CN107488261B - 一种富含羧基的微孔有机聚合物材料及其制备方法 - Google Patents

一种富含羧基的微孔有机聚合物材料及其制备方法 Download PDF

Info

Publication number
CN107488261B
CN107488261B CN201710445668.0A CN201710445668A CN107488261B CN 107488261 B CN107488261 B CN 107488261B CN 201710445668 A CN201710445668 A CN 201710445668A CN 107488261 B CN107488261 B CN 107488261B
Authority
CN
China
Prior art keywords
organic polymer
carboxyl
rich
microporous
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710445668.0A
Other languages
English (en)
Other versions
CN107488261A (zh
Inventor
喻桂朋
王圆圆
潘春跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201710445668.0A priority Critical patent/CN107488261B/zh
Publication of CN107488261A publication Critical patent/CN107488261A/zh
Application granted granted Critical
Publication of CN107488261B publication Critical patent/CN107488261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种富含羧基的微孔有机聚合物材料及其制备方法。以空间结构优异的砌块为主,通过Friedel‑Crafts酰基化反应将其和芳香二酸酐化合物反应制备高比表面积、大孔容和优良热‑化学稳定性的富羧基微孔有机聚合物。该类富含羧基微孔有机聚合物在CO2的吸附与分离应用上表现出较优异的性能,具备实际应用价值。

Description

一种富含羧基的微孔有机聚合物材料及其制备方法
技术领域
本发明涉及一种富含羧基的微孔有机聚合物材料及其制备方法,属于高分子材料领域。选择三维结构砌块为主要单元,通过其与酸酐的反应致使五元环开环,从而原位引入羧基构造富含羧基的微孔有机聚合物,并将该类材料用于CO2的吸附/分离。
背景技术
纳米孔特性的聚合物材料由于其丰富的原料来源和多样的合成方式以及稳固开放的孔道与优异的孔性质,在吸附、分离和载体材料等方面具有广阔的应用前景。利用纳米孔材料来吸附气体分子如CO2进行分离富集是当前材料、能源和环境研究领域最热点的课题之一,具有特别重大的学术价值和工业应用价值。
通过在孔表面进行功能化可以增强对CO2的吸附力以及提高CO2分离选择性,而向微孔有机聚合物中引入N原子是最常用的方法,如基于1,3,5-三嗪刚性连接子的无限交联网络(CTF)[Kuhn P,Antonietti M,Thomas A.Angew Chem Ent Ed,2008,47(18):3450-3458]等。这些材料在CO2和H2等的储存上取得了很大进展(CO2吸附量8.0~12.0%,H2吸附量0.5~1.8%),但这些材料面临一个共同的关键问题,即由于有机吸附剂骨架与被吸附分子作用力弱,特别是较温和条件下对小分子气体如CO2和H2等的吸附量还很低,不能满足实际应用要求。目前有报道在微孔有机聚合物骨架中引入羧基以增强对CO2的吸附力,如最近报道的[HO2C]X%-H2P-COFs[N.Huang,X.C,D.Jiang,Two-Dimensional Covalent OrganicFrameworks for Carbon Dioxide Capture through Channel-Wall Functionalization,Angew.Chem.Int.Ed.2015,54,2986–2990.],然而此种羧基-功能化的合成所需条件较为复杂苛刻,温和条件下的合成很有必要性。
发明内容
本发明的第一个目的是在于提供一种步骤简单、操作便捷制备所述富含羧基的微孔有机聚合物的方法。
本发明的第二个目的是在于提供向聚合物结构单元中引入羧基的较佳条件的确定。
本发明提供了一种富含羧基的微孔有机聚合物,该聚合物具有式1所示结构:
其中,表示重复结构单元;
A表示结构单元:
B可选择以下结构单元:
所述的一种富含羧基的微孔有机聚合物,其特征在于,所述的聚合物粉末和/或颗粒的比表面积为400~1000m2/g,聚合物粉末和/或颗粒中微孔的平均孔径为0.5~50nm。
本发明还提供了一种富含羧基的微孔有机聚合物的制备方法,其特征在于,如权利要求1或2所述的富含羧基的微孔有机聚合物的制备方法,其特征在于,将芳香二酸酐化合物和3D砌块溶于极性溶剂中,在路易斯酸催化下,在60~150℃反应后,即得到富含羧基的微孔有机聚合物。
所述的制备方法,其特征在于,所述的催化剂为氯化铝、氯化锌、氯化铁、三氟化硼、五氯化铌、甲磺酸、三氟甲磺酸、三氟甲磺酸盐中的一种或几种。
所述的极性溶剂为氯苯、邻二氯苯、硝基苯、二氯甲烷、氯仿、1,2-二氯乙烷中的一种或几种。
本发明还提供了一种富含羧基的微孔有机聚合物材料的用途,其特征在于,应用于二氧化碳气体的吸附和分离。
本发明的一种富含羧基的微孔有机聚合物材料的制备方法包括以下步骤:
第一步:将芳香二酸酐化合物和3D砌块溶于极性溶剂中,在路易斯酸催化下,在60~150℃反应后,即得到富含羧基的微孔有机聚合物;
第二步:将步骤1所得的富含羧基的微孔有机聚合物依次经水冲洗,氯仿洗涤,THF、丙酮、氯仿索提后,置于真空条件下干燥,即得富含羧基的微孔有机聚合物材料。
本发明的有益效果:
在于提供了一种新型的富含羧基的纳米有机微孔聚合物及其制备方法,合成的富含羧基的微孔有机聚合物具有高热稳定性和化学稳定性;且在保持聚合物优异稳定性的同时提高聚合物骨架的极性,进而提高对气体的吸附能力。与分子筛等传统孔材料相比,具有相对较高的吸附焓,其在本质上具有更高的单位质量吸附负载量;且由于其骨架稳定性高,吸附可逆性好,可重复安全利用。本发明的有益效果还在于该聚合物多孔材料具有高的比表面积和大的孔容,可广泛应用于催化剂载体、光催化、有机染料降解等诸多领域,特别适合于吸附、储存氢气和/或二氧化碳气体。本发明的另外一个有益效果在于本发明的富含羧基的微孔有机聚合物及其孔材料的合成方法步骤简单,方便可行,具有一定实际应用价值。
附图说明
【图1】为实施例1中富含羧基的微孔有机聚合物的红外光谱图。
【图2】为实施例1中富含羧基的微孔有机聚合物在氮气环境下的热失重曲线。
【图3】为77K下,实施例1中聚合物材料氮气吸附脱附曲线。
具体实施方式
以下实施例是对本发明内容的进一步说明,而不是限制本发明的保护范围。
本发明具体实施方式中一种富含羧基的微孔有机聚合物在Nicolet-6700型红外光谱仪上进行FT-IR证实,用KBr压片制样。聚合物热稳定测试:热失重分析(TGA)聚合物的分解温度测试在美国TA公司产SDT Q600V8.0同步热分析仪上进行,在氮气氛围下,升温速率10℃/min,测试温度范围为30~800℃,取5%热失重温度作为聚合物分解温度。聚合物气体吸附性能性能测试:聚合物比表面积和孔径分布Micro ASAP 2000静态容量法比表面及孔径分析仪上测量,孔径分布和孔容来源于气体的吸附等温曲线的密度泛函理论(DFT)气孔模型计算得出。
实施例1
于50mL三口烧瓶中依次加入均苯四甲酸二酐0.65g(3mmol)、氯化铝1.92g(14mmol)、12mL的无水氯仿(CHCl3),氮气保护条件下60℃搅拌,反应1小时,再滴加溶有三蝶烯0.50g(2mmol)的氯仿溶液20mL,60℃回流24小时。反应液冷却后所得沉淀,经过滤收集,再经丙酮、氯仿、THF洗涤,稀盐酸洗涤,THF索提过夜,干燥后即得到富含羧基的微孔有机聚合物产品。样品经真空条件(10kPa)下,加热到100-150℃进行活化,即得富含羧基的微孔有机聚合物材料。分别测TGA、BET,比表面积为738m2/g,平均孔径为2.47nm,氮气条件下5%热失重温度为280℃,二氧化碳吸附量为13.4wt%(273K,1bar)。
实施例2
于50mL三口烧瓶中依次加入1,4,5,8-萘四甲酸二酐0.81g(3mmol)、氯化铝1.92g(14mmol)、14mL的无水1,2-二氯乙烷(CH2Cl2),氮气保护条件下80℃搅拌,反应1小时,再滴加溶有螺二芴0.47g(1.5mmol)的1,2-二氯乙烷溶液20mL,80℃回流24小时。反应液冷却后所得沉淀,经过滤收集,再经丙酮、氯仿、THF洗涤,稀盐酸洗涤,THF索提过夜,干燥后即得到富含羧基的微孔有机聚合物产品。样品经真空条件(10kPa)下,加热到100-150℃进行活化,即得富含羧基的微孔有机聚合物材料。分别测TGA、BET,比表面积为679m2/g,平均孔径为2.53nm,氮气条件下5%热失重温度为304℃,二氧化碳吸附量为12.8wt%(273K,1bar)。
实施例3
于50mL三口烧瓶中依次加入2,3,6,7-蒽四甲酸二酐0.95g(3mmol)、氯化铝1.92g(14mmol)、15mL的硝基苯,氮气保护条件下150℃搅拌,反应1小时,再滴加溶有三蝶烯0.50g(2mmol)的硝基苯溶液20mL,150℃回流24小时。反应液冷却后所得沉淀,经过滤收集,再经丙酮、氯仿、THF洗涤,稀盐酸洗涤,THF索提过夜,干燥后即得到富含羧基的微孔有机聚合物产品。样品经真空条件(10kPa)下,加热到100-150℃进行活化,即得富含羧基的微孔有机聚合物材料。分别测TGA、BET,比表面积为784m2/g,平均孔径为2.49nm,氮气条件下5%热失重温度为295℃,二氧化碳吸附量为15.3wt%(273K,1bar)。

Claims (4)

1.一种富含羧基的微孔有机聚合物,其特征在于,具有式1所示结构:
其中,表示重复结构单元;
A表示结构单元:
B可选择以下结构单元:
2.如权利要求1所述的富含羧基的微孔有机聚合物,其特征在于,所述的聚合物粉末和/或颗粒的比表面积为400~1000m2/g,聚合物粉末和/或颗粒中的孔径分布为0.5~50nm。
3.如权利要求1或2所述的一种富含羧基的微孔有机聚合物的制备方法,其特征在于,将芳香二酸酐化合物和3D结构砌块溶于极性溶剂中,在路易斯酸催化下,在60~150℃时反应1-2天后,即得到富含羧基的微孔有机聚合物。
4.如权利要求3所述的制备方法,其特征在于,所述的催化剂为氯化铝、氯化锌、氯化铁、三氟化硼、五氯化铌、甲磺酸、三氟甲磺酸、三氟甲磺酸盐中的一种或几种。
CN201710445668.0A 2017-06-14 2017-06-14 一种富含羧基的微孔有机聚合物材料及其制备方法 Active CN107488261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710445668.0A CN107488261B (zh) 2017-06-14 2017-06-14 一种富含羧基的微孔有机聚合物材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710445668.0A CN107488261B (zh) 2017-06-14 2017-06-14 一种富含羧基的微孔有机聚合物材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107488261A CN107488261A (zh) 2017-12-19
CN107488261B true CN107488261B (zh) 2019-08-27

Family

ID=60642911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710445668.0A Active CN107488261B (zh) 2017-06-14 2017-06-14 一种富含羧基的微孔有机聚合物材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107488261B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832882B (zh) 2018-08-08 2024-02-21 美商杜邦電子股份有限公司 用於電子裝置中之聚合物
CN109320732B (zh) * 2018-10-17 2021-01-12 齐鲁工业大学 一种高比面积金刚烷基多孔聚合物及其制备方法
CN109573977B (zh) * 2019-01-07 2022-06-10 长沙瑞庭科技有限公司 一种基于有机多孔聚合物的多孔碳材料制备方法与应用
CN109912615A (zh) * 2019-03-20 2019-06-21 浙江福斯特新材料研究院有限公司 苯并脂环族二酐及低介电常数聚酰亚胺前体薄膜
CN110090633B (zh) * 2019-06-04 2022-02-22 东华理工大学 一种富氮的超交联多孔聚合物材料及其制备方法和应用
CN111569942B (zh) * 2020-06-02 2022-02-15 南昌航空大学 一种表面限域单分散Pt纳米颗粒的共价三嗪有机骨架复合光催化剂及其制备方法与应用
CN114870822B (zh) * 2022-05-30 2024-02-02 河北工业大学 一种胺化共价机聚合物吸附剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289088B (zh) * 2013-05-13 2016-01-20 中南大学 一种聚芳基均三嗪和聚芳基均三嗪孔材料及它们的制备方法
CN105688842B (zh) * 2016-01-21 2018-07-17 中南大学 一种偶氮型芳香共聚物和偶氮型芳香共聚物多孔材料及制备方法和应用

Also Published As

Publication number Publication date
CN107488261A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
CN107488261B (zh) 一种富含羧基的微孔有机聚合物材料及其制备方法
Zhao et al. A hexanuclear cobalt metal–organic framework for efficient CO 2 reduction under visible light
Pan et al. Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel–Crafts alkylation
Cui et al. Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger's base for CO 2 adsorption, catalysis and sensing
Wang et al. Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies
Cheng et al. The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole-based conjugated polymers for visible-light-driven hydrogen evolution
Ren et al. Low band-gap benzothiadiazole conjugated microporous polymers
Yuan et al. Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules
Sun et al. Luminescent microporous organic polymers containing the 1, 3, 5-tri (4-ethenylphenyl) benzene unit constructed by Heck coupling reaction
Rao et al. Extended phenylene based microporous organic polymers with selective carbon dioxide adsorption
Sun et al. Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid polymers constructed by the Heck coupling reaction
Baig et al. Conjugated microporous polymers using a copper-catalyzed [4+ 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption
CN104371112B (zh) 一类基于三蝶烯骨架的有机多孔聚合物及其制备和应用
Jiang et al. Construction of a stable crystalline polyimide porous organic framework for C2H2/C2H4 and CO2/N2 separation
Mondal et al. A facile approach for the synthesis of hydroxyl-rich microporous organic networks for efficient CO 2 capture and H 2 storage
CN107033346B (zh) 一种二茂铁基聚席夫碱多孔聚合物和多孔聚合物材料及制备方法和应用
CN105399928B (zh) 一种多孔有机聚合物及其制备方法与应用
Qiao et al. Phosphine oxide-based conjugated microporous polymers with excellent CO 2 capture properties
CN106700005B (zh) 用于气体吸附的基于环三磷腈的有机微孔聚合物及其制备方法和应用
Hei et al. A well-defined nitro-functionalized aromatic framework (NO 2-PAF-1) with high CO 2 adsorption: synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer
Rao et al. Porous polyimides from polycyclic aromatic linkers: Selective CO2 capture and hydrogen storage
CN104004195B (zh) 二茂铁基聚合物及其多孔材料和它们的制备方法及应用
Wang et al. Facile one-pot synthesis of glycoluril-based porous organic polymers
Yuan et al. Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance
Du et al. Adsorption of rhodamine B by organic porous materials rich in nitrogen, oxygen, and sulfur heteroatoms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant