CN107487784A - 暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法 - Google Patents

暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法 Download PDF

Info

Publication number
CN107487784A
CN107487784A CN201710708967.9A CN201710708967A CN107487784A CN 107487784 A CN107487784 A CN 107487784A CN 201710708967 A CN201710708967 A CN 201710708967A CN 107487784 A CN107487784 A CN 107487784A
Authority
CN
China
Prior art keywords
crystal face
high energy
nanotube
nanometer sheet
bigger serface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710708967.9A
Other languages
English (en)
Other versions
CN107487784B (zh
Inventor
杨合情
刘俊芳
袁煜昆
韩果萍
刘彬
赵桦
王力
杨娟
王梦珠
杜琴
任岩
张笑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201710708967.9A priority Critical patent/CN107487784B/zh
Publication of CN107487784A publication Critical patent/CN107487784A/zh
Application granted granted Critical
Publication of CN107487784B publication Critical patent/CN107487784B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法,以TiOSO4·xH2O为原料,冰醋酸为结构调控剂,采用简单的溶液快速热分解法,采用简单的溶液快速热分解法即可制备出暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管。本发明操作简单,成本低,重复性和一致性好,所制备的暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管可望在光催化、气体传感、太阳能电池、锂离子电池和超级电容器等方面的应用中具有增强的物理与化学性能。

Description

暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米 管的制备方法
技术领域
本发明属于低维结构半导体光电子材料技术领域,具体涉及一种暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法。
背景技术
众所周知,半导体纳米材料的物理与化学性能强烈依赖于其尺寸、形貌、晶面和比表面积。其中暴露高能晶面、具有大比表面积的纳米结构材料具有增强的物理与化学性能。因此具有高能晶面及大比表面积半导体纳米材料的制备具有重要的科学意义和潜在的应用价值。然而,具有较高表面能的晶面,一般生长速度快,不易暴露出来,通常暴露晶面为具有较低表面能和低生长速度的晶面。因此,暴露高能晶面半导体纳米材料的制备是一项极具挑战性的问题。
TiO2为一种重要的宽禁带半导体材料,具有锐钛矿相、金红石相和板钛矿相三种晶体结构,其中锐钛矿相和金红石相较为稳定。TiO2由于独特的光学和电学性质,在光催化降解有机污染物、分解水制氢、CO2光还原、太阳能电池、锂离子电池和超级电容器等领域具有广泛的潜在应用价值。
目前人们通过各种方法已经制备出暴露{101}晶面的空心界晶结构TiO2、暴露{110}的TiO2多面体、暴露{001}的TiO2纳米片、暴露{100}的TiO2纳米片和具有不同{101}与{001}比例锐钛矿TiO2纳米晶等纳米结构,发现它们具有增强的光催化性能。根据文献报道,不同锐钛矿TiO2晶面的表面能大小顺序为:{101}(0.44J/m2)<{010}(0.53J/m2)<{001}(0.90J/m2)<{111}(1.61J/m2),可见{111}晶面的表面能最高。最近日本北海道大学叶金华教授课题组通过TiF4与乙醇、乙腈、氨水溶剂热反应制备TiO2的前驱体,并分别在500℃和600℃的高温,空气中各退火2h,最终得到了暴露高能{111}晶面的TiO2的产物,但其表面积仅为11.6m2/g。
发明内容
本发明所要解决的技术问题在于提供一种简单的快速热分解法制备暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的方法。
解决上述技术问题所采用的技术方案是:将TiOSO4·xH2O与冰醋酸加入去离子水中,搅拌均匀后得到白色乳浊液,将所得乳浊液铺展到基底上,在450~650℃下加热反应5~15分钟,得到暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管。
上述TiOSO4·xH2O与冰醋酸、去离子水的投料比优选1mg:(0.05~1)mL:(0.05~1)mL,且进一步优选冰醋酸与去离子水的体积比为1:0.8~1.2。
上述制备方法中,优选在550~600℃下加热反应10分钟。
上述的基底为硅片、耐高温玻璃、石英片、聚四氟乙烯板等。
本发明以TiOSO4·xH2O为原料,冰醋酸为结构调控剂,采用简单的溶液快速热分解法,即可制备得到具有大比表面积的锐钛矿相TiO2纳米管,该TiO2纳米管是由沿{101}和{011}方向生长的暴露高能{111}晶面的纳米片组装而成。本发明制备方法操作简单,成本低,重复性和一致性好,所制备的暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管有望在光催化、太阳能电池、超离子导体、锂离子电池和超级电容器等应用中表现出增强的光电性能。
附图说明
图1是实施例1制备的TiO2纳米管的扫描电镜照片。
图2是图1的局部放大图。
图3是实施例1制备的TiO2纳米管的XRD图。
图4是实施例1中组装TiO2纳米管的纳米片的透射电子显微镜照片。
图5是图4的电子衍射图。
图6是图5的傅里叶转换图。
图7是实施例1制备的TiO2纳米管的比表面的吸脱附曲线及孔径分布图。
图8是实施例2制备TiO2纳米管的扫描电镜照片。
图9是实施例3制备TiO2纳米管的扫描电镜照片。
图10是实施例4制备TiO2纳米管的扫描电镜照片。
图11是实施例5制备TiO2纳米管的扫描电镜照片。
图12是实施例6制备TiO2纳米管的扫描电镜照片。
图13是实施例7制备TiO2纳米管的扫描电镜照片。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不限于这些实施例。
实施例1
将0.01g TiOSO4·xH2O(分析纯)、5mL冰醋酸(分析纯)和5mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在600℃下加热反应10分钟,得到暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管。
由图1~3可见,所制备样品是由锐钛矿相的TiO2纳米片组装的纳米管,由图4~6可见其片结构沿(101)和(011)方向生长,暴露高能{111}晶面,由图7可知,其孔径分布在30nm左右,且比表面积达到119m2/g。
实施例2
将0.005g TiOSO4·xH2O(分析纯)、5mL冰醋酸(分析纯)和5mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在600℃下加热反应10分钟,得到暴露高能{111}晶面锐钛矿相TiO2纳米片组装纳米管(见图8)。
实施例3
将0.1g TiOSO4·xH2O(分析纯)、5mL冰醋酸(分析纯)和5mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在600℃下加热反应10分钟,得到暴露高能{111}晶面锐钛矿相TiO2纳米片组装纳米管(见图9)。
实施例4
将0.01g TiOSO4·xH2O(分析纯)、5mL冰醋酸(分析纯)和5mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在550℃下加热反应10分钟,得到暴露高能{111}晶面锐钛矿相TiO2纳米片组装纳米管(见图10)。
实施例5
将0.01g TiOSO4·xH2O(分析纯)、5mL冰醋酸(分析纯)和5mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在450℃下加热反应10分钟,得到暴露高能{111}晶面锐钛矿相TiO2纳米片组装纳米管(见图11)。
实施例6
将0.01g TiOSO4·xH2O(分析纯)、4mL冰醋酸(分析纯)和10mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在600℃下加热反应10分钟,得到暴露高能{111}晶面锐钛矿相TiO2纳米片组装纳米管(见图12)。
实施例7
将0.01g TiOSO4·xH2O(分析纯)、10mL冰醋酸(分析纯)和4mL去离子水加入烧杯中,搅拌均匀后得到白色浑浊液,将所得白色浑浊液铺展到清洁的面积为1×1cm2的硅片上,然后将硅片置于管式炉中在600℃下加热反应10分钟,得到暴露高能{111}晶面锐钛矿相TiO2纳米片组装纳米管(见图13)。

Claims (5)

1.一种暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法,其特征在于:将TiOSO4·xH2O与冰醋酸加入去离子水中,搅拌均匀后得到白色乳浊液,将所得乳浊液铺展到基底上,在450~650℃下加热反应5~15分钟,得到暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管。
2.根据权利要求1所述的暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法,其特征在于:所述TiOSO4·xH2O与冰醋酸、去离子水的投料比为1mg:(0.05~1)mL:(0.05~1)mL。
3.根据权利要求2所述的暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法,其特征在于:所述冰醋酸与去离子水的体积比为1:0.8~1.2。
4.根据权利要求1~3任意一项所述的暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法,其特征在于:在550~600℃下加热反应10分钟。
5.根据权利要求1所述的暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法,其特征在于:所述的基底为硅片、耐高温玻璃、石英片、聚四氟乙烯板中的任意一种。
CN201710708967.9A 2017-08-17 2017-08-17 暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法 Expired - Fee Related CN107487784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710708967.9A CN107487784B (zh) 2017-08-17 2017-08-17 暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710708967.9A CN107487784B (zh) 2017-08-17 2017-08-17 暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN107487784A true CN107487784A (zh) 2017-12-19
CN107487784B CN107487784B (zh) 2018-12-28

Family

ID=60646558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710708967.9A Expired - Fee Related CN107487784B (zh) 2017-08-17 2017-08-17 暴露高能{111}晶面纳米片组装的大比表面积锐钛矿TiO2纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN107487784B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657621A (zh) * 2013-11-29 2014-03-26 杭州电子科技大学 一种{111}面暴露高活性TiO2纳米光催化剂的制备方法
CN104402047A (zh) * 2014-10-31 2015-03-11 齐鲁工业大学 暴露晶面可控的金红石型TiO2纳米棒自组装成微球的方法
CN106145184A (zh) * 2016-06-21 2016-11-23 河南师范大学 一种具有高活性{111}暴露晶面取向的TiO2微球的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657621A (zh) * 2013-11-29 2014-03-26 杭州电子科技大学 一种{111}面暴露高活性TiO2纳米光催化剂的制备方法
CN104402047A (zh) * 2014-10-31 2015-03-11 齐鲁工业大学 暴露晶面可控的金红石型TiO2纳米棒自组装成微球的方法
CN106145184A (zh) * 2016-06-21 2016-11-23 河南师范大学 一种具有高活性{111}暴露晶面取向的TiO2微球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D REYES-CORONADO ET AL.: "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile", 《NANOTECHNOLOGY》 *
MURTAZA SAYED ET AL.: "VUV-Photocatalytic Degradation of Bezafibrate by Hydrothermally Synthesized Enhanced {001} Facets TiO2/Ti Film", 《J. PHYS. CHEM. A》 *

Also Published As

Publication number Publication date
CN107487784B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
Wang et al. Hierarchical flower-like WO3 nanostructures and their gas sensing properties
Yu et al. Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids
Park et al. Unidirectionally aligned copper hydroxide crystalline nanorods from two-dimensional copper hydroxy nitrate
Roy et al. Synthesis of twinned CuS nanorods by a simple wet chemical method
Song et al. Crystallization and shape evolution of single crystalline selenium nanorods at liquid− liquid interface: from monodisperse amorphous Se nanospheres toward Se nanorods
Luo et al. Formation of positively charged copper hydroxide nanostrands and their structural characterization
Navale et al. Low-temperature wet chemical synthesis strategy of In2O3 for selective detection of NO2 down to ppb levels
Mao et al. Facile fabrication of porous CuS nanotubes using well-aligned [Cu (tu)] Cl· 1/2H2O nanowire precursors as self-sacrificial templates
Wang et al. Facile fabrication of hierarchical SnO2 microspheres film on transparent FTO glass
Qi et al. From function-guided assembly of a lotus leaf-like ZnO nanostructure to a formaldehyde gas-sensing application
Reddy et al. High electrochemical activity of 3D flower like nanostructured TiO2 obtained by green synthesis
Singh et al. Improved sensing behaviour of self-healable solar light photodetector based on core-shell type Ni0. 2Zn0. 8Fe2O4@ poly (Urea-Formaldehyde)
Lu et al. Controllable electrodeposition of ZnO nanorod arrays on flexible stainless steel mesh substrate for photocatalytic degradation of Rhodamine B
Zhang et al. Enhancement of NH3 sensing performance in flower-like ZnO nanostructures and their growth mechanism
Hou et al. Synthesis of dumbbell-like ZnO microcrystals via a simple solution route
Hong et al. B-doped g-C3N4 quantum dots-modified Ni (OH) 2 nanoflowers as an efficient and stable electrode for supercapacitors
CN106587166A (zh) 一种氧化铁介晶纳米粒子及其合成方法和应用方法
CN104843779A (zh) 一种空心球状金红石二氧化钛介晶及其制备方法
Liu et al. Gelatin-assisted sol–gel derived TiO2 microspheres for hydrogen storage
Ou et al. WO3· n H2O Crystals with Controllable Morphology/Phase and Their Optical Absorption Properties
KR101380827B1 (ko) 광촉매 나노입자 합성 및 이를 이용한 염료감응형 태양전지의 제조 방법
Chen et al. Fabrication of high surface area graphitic nanoflakes on carbon nanotubes templates
Rajeswari et al. Core-shell synergy and Eu3+ doping in boosting charge transfer in Eu3+ doped TiO2-carbon core-shell nanohybrids: Sustainable synthesis and visible light-driven photocatalysis
Hsu et al. Experimental and theoretical study of improved mesoporous titanium dioxide perovskite solar cell: The impact of modification with graphene oxide
CN105712401B (zh) 钒酸钙微米球材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181228

Termination date: 20210817

CF01 Termination of patent right due to non-payment of annual fee