy efficiency still provide refrigeration air-conditioner compressor at low power $ parent, yet to provide an air conditioner cooling capacity, reduce energy consumption and opposite the air conditioner, so that not only energy, but also can improve the user's comfort.

[0107] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率、空调器耗电功率和压缩机的壳体散热量,并获取压缩机中回气口、排气口、室外换热器第一端和室内换热器第一端的温度,以及在空调器处于制冷工况时根据上述各个位置的温度生成上述各个位置的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量、 上述各个位置的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提尚制冷效果的目的。 [0107] The air conditioner according to an embodiment of the present invention, the energy efficiency calculation method, by acquiring the current operating conditions of the air conditioner, power, power consumption of the air conditioner and the heat dissipation of the compressor housing of the compressor, and the compressor back to obtain port, an exhaust port, a first end of the temperature of the outdoor heat exchanger and the indoor heat exchanger a first end, and when the air conditioner is in the cooling condition above the temperature at various locations to generate the value of the enthalpy of the refrigerant according to respective positions, then binding power of the compressor, the amount of heat of the compressor housing, air-conditioner refrigerant enthalpy and consumption power of the respective positions of the energy efficiency of the air conditioner obtained, makes it possible to accurately detect in real time the energy efficiency of the air conditioner, thereby facilitating the purpose of the real-time optimization of the energy efficiency of the air conditioner operating state to save energy, and still provide the cooling effect of the air conditioner.

[0108] 对应上述实施例,本发明还提出一种空调器。 [0108] corresponding to the above-described embodiments, the present invention also provides an air conditioner.

[0109] 本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的空调器的能效计算方法。 [0109] The air conditioner air conditioner according to an embodiment of the present invention, comprising a computer program memory, a processor and a memory and running on the memory on the processor, when executing the computer program, the above-described embodiments may be implemented embodiments of the present invention provides a processor energy efficiency calculation.

[0110] 根据本发明实施例的空调器,能够实时准确地对能效进行检测。 [0110] According to an embodiment of the present invention, an air conditioner, in real time accurately detect energy efficiency.

[0111] 对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。 [0111] corresponding to the above-described embodiments, the present invention also provides a non-transitory computer-readable storage medium.

[0112] 本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的空调器的能效计算方法。 [0112] Example embodiments of non-transitory computer-readable storage medium of the present invention, a computer program stored thereon, the computer program when executed by a processor, the method calculates the energy efficiency of the air conditioner of the present embodiment of the proposed invention may be implemented.

[0113] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运tx状态,达到节能和提尚制冷效果的目的。 [0113] According to an embodiment of the non-transitory computer readable storage medium of the present invention, by executing a computer program stored therein, can be accurately detected in real time the energy efficiency of the air conditioner, the air conditioner so as to facilitate optimizing the energy efficiency of the air conditioner according to the real-time operation tx state, to achieve energy saving and yet provide refrigeration effect.

[0114] 对应上述实施例,本发明还提出一种空调器的能效计算系统。 [0114] corresponding to the above-described embodiments, the present invention also provides an air conditioner energy efficiency of the computing system.

[0115] 如图3所示,本发明实施例的空调器的能效计算系统,包括排气口温度传感器02、 室外换热器第一端温度传感器04、室内换热器第一端温度传感器07以及回气口温度生成模块〇〇、获取模块10、制冷剂焓值生成模块20、制冷量生成模块30、能效生成模块40。 [0115] As shown in FIG. 3, the energy efficiency of the air conditioner according to an embodiment of the present invention a computing system, comprising an exhaust port temperature sensor 02, a first end of the outdoor heat exchanger temperature sensor 04, a first end of the indoor heat exchanger temperature sensor 07 and a return air inlet temperature thousand and generating module, the acquisition module 10, the refrigerant enthalpy generation module 20, generating module 30 cooling capacity, energy efficiency, generating module 40.

[0116] 其中,排气口温度传感器02用于获取压缩机中排气口的排气口温度t2;室外换热器第一端温度传感器04用于获取室外换热器第一端的室外换热器第一端温度t4;室内换热器第一端温度传感器07用于获取室内换热器第一端的室内换热器第一端温度t7。 [0116] wherein, exhaust temperature sensor 02 for acquiring the exhaust temperature T2 of the compressor discharge port; a first end of the outdoor heat exchanger temperature sensor 04 for acquiring a first end of the outdoor heat exchanger of the outdoor exchange a first end of the heat temperature T4; a first end of the indoor heat exchanger temperature sensor 07 for acquiring a first end of a first temperature of the indoor heat exchanger-side indoor heat exchanger t7.

[0117] 本发明实施例的空调器可为单级蒸汽压缩式空调器,如图2所示,本发明实施例的空调器可包括压缩机100、四通阀200、室外换热器300、节流元件400和室内换热器500。 [0117] Example embodiments of the present invention is an air conditioner may be a single-stage vapor compression type air conditioner, shown in Figure 2, the air conditioner of the embodiment of the present invention may include a compressor 100, a four-way valve 200, an outdoor heat exchanger 300, the throttle element 400 and the indoor heat exchanger 500.

[0118] 如图2所示,回气口温度传感器01可设置在压缩机中回气口处,排气口温度传感器02可设置在压缩机中排气口处,室外换热器第一端温度传感器04可设置在室外换热器第一端,室内换热器第一端温度传感器07可设置室内换热器第一端。 [0118] 2, the return air inlet temperature sensor 01 may be disposed in the return air inlet of the compressor, the exhaust temperature sensor 02 may be disposed in the exhaust port of the compressor, a first end of the outdoor heat exchanger temperature sensor 04 may be disposed at a first end of the outdoor heat exchanger, a first end of the indoor heat exchanger temperature sensor 07 may be disposed a first end of the indoor heat exchanger. 其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。 Wherein each temperature sensor is effective contact with the corresponding temperature detection spots in the wall of the refrigerant, and the refrigerant pipe wall, in particular a temperature sensor location to be insulated. 例如,可将温度传感器紧贴铜管设置,并通过保温胶带对铜管进行缠绕密封。 For example, temperature sensors may be disposed close to the copper tube, and sealing of the wound copper tube through the insulation tape. 由此,能够提高温度检测的可靠性和准确性。 Accordingly, it is possible to improve the reliability and accuracy of temperature detection.

[0119] 回气口温度生成模块00用于根据室内环境温度t9和室外换热器第一端温度t4生成回气口温度t1;获取模块10用于获取空调器的当前工况、压缩机的功率、空调器耗电功率以及压缩机的壳体散热量Qiciss;制冷剂焓值生成模块20用于当空调器的当前工况为制冷工况时,根据压缩机中回气口的回气口温度^生成回气口的制冷剂焓值lu,根据压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,根据室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4和根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7;制冷量生成模块30用于根据压缩机的功率、压缩机的壳体散热量Qiciss、回气口的制冷剂焓值Iu、排气口的制冷剂焓值h2、室外换热器第一端的制冷剂焓值h4和室内换热器第一端的制冷剂焓值h7生成 [0119] return inlet temperature generating module 00 for generating the return air inlet temperature t4 t1 According to a first end of the indoor temperature and the outdoor heat exchanger temperature t9; 10 acquires the current operating conditions module configured to obtain an air conditioner, power of the compressor, the air conditioner power consumption and heat dissipation of the compressor housing Qiciss; enthalpy of the refrigerant when an air conditioner generation module 20 for the current operating conditions when a refrigeration condition, according to the temperature of the return air inlet port of the compressor in the return air back to the generation ^ lu enthalpy of the refrigerant intake port, the exhaust port temperature of the compressor exhaust port vent t2 generated refrigerant enthalpy h2, according to a first side of the outdoor heat exchanger a first end of the outdoor heat exchanger temperature t4 generating a first end of the outdoor heat exchanger of the refrigerant and enthalpy h4 t7 enthalpy of the refrigerant to generate a first end of the indoor heat exchanger in accordance with a first end of the indoor heat exchanger h7 first end of the indoor heat exchanger temperature; cooling capacity the power generating module for the compressor 30, the compressor housing heat dissipation Qiciss, return air inlet of the refrigerant enthalpy values ​​Iu, the refrigerant enthalpy value of the exhaust port h2, the enthalpy of the refrigerant in the outdoor heat exchanger of the first end h4 value and the indoor heat exchanger refrigerant enthalpy generating a first end h7 调器的制冷量;能效生成模块40用于根据空调器耗电功率和制冷量生成空调器的能效。 Cooling capacity of demodulator; energy efficiency of the air conditioner generating module 40 for generating the energy efficiency of the air conditioner according to the amount of power consumption and cooling.

[0120]其中,回气口温度生成模块00、获取模块10、制冷剂焓值生成模块20、制冷量生成模块30和能效生成模块40可设置于空调器的电控系统中。 [0120] wherein the temperature of the return air port generating module 00, an obtaining module 10, the refrigerant enthalpy generation module 20, generating module 30 cooling capacity and energy efficiency, generating module 40 may be disposed in the air conditioner electronic control system. 获取模块10可实时监测空调器的当前工况、压缩机的功率和空调器耗电功率P»fe。 Get air-conditioner module 10 can be monitored in real time the current operating conditions, the air conditioner compressor and power consumption of the power P »fe. 在本发明的一个实施例中,获取模块10可通过对流、辐射公式计算压缩机的壳体散热量Qlciss,具体可根据以下公式生成压缩机的壳体散热量Qioss: In one embodiment of the present invention, the acquisition module 10 may calculate the amount of heat of the compressor housing by convection, radiation formula Qlciss, the specific amount of heat may be generated Qioss housing of the compressor according to the following formula:

Figure CN107490140AD00161

[0122] 其中,为压缩机壳体的表面积,其可通过查取压缩机型号等获得;t8为室外换热器翅片处的温度,即室外环境温度,如图2所示,其可通过设置在室外换热器翅片处的室外温度传感器08检测得到。 [0122] wherein the surface area of ​​the compressor housing, which can be obtained by taking check type compressor and the like; T8 as the temperature of the outdoor heat exchanger fins, i.e., outdoor temperature, as shown in FIG. 2, which may be obtained by the outdoor temperature sensor is disposed at the outdoor heat exchanger fin 08 is detected.

[0123] 在此需要说明的是,当空调器的当前工况为制冷工况时,室外换热器作冷凝器,室外换热器第一端为冷凝器出口,室内换热器作蒸发器,室内换热器第一端为蒸发器出口,室内换热器第二端为蒸发器入口。 [0123] It should be noted here that, when the current operating conditions of the air conditioner is cooling conditions, the outdoor heat exchanger as a condenser, a first end of the outlet of the outdoor heat exchanger as a condenser, the indoor heat exchanger as an evaporator , a first end of the indoor heat exchanger as the evaporator outlet, the second end of the indoor heat exchanger to the evaporator inlet.

[0124] 在本发明的一个实施例中,如图2所示,可在室内换热器翅片处设置室内环境传感器09以检测室内环境温度t9,进一步地,回气口温度生成模块00可根据以下公式生成回气口温度t1: [0124] In one embodiment of the present invention, as shown in FIG. 2, may be provided in the indoor environmental sensor at the indoor heat exchanger fin 09 to detect the indoor temperature T9, further, the temperature of the return air port module 00 according to generation the following formula to generate the return air inlet temperature t1:

[0125] ti = a*tg+b*t4+c*f,f为压缩机运行频率,a,b,c为拟合系数。 [0125] ti = a * tg + b * t4 + c * f, f is the operating frequency of the compressor, a, b, c of fitting coefficients.

[0126] 由于不同温度检测点的制冷剂的状态不同,因此不同温度检测点的制冷剂的焓值不同。 [0126] Depending on the state of the refrigerant at different temperatures of the detection points, and therefore different values ​​of the enthalpy difference of the refrigerant temperature detection points. 在本发明的一个实施例中,制冷剂焓值生成模块20可根据经验公式计算得到制冷剂的焓值。 In one embodiment of the present invention, the refrigerant enthalpy generation module 20 may calculate the enthalpy of the refrigerant is obtained according to the empirical formula.

[0127] 下面分别说明制冷剂焓值生成模块20根据经验公式得到回气口的制冷剂焓值lu、 排气口的制冷剂焓值h2、室外换热器第一端的制冷剂焓值h4和室内换热器第一端的制冷剂焓值h7的具体过程。 [0127] The following illustrate the refrigerant enthalpy value generation module 20 to obtain the return air opening LU refrigerant enthalpy, the refrigerant enthalpy value of the exhaust port according to the empirical formula h2, the outdoor heat exchanger the enthalpy of the refrigerant and a first end h4 a first end of the indoor heat exchanger refrigerant specific enthalpy of the process h7.

[0128] 对于压缩机中回气口的制冷剂焓值lu,当空调器的当前工况为制冷工况时,压缩机的回气口的制冷剂过热,制冷剂焓值生成模块20可结合吸气过热度计算回气口的制冷剂焓值hu [0128] For the enthalpy of the refrigerant compressor lu return air opening, when the current operating conditions of the air conditioner is cooling conditions, the return air inlet superheat of the refrigerant compressor, the refrigerant enthalpy generation module 20 may be combined intake calculating the degree of superheat of the refrigerant return air inlet enthalpy hu

[0129] 具体地,可通过室内换热器中部温度传感器06获取室内换热器中部的室内换热器中部温度t6,其中,如图2所示,室内换热器中部温度传感器06可设置在室内换热器中部。 [0129] Specifically, the indoor heat exchanger can be obtained a temperature t6 central indoor heat exchanger through the middle of the middle of the indoor heat exchanger temperature sensor 06, which, as shown, the central indoor heat exchanger temperature sensor 062 may be disposed indoor heat exchanger middle.

[0130] 然后制冷剂焓值生成模块20可根据回气口温度以和室内换热器中部温度t6生成吸气过热度A tl,并根据吸气过热度Δ tl和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子〇:,以及根据室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值娜。 [0130] Then the refrigerant enthalpy value generating module 20 may return to the gas inlet temperature and the central temperature of the indoor heat exchanger t6 generate suction superheat A tl, and Δ tl central temperature and the indoor heat exchanger in accordance with the suction superheat degree is generated according to t6 :, square correction factor return air inlet enthalpy of the refrigerant and the enthalpy of saturated Na t6 generate the refrigerant at the middle of the intake air temperature according to the temperature of the indoor heat exchanger. 其中,吸气过热度Atl为回气口温度。 Wherein the suction superheat of the return air inlet temperature Atl. 和室内换热器中部温度t6之差,即AtFt1-Ut3回气口制冷剂焓值的修正因吁 The difference between the middle temperature and the indoor heat exchanger t6, i.e., the correction AtFt1-Ut3 return air port due to the enthalpy of the refrigerant Calls

Figure CN107490140AD00162

Figure CN107490140AD00163

其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient. 吸气温度下饱和制冷剂的焓值hirt娜=ai+ The enthalpy of refrigerant in the saturated suction temperature hirt = ai + Na

Figure CN107490140AD00164

,其中,&1-&5为制冷剂对应的饱和区系数。 Wherein, & amp; 1- & amp; coefficient of a saturation region 5 corresponding to the refrigerant.

[0131] 在生成回气口制冷剂焓值的修正因子0:、饱和制冷剂的焓值hnr侧^^后,制冷剂焓值生成模块20可进一步根据回气口制冷剂焓值的修正因子0:、饱和制冷剂的焓值hnrifiin生成制冷剂焓值111,111 = 014«^(17,其中,(17为制冷剂对应的过热区系数。 [0131] After generating the return port of the refrigerant enthalpy correction factor 0 :, enthalpy hnr side ^^ saturated refrigerant, the refrigerant enthalpy generation module 20 may be further based on the correction factor of the return air inlet enthalpy of the refrigerant 0: enthalpy generation hnrifiin saturated refrigerant enthalpy of the refrigerant 111, 111 014 = «^ (17, wherein (superheater zone 17 for the corresponding coefficient of the refrigerant.

[0132] 同样地,对于室内换热器第一端的制冷剂焓值h7,当空调器的当前工况为制冷工况时,室内换热器第一端的制冷剂过热,制冷剂焓值生成模块20可结合该位置制冷剂过热度计算室内换热器第一端的制冷剂焓值h7。 [0132] Similarly, the enthalpy of the refrigerant to a first end of the indoor heat exchanger H7, when the current operating conditions of the air conditioner is cooling condition, a first end of the indoor heat exchanger refrigerant superheat, the refrigerant enthalpy generation module 20 may be coupled to the position refrigerant superheat degree calculating a first end of the indoor heat exchanger refrigerant enthalpy h7.

[0133] 具体地,制冷剂焓值生成模块20可根据室内换热器第一端温度t7和室内换热器中部温度U生成过热度Λ t7,并根据过热度Δ t7和室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D?,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D 7和饱和制冷剂的洽值h吸气饱和生成制冷剂:!:含值h 7。 [0133] Specifically, the refrigerant enthalpy U value generation module 20 may generate the degree of superheat according to a first terminal and a central temperature of the indoor temperature t7 indoor heat exchanger Lambda t7, t7 and Δ middle and the indoor heat exchanger in accordance with the degree of superheat t6 temperature correction factor D ?, generating a first end of the enthalpy of the refrigerant in the indoor heat exchanger in accordance with the intake and h D of the first contact end value of the correction factor generated by the indoor heat exchanger refrigerant enthalpy of the refrigerant and a saturated 7 saturated refrigerant generated:!: containing the value h 7. 其中,A t 7 = t 7 - t 6, Wherein, A t 7 = t 7 - t 6,

Figure CN107490140AD00171

,其中,Cb-Ch为制冷剂对应的过热区系数。 Wherein, Cb-Ch refrigerant overheated region corresponding coefficients.

[0134] 对于压缩机中排气口的制冷剂焓值h2,当空调器的当前工况为制冷工况时,压缩机的排气口的制冷剂过热,制冷剂焓值生成模块20可结合排气过热度计算排气口的制冷剂焓值h2。 [0134] For the enthalpy of the refrigerant in the compressor exhaust port h2, when the current operating conditions of the air conditioner is cooling conditions, the exhaust port of the compressor superheated refrigerant, the refrigerant enthalpy generation module 20 may be combined calculating the degree of superheat exhaust vent refrigerant enthalpy h2.

[0135] 具体地,可通过室外换热器中部温度传感器03获取室外换热器中部的室外换热器中部温度t3,其中,如图2所示,室外换热器中部温度传感器03可设置在室外换热器中部。 [0135] Specifically, the central temperature of the outdoor heat exchanger obtain t3 middle of the outdoor heat exchanger by the outdoor heat exchanger temperature sensor 03 central, wherein, as shown in FIG. 2, the middle of the outdoor heat exchanger temperature sensor 03 may be disposed the outdoor heat exchanger middle.

[0136] 然后,制冷剂焓值生成模块20可根据压缩机中排气口的排气口温度t2和室外换热器中部温度t3生成排气过热度Δ t2,并根据排气过热度Δ t2和室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2,以及根据室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值饱ϊ。 [0136] Then, the refrigerant enthalpy generation module 20 may generate t3 exhaust vent according superheat temperature t2 and the central temperature of the outdoor heat exchanger of the compressor discharge port [Delta] t2, and [Delta] t2 in accordance with the exhaust gas superheat central temperature of the outdoor heat exchanger and generates a correction factor D2 t3 vent enthalpy of the refrigerant, and the enthalpy of saturated ϊ t3 generate saturated refrigerant in the exhaust gas temperature from the central temperature of the outdoor heat exchanger. 其中,排气过热度Δ t2为压缩机中排气口的排气口温度t2和室外换热器中部温度t3之差,即At2 = t2-t3。 Wherein, [Delta] t2 exhaust superheat of the compressor exhaust port exhaust temperature difference between t2 and t3 of the middle of the outdoor heat exchanger temperature, i.e. At2 = t2-t3. 排气口制冷剂焓值的修正因吁 Correcting the exhaust port due to the enthalpy of the refrigerant Calls

Figure CN107490140AD00172

Figure CN107490140AD00173

其中,Cb-Cl6为制冷剂对应的过热区系数。 Wherein, Cb-Cl6 refrigerant superheat region corresponding coefficient. 排气温度下饱和制冷剂的焓值 Enthalpy of the exhaust gas at the saturation temperature of the refrigerant

Figure CN107490140AD00174

,其中为制冷剂对应的饱和区系数。 Coefficient of a saturation region, wherein the refrigerant corresponding.

[0137] 在生成排气口制冷剂焓值的修正因子出、排气温度下饱和制冷剂的焓值h排侧ϊ后, 制冷剂焓值生成模块20可进一步根据排气口制冷剂焓值的修正因子02、排气温度下饱和制冷剂的焓值h排侧ϊ生成排气口的制冷剂焓值h2,h2 = D2 · h排侧针d7,其中,ch为制冷剂对应的过热区系数。 [0137] In generating an exhaust port of the refrigerant enthalpy correction factor, the enthalpy h ϊ saturated discharge side refrigerant in the exhaust gas temperature, the refrigerant enthalpy generation module 20 may further vent in accordance with the refrigerant enthalpy the correction factor 02, the enthalpy of the refrigerant enthalpy value h at a temperature of the exhaust gas discharge side ϊ saturated refrigerant generated exhaust port h2, h2 = D2 · h D7 discharge side of the needle, wherein, CH refrigerant overheated region corresponding coefficient.

[0138] 对于室外换热器第一端的制冷剂焓值h4,当空调器的当前工况为制冷工况时,室外换热器第一端的制冷剂过冷,制冷剂焓值生成模块20可直接计算室外换热器第一端的制冷剂焓值h4 [0138] enthalpy of the refrigerant to a first end of the outdoor heat exchanger H4, when the condition for the refrigerant, a first end of the outdoor heat exchanger The refrigerant supercooling current condition of the air conditioner, the refrigerant enthalpy generation module 20 can be calculated directly outdoor heat exchanger refrigerant enthalpy h4 first end

Figure CN107490140AD00175

其中,C1-C4为制冷剂对应的过冷区系数。 Wherein, C1-C4 supercooled region corresponding to a coefficient of the refrigerant.

[0139] 上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。 [0139] The saturation region coefficient of the refrigerant corresponding to the superheating area coefficients supercooling region coefficient of the type of the refrigerant is related in Table 1 show a saturation region coefficient of refrigerant R410A and R32 refrigerants corresponding to overheat field coefficient and the supercooling field coefficient. 由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。 Thus, each coefficient value may be obtained depending on the kind of the refrigerant and the correspondence relationship as in Table 1, to calculate the enthalpy of the refrigerant temperature detection value of each point.

[0140] 在本发明的其他实施例中,制冷剂焓值生成模块20还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。 [0140] In other embodiments of the present invention, the refrigerant enthalpy calculation result value generation module 20 software also directly call, or obtaining the enthalpy of the refrigerant temperature detection spots in each other ways. 举例而言,当空调器的当前工况为制冷工况时,制冷剂焓值生成模块20还可根据空调器中的低压压力、回气口温度t、室内换热器第一端温度t7分别得到回气口的制冷剂焓值In和室内换热器第一端的制冷剂焓值h7, 并可根据空调器中的高压压力、排气口温度t2、室外换热器第一端温度t4分别得到排气口的制冷剂焓值h2和室外换热器第一端的制冷剂焓值h4。 For example, when the current operating conditions when the air conditioner is cooling condition, the refrigerant enthalpy generation module 20 also according to the low pressure in the air conditioner, the return air inlet temperature t, a first end of the indoor heat exchanger temperature t7 respectively return air inlet enthalpy of the refrigerant and the indoor heat exchanger in the refrigerant enthalpy H7 first end, and t4, respectively, to obtain an air conditioner in accordance with the high-pressure, exhaust temperature T2, a first end of the outdoor heat exchanger temperature vent the refrigerant enthalpy h2 and the outdoor heat exchanger refrigerant enthalpy h4 first end.

[0141] 在本发明的实施例中,制冷量生成模块30可根据以下公式生成空调器的制冷量: [0141] In an embodiment of the present invention, the refrigeration generating 30 may generate refrigeration air conditioner module according to the formula:

Figure CN107490140AD00181

•其中,Qm*为空调器制冷量,Psm为压缩机功率。 • where, Qm * for the air conditioner cooling capacity, Psm compressor power.

[0142] 由于空调器的当前工况为制冷工况,因而能效生成模块40可根据空调器耗电功率和制冷量生成空调器的制冷能效,具体地,空调器的制冷能效为空调器的制冷量与耗电功率之比,即EER = Cfe漏/P継。 [0142] Since the current operating conditions of the air conditioner is cooling conditions, and thus energy efficiency generation module 40 may generate refrigeration air-conditioner power consumption of the air conditioner according to energy efficiency and cooling capacity, in particular, the air conditioner refrigerant energy efficiency of the air conditioner refrigerant the ratio of the amount of power consumption, i.e. EER = Cfe drain / P Ji.

[0143] 在生成空调器的制冷能效后,还可根据空调器的制冷能效对当前空调器的运行状态进彳丁调整。 [0143] After generating the refrigeration energy efficiency of the air conditioner, the air conditioner may refrigeration energy efficiency of the current operating state of the air conditioner to adjust the stimulation was butoxy. 举例而目,可在空调器的制冷能效$父低时提尚压缩机的功率,以提尚空调器的制冷能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。 For example the head may be in the energy efficiency still provide refrigeration air-conditioner compressor at low power $ parent, yet to provide an air conditioner cooling capacity, reduce energy consumption and opposite the air conditioner, so that not only energy, but also can improve the user's comfort.

[0144] 根据本发明实施例的空调器的能效计算系统,通过获取模块获取空调器的当前工况、压缩机的功率、空调器耗电功率和压缩机的壳体散热量,并通过相应的温度传感器获取压缩机中回气口、排气口、室外换热器第一端和室内换热器第一端的温度,以及在空调器处于制冷工况时通过制冷剂焓值生成模块、制冷量生成模块和能效生成模块根据上述各个位置的温度生成上述各个位置的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量、 上述各个位置的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提尚制冷效果的目的。 [0144] The energy efficiency of an air conditioner computing system according to an embodiment of the present invention, an air conditioner is acquired by acquiring the current operating conditions module, power of the compressor, an air conditioner power consumption and heat output of the compressor housing, and through the corresponding obtaining a temperature sensor in the return air inlet of the compressor, an exhaust port, a first end of a first indoor heat exchanger temperature and the outdoor side heat exchanger, and by the enthalpy of the refrigerant when the air conditioner is in cooling condition generating module, the cooling capacity and energy-efficient generation module generating module generates a temperature of the respective positions of the value of the enthalpy of the refrigerant according to respective positions, and then combined with the power, the amount of heat of the compressor housing of the compressor, the position of each of the above refrigerant enthalpy of the air conditioner and the power consumption obtained air conditioner power energy efficiency, makes it possible to accurately detect in real time the energy efficiency of the air conditioner, the air conditioner operating state to facilitate optimizing the energy efficiency of the air conditioner according to real-time, to achieve energy saving and yet provide refrigeration effect.

[0145] 上述实施例的空调器及其能效计算方法和系统可检测到空调器的制冷能效,为检测空调器的制热能效,本发明还提出另一种空调器的能效计算方法。 [0145] The embodiment of an air conditioner and energy efficient computational method and system may detect the energy efficiency of the refrigeration air-conditioner, the air conditioner system to detect thermal efficiency, the present invention also provides another energy efficiency calculation method of the air conditioner.

[0M6]如图4所示,本发明实施例的另一种空调器的能效计算方法,包括以下步骤: [0M6] As shown, the calculation method of embodiment 4 comprising the steps of another embodiment of the present invention, the energy efficiency of an air conditioner:

[0147] S401,获取空调器的当前工况、压缩机的功率和空调器耗电功率。 [0147] S401, acquires the current operating conditions of the air conditioner, the air conditioner compressor power and power consumption.

[0148] 可通过空调器的电控系统实时监测空调器的当前工况、压缩机的功率和空调器耗电功率Pftfe。 [0148] The current operating conditions by the air conditioner can be electrically controlled real-time monitoring system of the air conditioner, the air conditioner compressor and power consumption of the power Pftfe.

[0149] S402,获取压缩机的壳体散热量Qi〇ss。 [0149] S402, obtaining the amount of heat of the compressor housing Qi〇ss.

[0150] S403,获取压缩机中回气口的回气口温度t、压缩机中排气口的排气口温度t2、室内换热器第二端的室内换热器第二端温度tdP室内换热器第一端的室内换热器第一端温度切,其中,回气口温度t根据室内环境温度t9和室外换热器第一端温度t4生成。 [0150] S403, acquires the compressor return air inlet port of the return air temperature t, the exhaust port of the compressor exhaust temperature t2, the second indoor heat exchanger-side end of the indoor heat exchanger a second indoor heat exchanger temperature tdP a first end of a first indoor heat exchanger temperature cut end, wherein the return air inlet temperature t t4 generated according to a first end of the indoor temperature and the outdoor heat exchanger temperature t9.

[0151] 在本发明的一个实施例中,可通过对流、辐射公式计算压缩机的壳体散热量Qiciss, 具体可根据以下公式生成压缩机的壳体散热量Qioss: [0151] In one embodiment of the present invention, the heat dissipation can be calculated compressor housing by convection, radiation formula Qiciss, the amount of heat generated Specific compressor housing according to the formula Qioss:

Figure CN107490140AD00182

[0153] 其中,为压缩机壳体的表面积,其可通过查取压缩机型号等获得;t8为室外换热器翅片处的温度,即室外环境温度,如图2所示,其可通过设置在室外换热器翅片处的室外温度传感器检测得到。 [0153] wherein the surface area of ​​the compressor housing, which can be obtained by taking check type compressor and the like; T8 as the temperature of the outdoor heat exchanger fins, i.e., outdoor temperature, as shown in FIG. 2, which may be obtained outdoor temperature sensor detecting the outdoor heat exchanger fins by setting.

[0154] 如图2所示,可通过在压缩机中回气口处设置回气口温度传感器以检测回气口温度七、在压缩机中排气口处设置排气口温度传感器以检测排气口温度^、在室内换热器第二端处设置室内换热器第二端温度传感器以检测室内换热器第二端温度t5、在室内换热器第一端处设置室内换热器第一端温度传感器以检测室内换热器第一端温度t7、在室外换热器第一端处设置室外换热器第一端温度传感器以检测室外换热器第一端温度t4以及在室内换热器翅片处设置室内温度传感器以检测室内环境温度t9。 [0154] As shown in FIG. 2, through the return air inlet port disposed return air temperature sensor to detect the temperature of the return air port seven, exhaust temperature sensor provided at an exhaust port of the compressor to detect exhaust temperature in the compressor ^, provided the second indoor heat exchanger temperature sensor to detect the end of the indoor heat exchanger temperature T5 second end, the first end of the indoor heat exchanger disposed at the first end of the indoor heat exchanger at a second end of the indoor heat exchanger a temperature sensor to detect a first end of the indoor heat exchanger temperature t7, set the outdoor heat exchanger temperature sensor at a first end of the outdoor heat exchanger at a first end to a first end of the outdoor heat exchanger detects the temperature of the indoor heat exchanger and t4 the fin is provided at an indoor temperature sensor to detect ambient room temperature t9.

[0155] 其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。 [0155] wherein each temperature sensor is effective contact with the corresponding temperature detection spots in the wall of the refrigerant, and the refrigerant pipe wall, in particular a temperature sensor location to be insulated. 例如,可将温度传感器紧贴铜管设置, 并通过保温胶带对铜管进行缠绕密封。 For example, temperature sensors may be disposed close to the copper tube, and sealing of the wound copper tube through the insulation tape. 由此,能够提高温度检测的可靠性和准确性。 Accordingly, it is possible to improve the reliability and accuracy of temperature detection.

[0156] 在本发明的一个实施例中,可根据以下公式生成回气口温度t1: [0156] In one embodiment of the present invention may be generated back to the inlet temperature t1 according to the following formula:

[0157] ti = a*tg+b*t4+c*f,f为压缩机运行频率,a,b,c为拟合系数。 [0157] ti = a * tg + b * t4 + c * f, f is the operating frequency of the compressor, a, b, c of fitting coefficients.

[0158] S404,当空调器的当前工况为制热工况时,根据压缩机中回气口的回气口温度以生成回气口的制冷剂焓值Iu,根据压缩机中排气口的排气口温度^生成排气口的制冷剂焓值h2,根据室内换热器第二端的室内换热器第二端温度t5生成室内换热器第二端的制冷剂焓值匕和根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7。 [0158] S404, when the current operating conditions of the air conditioner when heating condition, according to the return air back to the compressor inlet temperature to generate a return air inlet port of the refrigerant enthalpy values ​​Iu, according to the exhaust gas in the exhaust port of the compressor ^ enthalpy of the refrigerant outlet temperature value generating exhaust port h2, t5 generating a second end of the indoor heat exchanger refrigerant enthalpy dagger the second ends of the indoor heat exchanger and the indoor heat exchanger temperature the indoor heat exchanger a first end of a first end of the indoor heat exchanger temperature t7 generating a first end of the indoor heat exchanger refrigerant enthalpy h7.

[0159] 在此需要说明的是,当空调器的当前工况为制热工况时,室外换热器作蒸发器,室内换热器作冷凝器,室内换热器第一端为冷凝器入口,室内换热器第二端为冷凝器出口。 [0159] It should be noted here that, when the current operating conditions of the air conditioner to the heating conditions, the outdoor heat exchanger as the evaporator and the indoor heat exchanger as a condenser, a first end of the indoor heat exchanger as a condenser inlet, a second end of the indoor heat exchanger as a condenser outlet.

[0160] 由于不同温度检测点的制冷剂的状态不同,因此不同温度检测点的制冷剂的焓值不同。 [0160] Depending on the state of the refrigerant at different temperatures of the detection points, and therefore different values ​​of the enthalpy difference of the refrigerant temperature detection points. 在本发明的一个实施例中,可根据经验公式计算得到制冷剂的焓值。 In one embodiment of the present invention, the enthalpy can be calculated according to the empirical formula of the refrigerant.

[0161] 下面分别说明根据经验公式得到回气口的制冷剂焓值lu、排气口的制冷剂焓值h2、 室内换热器第二端的制冷剂焓值h5和室内换热器第一端的制冷剂焓值h7的具体过程。 [0161] The following illustrate the enthalpy of the refrigerant to obtain refrigerant enthalpy h2 value LU return port, the exhaust port based on empirical formula, a first end of the second end of the indoor heat exchanger the enthalpy of the refrigerant and the indoor heat exchanger h5 the refrigerant specific enthalpy of the process h7.

[0162] 对于压缩机中回气口的制冷剂焓值lu,当空调器的当前工况为制热工况时,压缩机的回气口的制冷剂过热,可结合吸气过热度计算回气口的制冷剂焓值Iu。 [0162] For the compressor in the refrigerant enthalpy value LU return port, when the current operating conditions of the air conditioner when heating condition, the return air inlet of the compressor to the refrigerant superheat, superheat degree may be calculated in conjunction with the return air intake port The refrigerant enthalpy Iu.

[0163] 具体地,可获取室外换热器中部的室外换热器中部温度t3,其中,如图2所示,室外换热器中部的室外换热器中部温度t3可通过在室外换热器中部设置的室外换热器中部温度传感器检测得到。 [0163] Specifically, the central temperature of the outdoor heat exchanger obtain t3 middle of the outdoor heat exchanger, in which, as shown, the central temperature of the outdoor heat exchanger t3 may be the middle of the outdoor heat exchanger by the outdoor heat exchanger 2 the middle of the outdoor heat exchanger temperature sensor arranged in the middle obtained.

[0164] 然后可根据回气口温度。 [0164] The temperature may then return port. 和室外换热器中部温度t3生成吸气过热度At1,并根据吸气过热度A以和室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1,以及根据室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值hr侧Ϊ。 And the central temperature of the outdoor heat exchanger suction superheat generated t3 At1, A and according to the degree of suction superheat and the central temperature of the outdoor heat exchanger t3 D1 generates a correction factor back to the air inlet enthalpy of the refrigerant, and the outdoor heat exchanger in accordance with the central enthalpy generation temperature t3 hr Ϊ-side refrigerant in the saturated suction temperature. 其中,吸气过热度A ti为回气口温度“和室外换热器中部温度t3之差,即AtFtrts。回气口制冷剂焓值的修正因子 Wherein A ti suction superheat temperature of the return air port "t3 the temperature difference between the center and the outdoor heat exchanger, i.e. AtFtrts. Enthalpy of the refrigerant return port value correction factor

Figure CN107490140AD00191

,其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheating zone corresponding coefficients. 吸气温度下饱和制冷剂的焓值 The enthalpy of refrigerant in the saturated suction temperature

Figure CN107490140AD00192

其中,ai_a5 为制冷剂对应的饱和区系数。 Wherein, ai_a5 saturation region corresponding coefficient of the refrigerant.

[0165] 在生成回气口制冷剂焓值的修正因子0:、饱和制冷剂的焓值hnr侧^^后,可进一步根据回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值生成制冷剂焓值In A1 = D1 · 叶ch,其中,ch为制冷剂对应的过热区系数。 [0165] After generating the return port of the refrigerant enthalpy correction factor 0 :, enthalpy hnr side ^^ saturated refrigerant, may be further accordance enthalpy correction factor D1 return air inlet enthalpy of the refrigerant, a saturated refrigerant generated the refrigerant enthalpy in A1 = D1 · leaf ch, wherein, ch refrigerant superheat region corresponding coefficient.

[0166] 对于压缩机中排气口的制冷剂焓值h2,当空调器的当前工况为制热工况时,压缩机的排气口的制冷剂过热,可结合排气过热度计算排气口的制冷剂焓值h2。 [0166] For the enthalpy of the refrigerant in the compressor exhaust port h2, when the current operating conditions of the heating conditions of the air conditioner, the air outlet refrigerant superheat of the compressor, the exhaust gas may be computed discharge superheat binding h2 enthalpy of the refrigerant gas inlet.

[0167] 具体地,可获取室内换热器中部的室内换热器中部温度t6,其中,如图2所示,室内换热器中部的室内换热器中部温度U可通过在室内换热器中部设置的室内换热器中部温度传感器检测得到。 [0167] Specifically, the indoor heat exchanger can be obtained a temperature t6 central middle of the heat exchanger chamber, wherein, as shown, the central temperature of the indoor heat exchanger in the middle of the indoor heat exchanger U by the indoor heat exchanger 2 the middle of the indoor heat exchanger temperature sensor arranged in the middle obtained.

[0168] 然后,可根据压缩机中排气口的排气口温度t2和室内换热器中部温度t6生成排气过热度A t2,并根据室内换热器中部的室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值以及根据排气过热度Δ t2和室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2。 [0168] Then, the exhaust gas can generate the degree of superheat A t6 t2 t2 and the exhaust temperature according to the temperature of the indoor heat exchanger middle compressor exhaust port, and the central temperature of the indoor heat exchanger in accordance with the middle of the indoor heat exchanger t6 generating a saturation enthalpy of the refrigerant and the exhaust gas temperature correction factor D2 vent refrigerant enthalpy Δ t2 and t6 part temperature of the indoor heat exchanger superheat generated in accordance with the exhaust gas. 其中,排气过热度A t2为压缩机中排气口的排气口温度t2和室内换热器中部温度t6之差,即A t2 = t2_t6。 Wherein A discharge superheat temperature t2 t2 to vent the indoor heat exchanger and the compressor in the middle of the temperature difference between the exhaust ports of t6, i.e., A t2 = t2_t6. 排气温度下饱和制冷剂的洽值h#^_=ai+a2t6+a3t26+a4t36+a5,其中,ai_a5为制冷剂对应的饱和区系数。 The exhaust gas temperature of the saturated refrigerant consistent value h # ^ _ = ai + a2t6 + a3t26 + a4t36 + a5, wherein, ai_a5 saturation region corresponding coefficient of the refrigerant. 排气口制冷剂焓值的修正因子D2 = Hd1Atdd2 (Δ Correction factor vent enthalpy of the refrigerant D2 = Hd1Atdd2 (Δ

Figure CN107490140AD00201

其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient.

[0169] 在生成排气口制冷剂焓值的修正因子02后,可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h樂侧ϊ生成排气口的制冷剂焓值h2,h2 = D2 · h排侧ϊ +d7,其中,ch为制冷剂对应的过热区系数。 [0169] After generating the exhaust port of the refrigerant enthalpy correction factor 02, may be further based on the correction factor D2 vent enthalpy of the refrigerant, the temperature of the exhaust gas enthalpy h Le side ϊ saturated refrigerant exhaust gas generated the refrigerant enthalpy opening h2, h2 = D2 · h discharge side ϊ + d7, wherein, ch refrigerant superheat region corresponding coefficient.

[0170] 同样地,对于室内换热器第一端的制冷剂焓值h7,当空调器的当前工况为制热工况时,室内换热器第一端的制冷剂过热,可结合该位置制冷剂过热度计算室内换热器第一端的制冷剂焓值h7。 [0170] Similarly, the enthalpy of the refrigerant to a first end of the indoor heat exchanger H7, when the current operating conditions of the air conditioner to the heating conditions, a first end of the indoor heat exchanger refrigerant superheat, which can be combined calculating the position of the degree of superheat of the refrigerant indoor heat exchanger refrigerant enthalpy first end h7.

[0171] 具体地,可根据室内换热器第一端温度t7和室内换热器中部温度U生成过热度Δ t7,并根据过热度At7和室内换热器中部温度U生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和制冷剂的焓值h排督卩生成制冷剂洽值h7。 [0171] Specifically, the degree of superheat according to a first U generate indoor heat exchanger temperature t7 end part temperature of the indoor heat exchanger and a [Delta] t7, U and generates the first indoor heat exchanger superheat At7 The indoor heat exchanger temperature and central One end of the correction factor of the enthalpy of the refrigerant D7, and h Jie Du generating discharge refrigerant enthalpy value based contact D7 correction factor and a first end of the saturated refrigerant enthalpy generated by the indoor heat exchanger refrigerant h7. 其中,A t7 = t7-t6, Wherein, A t7 = t7-t6,

Figure CN107490140AD00202

其中,其中,cb-ch为制冷剂对应的过热区系数。 Wherein, wherein, cb-ch refrigerant overheated region corresponding coefficients.

[0172] 对于室内换热器第二端的制冷剂焓值h5,当空调器的当前工况为制热工况时,室内换热器第二端的制冷剂过冷,可直接计算室内换热器第二端的制冷剂洽值h5 : h5 = Cl+C2t5 [0172] enthalpy of the refrigerant to the second terminal h5 indoor heat exchanger, the current operating conditions when the air conditioner is heating condition, the second end of the indoor heat exchanger refrigerant supercooling, the indoor heat exchanger can be directly calculated the second end of the refrigerant consistent value h5: h5 = Cl + C2t5

Figure CN107490140AD00203

其中,C1_C4为制冷剂对应的过冷区系数。 Wherein, C1_C4 refrigerant supercooling region corresponding coefficients.

[0173] 上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。 [0173] The saturation region coefficient of the refrigerant corresponding to the superheating area coefficients supercooling region coefficient of the type of the refrigerant is related in Table 1 show a saturation region coefficient of refrigerant R410A and R32 refrigerants corresponding to overheat field coefficient and the supercooling field coefficient. 由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。 Thus, each coefficient value may be obtained depending on the kind of the refrigerant and the correspondence relationship as in Table 1, to calculate the enthalpy of the refrigerant temperature detection value of each point.

[0174] 在本发明的其他实施例中,还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。 [0174] In other embodiments of the present invention, the calculation result may directly call software, or to obtain the enthalpy of the refrigerant temperature detection spots in each other ways. 举例而言,当空调器的当前工况为制热工况时,还可根据空调器中的高压压力、回气口温度、室内换热器第一端温度t7分别得到回气口的制冷剂焓值hi和室内换热器第一端的制冷剂焓值h7,并可根据空调器中的高压压力、排气口温度t2、室内换热器第二端温度^分别得到排气口的制冷剂焓值h2和室内换热器第二端的制冷剂焓值h5〇 For example, when the current operating conditions of the air conditioner to the heating conditions, but also according to a high pressure in the air conditioner, the return air inlet temperature, the temperature of the indoor heat exchanger a first end of the return air port t7 respectively refrigerant enthalpy hi indoor heat exchanger and the refrigerant enthalpy H7 first end, and in accordance with the high pressure air conditioner, the exhaust temperature T2, the second end of the indoor heat exchanger temperature ^ respectively vent refrigerant enthalpy value h2 and the indoor heat exchanger refrigerant enthalpy second end h5〇

[0175] S405,根据压缩机的功率、压缩机的壳体散热量Qiciss、回气口的制冷剂焓值Iu、排气口的制冷剂焓值h2、室内换热器第二端的制冷剂焓值h5和室内换热器第一端的制冷剂焓值h7生成空调器的制热量。 [0175] S405, according to the power of the compressor, the compressor of the heat dissipation case Qiciss, return air inlet of the refrigerant enthalpy values ​​Iu, the refrigerant enthalpy value of the exhaust port h2, the indoor heat exchanger refrigerant enthalpy second end h5 and the indoor heat exchanger refrigerant enthalpy h7 generating a first end of the heating capacity of the air conditioner.

[0176] 具体地,可根据以下公式生成空调器的制热量: [0176] Specifically, the heating capacity of the air conditioner can be generated according to the following formula:

Figure CN107490140AD00204

,其中, 0»»为空调器制热量,Psm为压缩机功率。 Wherein 0 »» heating capacity of the air conditioner, the compressor power of Psm.

[0177] S406,根据空调器耗电功率和制热量生成空调器的能效。 [0177] S406, the power consumption of the air conditioner according to the heat capacity and generated energy efficiency of the air conditioner.

[0178] 由于空调器的当前工况为制热工况,因而可根据空调器耗电功率和制热量生成空调器的制热能效,具体地,空调器的制热能效为空调器的制热量与耗电功率之比,即COP = tea/P継。 [0178] Since the current operating conditions of the air conditioner to the heating conditions, thus generating thermal efficiency of the air conditioner system power consumption and heat capacity according to the air conditioner, in particular, the air conditioner system thermal efficiency of the heating capacity of the air conditioner and the ratio of power consumption, i.e., COP = tea / P Ji.

[0179] 在生成空调器的制热能效后,还可根据空调器的制热能效对当前空调器的运行状态进彳丁调整。 [0179] After generating the system thermal efficiency of the air conditioner, the air conditioner may be prepared according to thermal efficiency butoxy stimulation was adjusted to the current operating state of the air conditioner. 举例而目,可在空调器的制热能效$父低时提尚压缩机的功率,以提尚空调器的制热能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。 For example the head, mention may be made of thermal efficiency at low power is still $ parent air conditioner compressor, the air conditioner is still to provide heating capacity, reduce energy consumption and opposite the air conditioner, so that not only energy, but also can be improved comfort for the user.

[0180] 根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率、空调器耗电功率和压缩机的壳体散热量,并获取压缩机中回气口、排气口、室内换热器第二端和室内换热器第一端的温度,以及在空调器处于制热工况时根据上述各个位置的温度生成上述各个位置的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量、 上述各个位置的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。 [0180] The air conditioner according to an embodiment of the present invention, the energy efficiency calculation method, by acquiring the current operating conditions of the air conditioner, power, power consumption of the air conditioner and the heat dissipation of the compressor housing of the compressor, and the compressor back to obtain port, an exhaust port, the temperature of the indoor heat exchanger a first end and a second end of the indoor heat exchanger, and a refrigerant enthalpy value of the respective positions of each generated in accordance with the temperature of the air conditioner is in position when heating condition, then combined power of the compressor, heat capacity of the compressor housing, air-conditioner refrigerant enthalpy and consumption power of the respective positions of the energy efficiency of the air conditioner obtained, makes it possible to accurately detect in real time the energy efficiency of the air conditioner, so that the purpose of facilitating real-time optimization of the energy efficiency of the air conditioner operating state to save energy, and improve the heating effect of the air conditioner.

[0181] 对应上述实施例,本发明还提出另一种空调器。 [0181] corresponding to the above-described embodiments, the present invention further provides another air conditioner.

[0182] 本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。 [0182] The air conditioner according to an embodiment of the present invention, comprising a computer program memory, a processor and a memory and running on the processor in the memory, the processor executing the computer program, can achieve the above-described embodiment to another embodiment of the present invention provides species energy efficiency calculation method of the air conditioner.

[0183] 根据本发明实施例的空调器,能够实时准确地对能效进行检测。 [0183] According to an embodiment of the present invention, an air conditioner, in real time accurately detect energy efficiency.

[0184] 对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。 [0184] corresponding to the above-described embodiments, the present invention also provides a non-transitory computer-readable storage medium.

[0185] 本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。 [0185] The present invention is an embodiment of the non-transitory computer-readable storage medium, having stored thereon a computer program, the computer program when executed by the processor, the present invention can realize an air conditioner of another embodiment of the proposed energy efficiency calculation method.

[0186] 根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。 [0186]-readable storage medium by executing a computer program stored therein, can be accurately detected in real time the energy efficiency of the air conditioner, the air conditioner according to facilitate optimizing the energy efficiency of the air conditioner is running in real-time non-transitory computer according to an embodiment of the present invention state to save energy, and improve the heating effect of the object.

[0187] 对应上述实施例,本发明还提出另一种空调器的能效计算系统。 [0187] corresponding to the above-described embodiments, the present invention further provides another air conditioner energy efficiency computing system.

[0188] 如图5所示,本发明实施例的空调器的能效计算系统,包括排气口温度传感器02、 室内换热器第二端温度传感器05、室内换热器第一端温度传感器07、室外换热器第一端温度传感器04以及回气口温度生成模块00、获取模块10、制冷剂焓值生成模块20、制热量生成模块50、能效生成模块40。 [0188] As shown, the air conditioner of the embodiment of the present invention the energy efficiency of the computing system, comprising an exhaust port temperature sensor 02, the second end of the indoor heat exchanger temperature sensor 05, a first end of the indoor heat exchanger temperature sensor 075 , a first end of the outdoor heat exchanger temperature sensor 04 and the return air inlet temperature generating module 00, an obtaining module 10, the refrigerant enthalpy generation module 20, generating module 50 heating capacity, energy efficiency, generating module 40.

[0189] 其中,排气口温度传感器02用于获取压缩机中排气口的排气口温度t2;室内换热器第二端温度传感器05用于获取室内换热器第二端的室内换热器第二端温度t5;室内换热器第一端温度传感器07用于获取室内换热器第一端的室内换热器第一端温度t7;室外换热器第一端温度传感器04用于获取室外换热器第一端的室外换热器第一端温度t4。 [0189] wherein, exhaust temperature sensor 02 for acquiring the exhaust port of the compressor exhaust temperature T2; the second end of the indoor heat exchanger temperature sensor 05 for acquiring the second end of the indoor heat exchanger chamber temperature T5 second end; a first end of the indoor heat exchanger temperature sensor 07 for acquiring a first end of the indoor heat exchanger a first end of the indoor heat exchanger temperature T7; a first end of the outdoor heat exchanger temperature sensor 04 for obtaining a first end of the outdoor heat exchanger of a first end of the outdoor heat exchanger temperature t4.

[0190] 本发明实施例的空调器可为单级蒸汽压缩式空调器,如图2所示,本发明实施例的空调器可包括压缩机100、四通阀200、室外换热器300、节流元件400和室内换热器500。 [0190] Example embodiments of the present invention is an air conditioner may be a single-stage vapor compression type air conditioner, shown in Figure 2, the air conditioner of the embodiment of the present invention may include a compressor 100, a four-way valve 200, an outdoor heat exchanger 300, the throttle element 400 and the indoor heat exchanger 500.

[0191] 如图2所示,回气口温度传感器01可设置在压缩机中回气口处,排气口温度传感器02可设置在压缩机中排气口处,室内换热器第二端温度传感器05可设置在室内换热器第二端,室内换热器第一端温度传感器07可设置在室内换热器第一端,室外换热器第一端温度传感器04可设置在室外换热器第一端。 [0191] 2, the return air inlet temperature sensor 01 may be disposed in the return air inlet of the compressor, the exhaust temperature sensor 02 may be disposed in the exhaust port of the compressor, the second end of the indoor heat exchanger temperature sensor 05 may be disposed at the second end of the indoor heat exchanger, a first end of the indoor heat exchanger temperature sensor 07 may be disposed at a first end of the indoor heat exchanger, a first end of the outdoor heat exchanger temperature sensor 04 may be disposed in the outdoor heat exchanger a first end. 其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。 Wherein each temperature sensor is effective contact with the corresponding temperature detection spots in the wall of the refrigerant, and the refrigerant pipe wall, in particular a temperature sensor location to be insulated. 例如,可将温度传感器紧贴铜管设置,并通过保温胶带对铜管进行缠绕密封。 For example, temperature sensors may be disposed close to the copper tube, and sealing of the wound copper tube through the insulation tape. 由此,能够提高温度检测的可靠性和准确性。 Accordingly, it is possible to improve the reliability and accuracy of temperature detection.

[0192] 回气口温度生成模块00用于根据室内环境温度t9和室外换热器第一端温度t4生成回气口温度t1;获取模块10用于获取空调器的当前工况、压缩机的功率、空调器耗电功率以及压缩机的壳体散热量Qiciss;制冷剂焓值生成模块20用于当空调器的当前工况为制热工况时,根据压缩机中回气口的回气口温度^生成回气口的制冷剂焓值lu,根据压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,根据室内换热器第二端的室内换热器第二端温度^生成室内换热器第二端的制冷剂焓值匕和根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7;制热量生成模块50用于根据压缩机的功率、压缩机的壳体散热量Qiciss、回气口的制冷剂焓值Iu、排气口的制冷剂焓值h2、室内换热器第二端的制冷剂焓值h5和室内换热器第一端的制冷剂焓值h7生 [0192] return inlet temperature generating module 00 for generating the return air inlet temperature t4 t1 According to a first end of the indoor temperature and the outdoor heat exchanger temperature t9; 10 acquires the current operating conditions module configured to obtain an air conditioner, power of the compressor, housing heat dissipation and power consumption of the air conditioner compressor Qiciss; enthalpy of the refrigerant when an air conditioner generation module 20 for the current operating conditions of the heating conditions, the temperature of the compressor in accordance with the return air in the return air inlet port generation ^ return port refrigerant enthalpy lu, t2 generated in accordance with the exhaust port of the exhaust temperature of the compressor discharge refrigerant enthalpy opening h2, according to the second end of the indoor heat exchanger a second end of the indoor heat exchanger temperature ^ generating a second end of the indoor heat exchanger refrigerant enthalpy and t7 dagger generating a first end of the indoor heat exchanger in accordance with a first end of the indoor heat exchanger refrigerant temperature of the indoor heat exchanger the enthalpy h7 a first end; heating capacity generating the power module 50 for the compressor, the compressor of the heat dissipation case Qiciss, return air inlet of the refrigerant enthalpy values ​​Iu, the refrigerant enthalpy value of the exhaust port h2, the second end of the indoor heat exchanger refrigerant enthalpy h5 enthalpy of the refrigerant and a first end of the indoor heat exchanger raw h7 空调器的制热量;能效生成模块40用于根据空调器耗电功率和制热量生成空调器的能效。 The heating capacity of the air conditioner; energy efficiency of the air conditioner generating module 40 for generating the energy efficiency of the air conditioner according to the heat capacity and power consumption.

[0193] 其中,回气口温度生成模块00、获取模块10、制冷剂焓值生成模块20、制热量生成模块50和能效生成模块40可设置于空调器的电控系统中。 [0193] wherein the temperature of the return air port generation module 00, access 10, the refrigerant enthalpy generation module module 20, generating module 50 heating capacity and energy efficiency, generating module 40 may be disposed in the air conditioner electronic control system. 获取模块10可实时监测空调器的当前工况、压缩机的功率和空调器耗电功率P»fe。 Get air-conditioner module 10 can be monitored in real time the current operating conditions, the air conditioner compressor and power consumption of the power P »fe. 在本发明的一个实施例中,获取模块10可通过对流、辐射公式计算压缩机的壳体散热量Qlciss,具体可根据以下公式生成压缩机的壳体散热量Qioss: In one embodiment of the present invention, the acquisition module 10 may calculate the amount of heat of the compressor housing by convection, radiation formula Qlciss, the specific amount of heat may be generated Qioss housing of the compressor according to the following formula:

Figure CN107490140AD00221

[0195] 其中,为压缩机壳体的表面积,其可通过查取压缩机型号等获得;t8为室外换热器翅片处的温度,即室外环境温度,如图2所示,其可通过设置在室外换热器翅片处的室外温度传感器08检测得到。 [0195] wherein the surface area of ​​the compressor housing, which can be obtained by taking check type compressor and the like; T8 as the temperature of the outdoor heat exchanger fins, i.e., outdoor temperature, as shown in FIG. 2, which may be obtained by the outdoor temperature sensor is disposed at the outdoor heat exchanger fin 08 is detected.

[0196] 在此需要说明的是,当空调器的当前工况为制热工况时,室外换热器作蒸发器,室内换热器作冷凝器,室内换热器第一端为冷凝器入口,室内换热器第二端为冷凝器出口。 [0196] It should be noted here that, when the current operating conditions of the air conditioner to the heating conditions, the outdoor heat exchanger as the evaporator and the indoor heat exchanger as a condenser, a first end of the indoor heat exchanger as a condenser inlet, a second end of the indoor heat exchanger as a condenser outlet.

[0197] 在本发明的一个实施例中,如图2所示,可在室内换热器翅片处设置室内温度传感器09以检测室内环境温度t9,进一步地,回气口温度生成模块00可根据以下公式生成回气口温度t1: [0197] In one embodiment of the present invention, as shown in FIG. 2, the indoor temperature sensor may be provided in the indoor heat exchanger fin 09 to detect the indoor temperature T9, further, the temperature of the return air port module 00 according to generation the following formula to generate the return air inlet temperature t1:

[0198] [0198]

Figure CN107490140AD00222

,f为压缩机运行频率,a,b,c为拟合系数。 , F is the operating frequency of the compressor, a, b, c of fitting coefficients.

[0199] 由于不同温度检测点的制冷剂的状态不同,因此不同温度检测点的制冷剂的焓值不同。 [0199] Depending on the state of the refrigerant at different temperatures of the detection points, and therefore different values ​​of the enthalpy difference of the refrigerant temperature detection points. 在本发明的一个实施例中,制冷剂焓值生成模块20可根据经验公式计算得到制冷剂的焓值。 In one embodiment of the present invention, the refrigerant enthalpy generation module 20 may calculate the enthalpy of the refrigerant is obtained according to the empirical formula.

[0200] 下面分别说明制冷剂焓值生成模块20根据经验公式得到回气口的制冷剂焓值hi、 排气口的制冷剂焓值h2、室内换热器第二端的制冷剂焓值匕和室内换热器第一端的制冷剂焓值h7的具体过程。 [0200] The following illustrate the refrigerant enthalpy value generation module 20 to obtain the return air port in accordance with the empirical formula of the refrigerant enthalpy hi, the enthalpy of the refrigerant exhaust port h2, the second end of the indoor heat exchanger refrigerant enthalpy and indoor dagger a first end of the heat exchanger of the refrigerant specific enthalpy of the process h7.

[0201] 对于压缩机中回气口的制冷剂焓值lu,当空调器的当前工况为制热工况时,压缩机的回气口的制冷剂过热,制冷剂焓值生成模块20可结合吸气过热度计算回气口的制冷剂焓值hu [0201] For the enthalpy of the refrigerant compressor lu return air opening, when the current operating conditions of the heating conditions of the air conditioner, a compressor return air inlet superheat of the refrigerant, the refrigerant enthalpy generation module 20 may incorporate absorbent calculating return gas superheat of the refrigerant gas inlet enthalpy hu

[0202] 具体地,制冷剂焓值生成模块2 0可获取室外换热器中部的室外换热器中部温度t3,其中,如图2所示,室外换热器中部的室外换热器中部温度t3可通过在室外换热器中部设置的室外换热器中部温度传感器检测得到。 [0202] Specifically, the refrigerant enthalpy value generating module 20 may obtain the temperature of the outdoor heat exchanger middle of the middle of the outdoor heat exchanger t3, wherein FIG central temperature of the outdoor heat exchanger 2 in the middle of the outdoor heat exchanger shown in FIG. t3 may be obtained by detecting an outdoor temperature sensor in the middle of the outdoor heat exchanger is arranged in the middle.

[0203] 然后制冷剂焓值生成模块20可根据回气口温度以和室外换热器中部温度t3生成吸气过热度At1,并根据吸气过热度At1和室外换热器中部温度t3生成回气口制冷剂焓值的修正因子〇:,以及根据室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值娜。 [0203] Then the refrigerant enthalpy value generation module 20 according to the return air inlet temperature and the central temperature of the outdoor heat exchanger suction superheat generated t3 At1, and t3 is generated according to the degree of suction superheat At1 central temperature of the outdoor heat exchanger and the return air opening :, square correction factor enthalpy of the refrigerant and enthalpy of the refrigerant saturated Na t3 generated at the middle of the intake air temperature according to the temperature of the outdoor heat exchanger. 其中,吸气过热度A t为回气口温度。 Wherein, A t is the suction superheat temperature return port. 和室外换热器中部温度t3之差,即Δ。 And the temperature difference between the middle of the outdoor heat exchanger t3, i.e. Δ. =以43。 = To 43. 回气口制冷剂焓值的修正因子 Correction factor back to the air inlet enthalpy of the refrigerant

Figure CN107490140AD00231

其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient. 吸气温度下饱和制冷剂的焓值h吸气懈卩=ai+a2t3+ The enthalpy value h saturated suction temperature of the refrigerant suction negligent Jie = ai + a2t3 +

Figure CN107490140AD00232

其中,&1_&5为制冷剂对应的饱和区系数。 Wherein, & amp; 1_ & amp; coefficient of a saturation region 5 corresponding to the refrigerant.

[0204] 在生成回气口制冷剂焓值的修正因子0:、饱和制冷剂的焓值hnr侧^^后,制冷剂焓值生成模块20可进一步根据回气口制冷剂焓值的修正因子0:、饱和制冷剂的焓值hnrifiin生成制冷剂焓值111,111 = 014«^(17,其中,(17为制冷剂对应的过热区系数。 [0204] After generating the return port of the refrigerant enthalpy correction factor 0 :, enthalpy hnr side ^^ saturated refrigerant, the refrigerant enthalpy generation module 20 may be further based on the correction factor of the return air inlet enthalpy of the refrigerant 0: enthalpy generation hnrifiin saturated refrigerant enthalpy of the refrigerant 111, 111 014 = «^ (17, wherein (superheater zone 17 for the corresponding coefficient of the refrigerant.

[0205] 对于压缩机中排气口的制冷剂焓值h2,当空调器的当前工况为制热工况时,压缩机的排气口的制冷剂过热,制冷剂焓值生成模块20可结合排气过热度计算排气口的制冷剂焓值h2。 [0205] For the enthalpy of the refrigerant in the compressor exhaust port h2, when the current operating conditions of the heating conditions of the air conditioner, the air outlet refrigerant superheat of the compressor, the refrigerant enthalpy generation module 20 may binding exhaust vent calculated degree of superheat of the refrigerant enthalpy h2.

[0206] 具体地,制冷剂焓值生成模块20可获取室内换热器中部的室内换热器中部温度t6,其中,如图2所示,室内换热器中部的室内换热器中部温度t6可通过在室内换热器中部设置的室内换热器中部温度传感器检测得到。 [0206] Specifically, the refrigerant enthalpy generation module 20 may obtain the temperature of the indoor heat exchanger t6 central heat central chamber, wherein, as shown, the central temperature of the indoor heat exchanger of the indoor heat exchanger middle t6 2 It can be obtained by temperature sensor in the middle of the indoor heat exchanger arranged in the middle of the room.

[0207] 然后,制冷剂焓值生成模块20可根据压缩机中排气口的排气口温度t2和室内换热器中部温度t6生成排气过热度At2,并根据室内换热器中部的室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h網柳,以及根据排气过热度Δ t2和室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2。 [0207] Then, the refrigerant enthalpy generation module 20 may generate t6 At2 exhaust superheat temperature of the compressor in accordance with the exhaust port of the exhaust port and the central temperature t2 indoor heat exchanger, and the middle of the chamber in accordance with the indoor heat exchanger t6 generating part temperature of the heat exchanger the enthalpy value h network Liu saturated refrigerant in the exhaust gas temperature, an exhaust port and a correction factor D2 refrigerant enthalpy Δ t2 and t6 part temperature of the indoor heat exchanger superheat generated in accordance with the exhaust gas. 其中,排气过热度Δ t2为压缩机中排气口的排气口温度t2和室内换热器中部温度t6之差,即 Wherein, [Delta] t2 exhaust superheat of the compressor exhaust temperature t2 in the middle of the exhaust port temperature difference between the indoor heat exchanger and t6, namely

Figure CN107490140AD00233

,排气温度下饱和制冷剂的焓值ai+ Saturation temperature of refrigerant in the exhaust gas enthalpy ai +

Figure CN107490140AD00234

,其中,ai_a5为制冷剂对应的饱和区系数。 Wherein, ai_a5 saturation region corresponding coefficient of the refrigerant. 排气口制冷剂焓值的修正因子 Correction factor vent refrigerant enthalpy

Figure CN107490140AD00235

其中,di-d6为制冷剂对应的过热区系数。 Wherein, di-d6 refrigerant superheat region corresponding coefficient.

[0208] 在生成排气口制冷剂焓值的修正因子02后,制冷剂焓值生成模块20可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h樂侧ϊ生成排气口的制冷剂焓值h2,h2 = D2 · h樂衡叶d7,其中,ch为制冷剂对应的过热区系数。 [0208] After 02, 20 may be further based on the correction factor D2 vent enthalpy of the refrigerant, the refrigerant enthalpy at the saturation temperature of the exhaust gas discharge port of the refrigerant generated in the enthalpy of the refrigerant enthalpy correction factor generation module h ϊ generated music side vent refrigerant enthalpy h2, h2 = D2 · h music scale leaves d7, wherein, ch refrigerant superheat region corresponding coefficient.

[0209] 同样地,对于室内换热器第一端的制冷剂焓值h7,当空调器的当前工况为制热工况时,室内换热器第一端的制冷剂过热,制冷剂焓值生成模块20可结合该位置制冷剂过热度计算室内换热器第一端的制冷剂焓值h7。 [0209] Similarly, the enthalpy of the refrigerant to a first end of the indoor heat exchanger H7, when the current operating conditions of the heating conditions of the air conditioner, the first end of the indoor heat exchanger refrigerant superheat, the refrigerant enthalpy value generating module 20 may be coupled to the calculated degree of superheat of the refrigerant position indoor heat exchanger refrigerant enthalpy first end h7.

[0210] 具体地,制冷剂焓值生成模块20可根据室内换热器第一端温度t7和室内换热器中部温度t6生成过热度At7,并根据过热度At7和室内换热器中部温度U生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和制冷剂的焓值hiT魏》生成制冷剂焓值h7。 [0210] Specifically, the refrigerant enthalpy generation module 20 may generate a first terminal t6 and t7 central temperature indoor heat exchanger temperature superheat AT7 indoor heat exchanger, and according to the degree of superheat AT7 and the indoor heat exchanger temperature central U generating a correction factor a first end of the indoor heat exchanger the enthalpy of the refrigerant D7, and the value hiT Wei "the correction factor D7 enthalpy of the refrigerant and a first end of the saturation enthalpy generated indoor heat exchanger refrigerant enthalpy of the refrigerant generated value h7. 其中,Δ t7 = t7_t6, Wherein, Δ t7 = t7_t6,

Figure CN107490140AD00236

,其中,其中,cb-ch为制冷剂对应的过热区系数。 Wherein, wherein, cb-ch refrigerant overheated region corresponding coefficients.

[0211] 对于室内换热器第二端的制冷剂焓值h5,当空调器的当前工况为制热工况时,室内换热器第二端的制冷剂过冷,制冷剂焓值生成模块20可直接计算室内换热器第二端的制冷剂焓值h5: [0211] enthalpy of the refrigerant to the second terminal h5 indoor heat exchanger, the current operating conditions when the air conditioner is heating condition, the second end of the indoor heat exchanger refrigerant subcooling, the refrigerant enthalpy generation module 20 a second end may be directly calculated in the indoor heat exchanger refrigerant enthalpy h5:

Figure CN107490140AD00241

,其中,C1_C4为制冷剂对应的过冷区系数。 Wherein, C1_C4 cold zone corresponding coefficient of the refrigerant through.

[0212] 上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。 [0212] The saturation region coefficient of the refrigerant corresponding to the superheating area coefficients supercooling region coefficient of the type of the refrigerant is related in Table 1 show a saturation region coefficient of refrigerant R410A and R32 refrigerants corresponding to overheat field coefficient and the supercooling field coefficient. 由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。 Thus, each coefficient value may be obtained depending on the kind of the refrigerant and the correspondence relationship as in Table 1, to calculate the enthalpy of the refrigerant temperature detection value of each point.

[0213] 在本发明的其他实施例中,制冷剂焓值生成模块20还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。 [0213] In other embodiments of the present invention, the refrigerant enthalpy calculation result value generation module 20 software also directly call, or obtaining the enthalpy of the refrigerant temperature detection spots in each other ways. 举例而言,当空调器的当前工况为制热工况时,制冷剂焓值生成模块20还可根据空调器中的高压压力、回气口温度t、室内换热器第一端温度t7分别得到回气口的制冷剂焓值In和室内换热器第一端的制冷剂焓值h7, 并可根据空调器中的高压压力、排气口温度t2、室内换热器第二端温度七分别得到排气口的制冷剂焓值h2和室内换热器第二端的制冷剂焓值h5。 For example, when the current operating conditions of the air conditioner to the heating conditions, the refrigerant enthalpy generation module 20 also according to a high pressure in the air conditioner, the return air inlet temperature t, a first end of the indoor heat exchanger temperature t7, respectively to give the return air inlet enthalpy of the refrigerant and the indoor heat exchanger in the refrigerant enthalpy H7 first end, and in accordance with the high pressure air conditioner, the exhaust temperature T2, the second end of the indoor heat exchanger temperature and 7, obtained vent refrigerant enthalpy h2 and the indoor heat exchanger refrigerant enthalpy h5 second end.

[0214] 在本发明的实施例中,制热量生成模块50可根据以下公式生成空调器的制热量: [0214] In an embodiment of the present invention, the heating capacity of the heating capacity generating module 50 may generate an air conditioner according to the following formula:

Figure CN107490140AD00242

>其中,0»为空调器制热量,PjBfin为压缩机功率。 > Where 0 »heating capacity of the air conditioner, PjBfin compressor power.

[0215] 由于空调器的当前工况为制热工况,因而能效生成模块40可根据空调器耗电功率和制热量生成空调器的制热能效,具体地,空调器的制热能效为空调器的制热量与耗电功率之比,即COP = 継。 [0215] Since the current operating conditions of the air conditioner to the heating conditions, and thus energy efficiency generation module 40 may generate thermal efficiency of the air conditioner system power consumption and heat capacity according to the air conditioner, in particular, the air conditioner of the air conditioning system thermal efficiency ratio of the heat capacity and power consumption of the device, i.e., COP = Ji.

[0216] 在生成空调器的制热能效后,还可根据空调器的制热能效对当前空调器的运行状态进彳丁调整。 [0216] After generating the system thermal efficiency of the air conditioner, the air conditioner may be prepared according to thermal efficiency butoxy stimulation was adjusted to the current operating state of the air conditioner. 举例而目,可在空调器的制热能效$父低时提尚压缩机的功率,以提尚空调器的制热能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。 For example the head, mention may be made of thermal efficiency at low power is still $ parent air conditioner compressor, the air conditioner is still to provide heating capacity, reduce energy consumption and opposite the air conditioner, so that not only energy, but also can be improved comfort for the user.

[0217] 根据本发明实施例的空调器的能效计算系统,通过获取模块获取空调器的当前工况、压缩机的功率、空调器耗电功率和压缩机的壳体散热量,并通过相应的温度传感器获取压缩机中回气口、排气口、室内换热器第二端和室内换热器第一端的温度,以及在空调器处于制热工况时通过制冷剂焓值生成模块、制热量生成模块和能效生成模块根据上述各个位置的温度生成上述各个位置的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量、 上述各个位置的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。 [0217] The energy efficiency of an air conditioner computing system according to an embodiment of the present invention, an air conditioner is acquired by acquiring the current operating conditions module, power of the compressor, an air conditioner power consumption and heat output of the compressor housing, and through the corresponding obtaining a temperature sensor in the return air inlet of the compressor, an exhaust port, a second end and a first end of the indoor heat exchanger temperature of the indoor heat exchanger, and a generating module enthalpy of the refrigerant when the air conditioner is in a heating condition, Ltd. energy efficiency and heat generation module generating module generates a temperature of the respective positions of the value of the enthalpy of the refrigerant according to respective positions, and then combined with the power, the amount of heat of the compressor housing of the compressor, the position of each of the above and the air conditioner refrigerant enthalpy loss electric power obtained energy efficiency of the air conditioner, thus, can be accurately detected in real time the energy efficiency of the air conditioner, the air conditioner operating state to facilitate optimizing the energy efficiency of the air conditioner according to real-time, to save energy, and improve the heating effect of the object.

[0218] 综上所述,本发明实施例的空调器及其能效计算方法和系统,通过获取空调器制冷剂循环系统中制冷剂的物理性质,并结合制冷剂的物理性质和压缩机的漏热情况计算得到空调器的功率,以及进一步计算得到空调器的能效,从而得以实时准确地检测空调器的制冷能效和制热能效。 Leakage [0218] In summary, an air conditioner and energy efficiency calculation method and system of an embodiment of the present invention, by obtaining the air conditioner refrigerant cycle system, the physical properties of the refrigerant, and the binding of the refrigerant compressor and the physical properties of where hot air conditioner power calculated, and the calculated further energy efficiency of the air conditioner, thus allowing real time to accurately detect the air conditioner refrigeration system energy efficiency and thermal efficiency.

[0219]在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、 “厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。 [0219] In the description of the present invention, it is to be understood that the term "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front "," rear "," left "," right "," vertical "," horizontal "," top "," bottom "," inner "," outer "," clockwise "," counterclockwise "," axial "," radial "," circumferential orientation or positional relationship "or the like indicating a positional relationship of the orientation shown in the accompanying drawings, for convenience of description only and the present invention is to simplify the description, not indicate or imply referred the devices or elements must have a specific orientation, the orientation of a particular configuration and operation, can not be construed as limiting the present invention.

[0220] 此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。 [0220] In addition, the terms "first", "second" are used to indicate or imply relative importance or the number of technical features specified implicitly indicated the purpose of description and should not be understood. 由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。 Thus, there is defined "first", "second" features may be explicitly or implicitly include one or more of the features. 在本发明的描述中,“多个”的含义是两个或两个以上, 除非另有明确具体的限定。 In the description of the present invention, the meaning of the "plurality" is two or more, unless specifically defined otherwise specifically.

[0221] 在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。 [0221] In the present invention, unless otherwise expressly specified or limited, the terms "mounted," "connected," "connected," "fixed" and like terms are to be broadly understood, for example, may be a fixed connection, may be detachable connection, or integrally; may be a mechanical connector may be electrically connected; may be directly connected, can also be connected indirectly through intervening structures, it may be interaction between the two internal communicating elements or two elements. 对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。 Those of ordinary skill in the art, to be understood that the specific meanings in the present invention depending on the circumstances.

[0222] 在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。 [0222] In the present invention, unless otherwise expressly specified or limited, the first feature in the "on" a second or "lower" may be in direct contact with the first and second characteristic or the first and second characteristics by intermediary indirect contact. 而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。 Also, the first feature a second feature in the "on", "above" and "upper" But first feature a second feature directly above or obliquely upward or simply represents a first characteristic level is higher than the height of the second feature. 第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。 In the first feature a second feature "beneath", "below" and "lower" may be just below the first feature or the second feature obliquely downward, or just less than the level represented by the first feature a second feature.

[0223] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。 [0223] In the description of the present specification, reference to the term "one embodiment," "some embodiments", "an example", "a specific example", or "some examples" means that a description of the exemplary embodiment or embodiments described a particular feature, structure, material, or characteristic is included in at least one embodiment of the present invention, embodiments or examples. 在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。 In the present specification, a schematic representation of the above terms must not be the same for the embodiment or exemplary embodiments. 而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。 Furthermore, the particular features, structures, materials, or characteristics described may be in any one or more embodiments or examples combined in suitable manner. 此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。 Furthermore, different embodiments or examples and embodiments or features of different exemplary embodiments without conflicting, those skilled in the art described in this specification can be combined and the combination thereof.

[0224] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。 [0224] Although the above has been illustrated and described embodiments of the present invention, it is understood that the above embodiments are exemplary and are not to be construed as limiting the present invention, within the scope of the invention to those of ordinary skill in the art It may be variations of the above embodiments, modifications, alternatives, and modifications.

Claims (28)

1. 一种空调器的能效计算方法,其特征在于,包括以下步骤: 获取空调器的当前工况、压缩机的功率和空调器耗电功率; 获取压缩机的壳体散热量Qloss; 获取压缩机中回气口的回气口温度t、所述压缩机中排气口的排气口温度^、室外换热器第一端的室外换热器第一端温度t4和室内换热器第一端的室内换热器第一端温度t7,其中,所述回气口温度根据室内环境温度t9和所述室外换热器第一端温度t4生成; 当所述空调器的当前工况为制冷工况时,根据所述压缩机中回气口的回气口温度七生成回气口的制冷剂焓值Il1,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4和根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷 An air conditioner energy efficiency calculation method characterized by comprising the steps of: obtaining current operating conditions of the air conditioner, the compressor power and power consumption of the air conditioner; obtaining the amount of heat of the compressor housing Qloss; obtaining compressed machine back to the return air inlet port of the temperature t, the compressor exhaust temperature ^ vent, a first end of the outdoor heat exchanger of the outdoor heat exchanger temperature t4, and a first end of a first end of the indoor heat exchanger a first end of the indoor heat exchanger temperature T7, wherein said return air inlet temperature t4 generated according to a first end of the indoor temperature and the outdoor heat exchanger t9 temperature; when the current operating condition of the air conditioner is a cooling condition when, according to the enthalpy of the refrigerant in the return air Il1 return port of the compressor inlet temperature to generate seven return air port, the exhaust port temperature of the compressor exhaust port vent t2 generated refrigerant enthalpy h2 , t4 generated according to a first terminal of the first end of the outdoor heat exchanger the temperature of the outdoor heat exchanger side of the first outdoor heat exchanger and the refrigerant enthalpy h4 the first end of the indoor heat exchanger chamber generating a first end of a first end of the temperature t7 indoor heat exchanger cooling 剂焓值h7; 根据所述压缩机的功率、所述压缩机的壳体散热量Qioss、所述回气口的制冷剂焓值hi、 所述排气口的制冷剂焓值h2、所述室外换热器第一端的制冷剂焓值h4和所述室内换热器第一端的制冷剂焓值h7生成空调器的制冷量;以及根据所述空调器耗电功率和所述制冷量生成所述空调器的能效。 Agent enthalpy H7; The power of the compressor, the amount of heat of the compressor housing Qioss, the return port of the refrigerant enthalpy hi, the enthalpy of the refrigerant discharge opening h2, the outdoor a first end of the heat exchanger the enthalpy of the refrigerant and the indoor heat exchanger h4 refrigerant enthalpy h7 generating a first end of the cooling capacity of the air conditioner; and generating electric power consumption of the air conditioner according to the cooling capacity and the the energy efficiency of the air conditioner.
2. 如权利要求1所述的空调器的能效计算方法,其特征在于,根据所述压缩机中回气口的回气口温度t生成回气口的制冷剂焓值Iu具体包括: 获取室内换热器中部的室内换热器中部温度t6; 根据所述回气口温度和所述室内换热器中部温度t6生成吸气过热度Δ tl; 根据所述吸气过热度At1和所述室内换热器中部温度U生成回气口制冷剂焓值的修正因子Di; 根据所述室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值hr侧ί; 根据所述回气口制冷剂焓值的修正因子D1、所述饱和制冷剂的焓值brt娜生成所述制冷剂焓值Iu。 2. Calculation of the energy efficiency of the air conditioner as claimed in claim 1, characterized in that, according to the return air inlet temperature of the return air inlet of the refrigerant compressor generating t enthalpy of the return air opening Iu comprises: acquiring the indoor heat exchanger the temperature of the indoor heat exchanger middle middle t6; t6 suction superheat generated in accordance with the return air inlet temperature and the central temperature of the indoor heat exchanger Δ tl; At1 central superheat indoor heat exchanger and the air intake according to the generating a temperature correction factor U Di return air inlet enthalpy refrigerant; T6 generating side ί hr enthalpy saturated suction temperature of the refrigerant at the middle according to the temperature of the indoor heat exchanger; corrected based on the return air inlet enthalpy of the refrigerant enthalpy factor D1, the refrigerant saturation value Na generated brt enthalpy of the refrigerant Iu.
3. 如权利要求2所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述吸气温度下饱和制冷剂的焓值hr侧Ϊ: h__= ai+a2t6+a3t26+£i4t36+a5,其中,ai_a5为制冷剂对应的饱和区系数。 3. The method of calculating the energy efficiency of an air conditioner as claimed in claim 2, characterized in that the enthalpy generated hr Ϊ side refrigerant in the saturated suction temperature according to the following formula: h __ = ai + a2t6 + a3t26 + £ i4t36 + a5, wherein, ai_a5 saturation region corresponding coefficient of the refrigerant.
4. 如权利要求2所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口制冷剂焓值的修正因子D1: Di = Ι+di Δ ti+cb (A ti) 2+d3 (A ti) t6+d4 (A ti) 2t6+d5 (A ti) t26+d6 (A ti) 2t26, 其中,Cl1-Cl6为制冷剂对应的过热区系数。 4. The method of calculating the energy efficiency of an air conditioner as claimed in claim 2, characterized in that the correction factor to generate said return port D1 enthalpy of the refrigerant according to the following formula: Di = Ι + di Δ ti + cb (A ti) 2 + d3 (a ti) t6 + d4 (a ti) 2t6 + d5 (a ti) t26 + d6 (a ti) 2t26, wherein, Cl1-Cl6 refrigerant superheating zone corresponding coefficients.
5. 如权利要求3所述的空调器的能效计算方法,其特征在于,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括: 根据所述室内换热器第一端温度t7和所述室内换热器中部温度t6生成过热度Δ t7 ; 根据所述过热度At7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7; 根据所述室内换热器第一端制冷剂焓值的修正因子D7和所述饱和制冷剂的焓值h吸气烟^ 生成所述制冷剂洽值h7。 5. The air conditioner as claimed in claim 3, said energy efficiency calculation method, wherein, t7 generating a first end of the heat exchanger cooling chamber according to a first terminal of the first indoor heat exchanger-side indoor heat exchanger temperature h7 enthalpy agent comprises: Δ t7 the first end of the indoor heat exchanger and said indoor temperature t7 t6 generate middle superheat temperature heat exchanger; At7 according to the degree of superheat and temperature of the middle heat exchanger chamber generating a first correction factor t6 end of the indoor heat exchanger the enthalpy of the refrigerant D7; enthalpy correction factor according to a first terminal D7 of the enthalpy of the refrigerant and the indoor heat exchanger the refrigerant saturation smoke suction h ^ generating a consistent value of the refrigerant h7.
6. 如权利要求5所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室内换热器第一端制冷剂洽值的修正因子D 7 : 6. The air conditioner as claimed in claim 5, wherein the energy efficiency calculation method, characterized in that the correction factor D to generate the first contact end value refrigerant indoor heat exchanger 7 according to the following formula:
Figure CN107490140AC00031
其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient.
7. 如权利要求1所述的空调器的能效计算方法,其特征在于,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值112具体包括: 获取室外换热器中部的室外换热器中部温度t3; 根据所述压缩机中排气口的排气口温度t2和所述室外换热器中部温度t3生成排气过热度At2; 根据所述排气过热度A t2和所述室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2; 根据所述室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h樂侧^^生成所述排气口的制冷剂焓值h2。 7. The method of calculating the energy efficiency of an air conditioner as claimed in claim 1, wherein, t2 generated in accordance with the exhaust port an exhaust port temperature of the compressor discharge refrigerant enthalpy port 112 comprises: acquiring outdoor central central temperature of the outdoor heat exchanger t3; the exhaust temperature in the exhaust port of the compressor of the outdoor t2 and t3 generating part temperature of the exhaust gas heat exchanger superheat At2; in accordance with the exhaust gas a t2 superheat correction factor D2 and the central temperature of the outdoor air outlet t3 generate enthalpy of the refrigerant heat exchanger; t3 generating a saturated refrigerant temperature of the exhaust gas at the middle according to the temperature of the outdoor heat exchanger based on the enthalpy said correction factor D2 vent enthalpy of the refrigerant, the refrigerant enthalpy of the exhaust gas h2 saturated refrigerant enthalpy value h ^^ generating music side of the exhaust port temperature.
8. 如权利要求7所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述排气口制冷剂焓值的修正因子D2: 8. The air conditioner as claimed in claim 7, wherein the energy efficiency calculation method, wherein generating said correction factor D2 vent enthalpy of the refrigerant according to the following formula:
Figure CN107490140AC00032
其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient.
9. 如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室外换热器第一端的制冷剂焓值h4: 9. The method of calculation of the energy efficiency of the air conditioner as claimed in claim 1, wherein generating a first end of the outdoor heat exchanger refrigerant enthalpy h4 according to the following formula:
Figure CN107490140AC00033
,其中,C1_C4为制冷剂对应的过冷区系数。 Wherein, C1_C4 cold zone corresponding coefficient of the refrigerant through.
10. 如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述空调器的制冷量: 10. The method of calculation of the energy efficiency of the air conditioner as claimed in claim 1, wherein the generating of the cooling capacity of the air conditioner according to the following formula:
Figure CN107490140AC00034
,其中,0»糧为所述空调器的制冷量,Psm为所述压缩机的功率。 Wherein 0 »grain as the cooling capacity of the air conditioner, the compressor power is of Psm.
11. 如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述压缩机的壳体散热量Qioss: 11. The method of calculating the energy efficiency of the air conditioner as claimed in claim 1, characterized in that the amount of heat of the compressor housing according to the following formula generation Qioss:
Figure CN107490140AC00035
其中,Am/ι为压缩机壳体的表面积,t8为室外换热器翅片处的温度。 Wherein, Am / ι surface area of ​​the compressor housing, t8 is the temperature of the outdoor heat exchanger fins.
12. 如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口温度tl: ti = a*t9+b*t4+c*f,f为压缩机运行频率,a,b,c为拟合系数。 12. The air conditioner as claimed in claim 1, wherein the energy efficiency calculation method, wherein generating the return air inlet temperature tl according to the following equation: ti = a * t9 + b * t4 + c * f, f is the compressor operation frequency, a, b, c of fitting coefficients.
13. —种空调器,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-12中任一所述的空调器的能效计算方法。 13. - kind of air conditioner, characterized by comprising a computer program memory, a processor and a memory and running on the processor in the memory, the processor, the computer program, when executed, implement as claimed the air conditioner as claimed in claims 1-12 in a method of calculation of the energy efficiency.
14. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-12中任一所述的空调器的能效计算方法。 14. A non-transitory computer-readable storage medium having stored thereon a computer program, characterized in that, to achieve any one of claims 1 to 12 in an air conditioner according to an energy efficiency when executed by the processor of the computer program calculation methods.
15. —种空调器的能效计算方法,其特征在于,包括以下步骤: 获取空调器的当前工况、压缩机的功率和空调器耗电功率; 获取压缩机的壳体散热量Qloss; 获取压缩机中回气口的回气口温度、所述压缩机中排气口的排气口温度^、室内换热器第二端的室内换热器第二端温度t5和室内换热器第一端的室内换热器第一端温度t7,其中,所述回气口温度根据室内环境温度t9和所述室外换热器第一端温度t4生成; 当所述空调器的当前工况为制热工况时,根据所述压缩机中回气口的回气口温度七生成回气口的制冷剂焓值Iu,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂焓值h2,根据所述室内换热器第二端的室内换热器第二端温度t5生成室内换热器第二端的制冷剂焓值h5和根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷 15. - calculating the energy efficiency of the air conditioner species, characterized in that, comprising the steps of: obtaining current operating conditions of the air conditioner, the compressor power and power consumption of the air conditioner; obtaining the amount of heat of the compressor housing Qloss; obtaining compressed machine back to port return air inlet temperature, the compressor exhaust temperature ^ exhaust port, a second indoor heat exchanger-side end of the second indoor heat exchanger and the indoor heat exchanger temperature t5 first end chamber a first end of the heat exchanger temperature T7, wherein said return air inlet temperature t4 generated according to a first end of the indoor temperature and the outdoor heat exchanger t9 temperature; when the current operating conditions of the air conditioner during a heating condition the return air inlet temperature of the return air inlet enthalpy of the refrigerant compressor generates air return port seven values ​​Iu, t2 refrigerant generated in the enthalpy of the exhaust port according h2 exhaust temperature in the exhaust port of said compressor, generating a second end t5 of the indoor heat exchanger and the refrigerant enthalpy h5 the first end of the first indoor heat exchanger indoor heat exchanger according to a second end of the second indoor heat exchanger-side indoor heat exchanger temperature generating a first end of the end temperature t7 indoor heat exchanger cooling 焓值h7; 根据所述压缩机的功率、所述压缩机的壳体散热量Qioss、所述回气口的制冷剂焓值hi、 所述排气口的制冷剂焓值h2、所述室内换热器第二端的制冷剂焓值匕和所述室内换热器第一端的制冷剂焓值h7生成空调器的制热量;以及根据所述空调器耗电功率和所述制热量生成所述空调器的能效。 Enthalpy H7; The power of the compressor, the amount of heat of the compressor housing Qioss, the return port of the refrigerant enthalpy hi, the exhaust port of the refrigerant enthalpy h2, the exchange chamber the refrigerant enthalpy heat dagger and the indoor heat exchanger the enthalpy of the refrigerant of the second end of the first end of the heating capacity of the air conditioner h7 generated; and a heating capacity of the air conditioner in accordance with the generated electric power consumption and the the energy efficiency of the air conditioner.
16. 如权利要求15所述的空调器的能效计算方法,其特征在于,根据所述压缩机中回气口的回气口温度以生成回气口的制冷剂焓值Iu具体包括: 获取室外换热器中部的室外换热器中部温度t3; 根据所述回气口温度和所述室外换热器中部温度t3生成吸气过热度At1; 根据所述吸气过热度A t和所述室外换热器中部温度t3生成回气口制冷剂焓值的修正因子Di; 根据所述室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值hr侧ί; 根据所述回气口制冷剂焓值的修正因子D1、所述吸气温度下饱和制冷剂的焓值brt娜生成所述回气口的制冷剂焓值hu 16. The air conditioner as claimed in claim 15, wherein the energy efficiency calculation method, wherein, according to the return air inlet port of the return air temperature to generate said compressor refrigerant enthalpy of the return air opening Iu comprises: acquiring outdoor heat exchanger the central temperature of the outdoor heat exchanger middle t3; t3 generating a suction superheat At1 the inlet temperature and the return air temperature of the outdoor heat exchanger middle; a t and the central outdoor heat exchanger based on the degree of suction superheat generating a temperature correction factor Di t3 return air inlet enthalpy refrigerant; t3 generating side ί hr enthalpy saturated suction temperature of the refrigerant at the middle according to the temperature of the outdoor heat exchanger; corrected based on the return air inlet enthalpy of the refrigerant factor D1, the intake air temperature at the refrigerant enthalpy of saturated Na brt generating the return port of the refrigerant enthalpy hu
17. 如权利要求16所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述吸气温度下饱和制冷剂的焓值hr侧Ϊ: 17. The air conditioner as claimed in claim 16, said energy efficiency calculation method, wherein generating enthalpy saturated hr Ϊ side refrigerant in the intake air temperature according to the following formula:
Figure CN107490140AC00041
,其中,apasS制冷剂对应的饱和区系数。 Wherein, A PASS saturation region corresponding to the coefficient of the refrigerant.
18. 如权利要求16所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口制冷剂焓值的修正因子D1: 18. The method of calculating the energy efficiency of the air conditioner as claimed in claim 16, characterized in that the correction factor to generate said return port D1 enthalpy of the refrigerant according to the following formula:
Figure CN107490140AC00042
其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient.
19. 如权利要求16所述的空调器的能效计算方法,其特征在于,根据所述压缩机中排气口的排气口温度^生成排气口的制冷剂焓值112具体包括: 获取室内换热器中部的室内换热器中部温度t6; 根据所述室内换热器中部的室内换热器中部温度t6和所述压缩机中排气口的排气口温度t2生成排气过热度At2; 根据所述排气过热度A t2和所述室内换热器中部温度U生成排气口制冷剂焓值的修正因子D2; 根据所述室内换热器中部的室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值hfl剛口; 根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h樂侧^^生成所述排气口的制冷剂焓值h2。 19. The air conditioner as claimed in claim 16, said energy efficiency calculation method, wherein the temperature of the exhaust outlet port in the compressor discharge refrigerant enthalpy value generation ^ vent 112 comprises: obtaining chamber the central part temperature of the indoor heat exchanger t6; T2 generation exhaust superheat At2 the indoor heat exchanger exhaust temperature and the central temperature t6 the compressor discharge port of said indoor heat exchanger middle ; superheat a t2 and the central temperature of the indoor heat exchanger to generate the correction factor U D2 vent enthalpy of the refrigerant according to the exhaust gas; T6 generating part temperature of the indoor heat exchanger in accordance with the middle of the indoor heat exchanger exhaust gas temperature at the refrigerant enthalpy saturated hfl just opening; D2 based on the correction factor of the enthalpy of the exhaust port of the refrigerant, the discharge enthalpy of the refrigerant at saturation temperature h ^^ generating the discharge side Le h2 enthalpy of the refrigerant gas inlet.
20. 权利要求19所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述排气口制冷剂焓值的修正因子D2: 20. The air conditioner as claimed in claim 19, said energy efficiency calculation method, wherein generating said correction factor D2 vent enthalpy of the refrigerant according to the following formula:
Figure CN107490140AC00051
其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient.
21. 如权利要求19所述的空调器的能效计算方法,其特征在于,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂洽值h7具体包括: 根据所述室内换热器中部的室内换热器中部温度U和所述室内换热器第一端温度t7生成过热度A t7; 根据所述过热度At7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7; 根据所述室内换热器第一端制冷剂焓值的修正因子D7、所述排气温度下饱和制冷剂的焓值生成所述室内换热器第一端的制冷剂焓值h7。 21. The air conditioner as claimed in claim 19, wherein the energy efficiency calculation method, wherein, t7 generating a first end of the heat exchanger cooling chamber according to a first terminal of the first indoor heat exchanger-side indoor heat exchanger temperature value h7 contact agent comprises: t7 superheat a t7 generating a first end of the indoor heat exchanger middle indoor heat exchanger and the central temperature of the indoor heat exchanger U temperature; and according to the degree of superheat At7 central indoor heat exchanger temperature correction factor t6 generate a first end of the indoor heat exchanger the enthalpy of the refrigerant D7; correction factor according to a first end of the enthalpy of the refrigerant in the indoor heat exchanger D7, the saturation temperature of the exhaust gas enthalpy of the refrigerant to generate a first end of the indoor heat exchanger refrigerant enthalpy h7.
22. 如权利要求21所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室内换热器第一端制冷剂洽值的修正因子D7: 22. The air conditioner as claimed in claim 21, wherein the energy efficiency calculation method, characterized in that the correction factor to generate said first contact end value D7 indoor heat exchanger refrigerant according to the following formula:
Figure CN107490140AC00052
其中,Cl1-Cl6为制冷剂对应的过热区系数。 Wherein, Cl1-Cl6 refrigerant superheat region corresponding coefficient.
23. 如权利要求15所述的空调器的能效计算方法,其特征在于,根据以下公式计算所述室内换热器第二端的制冷剂焓值h5: h5 = Cl+C2t5+C3t25+C4t35,其中,C1-C4为制冷剂对应的过冷区系数。 23. The air conditioner as claimed in claim 15, wherein the energy efficiency calculation method, characterized in that the second end of the calculation of the indoor heat exchanger refrigerant enthalpy h5 according to the formula: h5 = Cl + C2t5 + C3t25 + C4t35, wherein , C1-C4 refrigerant supercooling region corresponding coefficients.
24. 如权利要求15所述的空调器的能效计算方法,其特征在于,根据如下公式生成所述空调器的制热量: 24. The air conditioner as claimed in claim 15, wherein the energy efficiency calculation method wherein generating the heating capacity of the air conditioner according to the formula:
Figure CN107490140AC00053
其中,为所述空调器的制热量,Pism为所述压缩机的5 功率。 Wherein the heating capacity of the air conditioner, the compressor 5 is Pism power.
25. 如权利要求15所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述压缩机的壳体散热量Qioss: 25. The method of calculating the energy efficiency of the air conditioner as claimed in claim 15, characterized in that the amount of heat of the compressor housing according to the following formula generation Qioss:
Figure CN107490140AC00054
其中,Am/ι为压缩机壳体的表面积,t8为室外换热器翅片处的温度。 Wherein, Am / ι surface area of ​​the compressor housing, t8 is the temperature of the outdoor heat exchanger fins.
26. 如权利要求15所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口温度ti: ti = a*t9+b*t4+c*f,f为所述压缩机的运行频率,a,b,c为拟合系数。 26. The air conditioner as claimed in claim 15, wherein the energy efficiency calculation method, wherein generating the return air inlet temperature ti in accordance with the following equation: ti = a * t9 + b * t4 + c * f, f is the compression machine operating frequency, a, b, c of fitting coefficients.
27. —种空调器,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求15-26中任一所述的方法。 27. - kind of air conditioner, characterized by comprising a computer program memory, a processor and a memory and running on the processor in the memory, the processor, the computer program, when executed, implement as claimed the method of any one of claims 15-26.
28. —种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求15-26中任一所述的方法。 28. - kind of non-transitory computer-readable storage medium having stored thereon a computer program, characterized in that, to achieve a method as claimed in any of claims 15-26 when executed by the processor of the computer program.
CN201710772727.5A 2017-08-31 2017-08-31 Air conditioner and energy efficiency calculating method CN107490140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710772727.5A CN107490140A (en) 2017-08-31 2017-08-31 Air conditioner and energy efficiency calculating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710772727.5A CN107490140A (en) 2017-08-31 2017-08-31 Air conditioner and energy efficiency calculating method

Publications (1)

Publication Number Publication Date
CN107490140A true CN107490140A (en) 2017-12-19

Family

ID=60646003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710772727.5A CN107490140A (en) 2017-08-31 2017-08-31 Air conditioner and energy efficiency calculating method

Country Status (1)

Country Link
CN (1) CN107490140A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100210A2 (en) * 1982-07-26 1984-02-08 Honeywell Inc. Coefficient of performance measuring device
CN103032996A (en) * 2012-12-12 2013-04-10 宁波奥克斯电气有限公司 Parallel compressor selection and configuration method for preventing compressor from being frequently started up and shut down
CN105091439A (en) * 2014-05-07 2015-11-25 苏州必信空调有限公司 Computing method of refrigerating capacity and refrigerating efficiency of oil-free refrigerating system and refrigerating system
CN106524551A (en) * 2016-11-07 2017-03-22 清华大学 Mass and flow measuring method and device of refrigerant in refrigerating system and measuring instrument
CN106949680A (en) * 2016-01-07 2017-07-14 青岛海尔开利冷冻设备有限公司 Refrigerating system compressor unit performance coefficient detection method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100210A2 (en) * 1982-07-26 1984-02-08 Honeywell Inc. Coefficient of performance measuring device
CN103032996A (en) * 2012-12-12 2013-04-10 宁波奥克斯电气有限公司 Parallel compressor selection and configuration method for preventing compressor from being frequently started up and shut down
CN105091439A (en) * 2014-05-07 2015-11-25 苏州必信空调有限公司 Computing method of refrigerating capacity and refrigerating efficiency of oil-free refrigerating system and refrigerating system
CN106949680A (en) * 2016-01-07 2017-07-14 青岛海尔开利冷冻设备有限公司 Refrigerating system compressor unit performance coefficient detection method and system
CN106524551A (en) * 2016-11-07 2017-03-22 清华大学 Mass and flow measuring method and device of refrigerant in refrigerating system and measuring instrument

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周光辉等: ""制冷剂HCFC-124热力性质计算研究", 《低温与超导》 *
苏晶: "R410A热力性质的拟合计算", 《制冷与空调》 *
郑兆志等: "《家用空调维修安装技术》", 31 March 2006, 中国科学技术出版社 *
郑旭煦等: "《化工原理》", 31 January 2016, 华中科技大学出版社 *

Similar Documents

Publication Publication Date Title
CN105202796A (en) Air conditioner system and air conditioner provided with same
CN1645017A (en) Apparatus and method for controlling the super-heating degree in a heat pump system
CN200996753Y (en) Refrigerating system of intermediate air-compensating compressor with economizer
CN105135627B (en) Air-conditioning control system and control method and apparatus
CN203605364U (en) Refrigerating and heating air conditioner
CN101901017B (en) Fuzzy control throttle mechanism and method
CN101539322B (en) Method for controlling electronic expansion valve of heating standby indoor unit
CN202254135U (en) Dehumidifying and reheating device of air conditioner
CN102105752A (en) Air-conditioning device
CN102348936A (en) air conditioner
CN105115199B (en) Refrigerant diversion control method and apparatus of a multi-line system
CN102077042B (en) Method for judging amount of refrigerant of air conditioner and air conditioner
Roh et al. Effects of intermediate pressure on the heating performance of a heat pump system using R410A vapor-injection technique
CN105066539B (en) Multi-line system and method for controlling an electronic expansion valve
CN103807917A (en) Air conditioner and air supply control method used for air conditioner
CN203671769U (en) Cooling and heating type air conditioner and single cooling type air conditioner
CN102460030B (en) Refrigeration apparatus
CN103604168A (en) Heating and cooling air conditioner
CN202392954U (en) Air conditioner
CN104964343B (en) Species apparatus and method for improving the reliability of operation of the compressor
CN104896785B (en) For a jet enthalpy multi-split air-conditioning system and control method
KR101439814B1 (en) Outdoor unit for refrigeration device
CN103542606B (en) Heat pump air conditioning system and control method
CN104266318B (en) Multi air conditioning unit control method and system
CN104105926A (en) Outdoor unit for refrigeration device

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination