CN107472037B - 一种用于高速列车的牵引供电系统及其车载储放电系统 - Google Patents

一种用于高速列车的牵引供电系统及其车载储放电系统 Download PDF

Info

Publication number
CN107472037B
CN107472037B CN201610398211.4A CN201610398211A CN107472037B CN 107472037 B CN107472037 B CN 107472037B CN 201610398211 A CN201610398211 A CN 201610398211A CN 107472037 B CN107472037 B CN 107472037B
Authority
CN
China
Prior art keywords
power supply
circuit
traction
phase
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610398211.4A
Other languages
English (en)
Other versions
CN107472037A (zh
Inventor
宋玉泉
管晓芳
王明辉
吴文福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610398211.4A priority Critical patent/CN107472037B/zh
Publication of CN107472037A publication Critical patent/CN107472037A/zh
Application granted granted Critical
Publication of CN107472037B publication Critical patent/CN107472037B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种用于高速列车的牵引供电系统,包括车内供电装置,该车内供电装置包括构成复合线路的车内动力供电和辅助供电电路和车载储放电电路,由牵引供电网牵引变压器副边的两路单相α和β电经双相受电弓T1和T2输入车内供电系统,当双相受电弓T1和T2的一个升起时,另一个必须降下,其中单相α电始终与车内动力供电和辅助供电电路相连,单相β电始终与车载储放电电路相连,车内动力供电和辅助供电电路与车载储放电电路彼此独立、互相绝缘。根据本发明,复合线路与基本线路共用一套车内辅助供电系统,共用一套车内动力供电系统,这可以简化线路的结构。本发明能实现运行全程无负序,在部分区段不设供电网和供电网支撑结构。

Description

一种用于高速列车的牵引供电系统及其车载储放电系统
技术领域
本发明涉及一种用于高速列车的牵引供电系统,该牵引供电系统是保证高速列车安全、稳定、高效运行的动力源,担负着向高速动车组稳定、持续、可靠的供电,是电气化铁路的重要基础设施之一。本发明特别是涉及的一种用于高速列车的牵引供电系统的车载能量储放系统,旨在平衡专用供电网的负序电流,并节省部分电网支撑结构。
背景技术
用于高速列车的现有高压输电系统:由发电厂输出3.15~20KV的三相交流电,经升压/降压变压器TM1升压为35~500KV的高压电输入地区变电所DB,或者由三相高压供电网经升压/降压变压器TM1后输入地区变电所DB,由地区变电所DB输出110KV或220KV(高速动车组为220KV)的三相交流电,输入牵引变压器S的原边,由牵引变压器S的副边输出27.5KV(额定电压25KV) 的单相交流电,连接牵引供电线T。由牵引供电线T的单相交流电,经单相受电弓、单相主断路器与动车组D内部的动力供电和辅助供电相连,形成外部单相牵引供电系统,如图8所示。牵引供电网的单相取电,结构简单、建设成本低、运用和维护方便,对铁路用电部门是有利的。但是,单相取电会对三相高压供电造成不平衡,引起负序电流。负序电流通过送电线路时,负序功率不做功,会影响电网的电能质量、降低功率因素,增加电力电网能量损失,降低电网的输送能力,增加保护的难度。为了解决负序电流的不良影响,需要在中性段设置分相绝缘器或切断开关,这便会给外部牵引供电系统增加设计和施工的麻烦。为此,本发明人针对解决负序电流的问题,申请了中国发明专利201410182358.0和201410239724.1。这两项专利申请,虽然能解决全程无负序的问题。但是,电气化铁路供电网必须设置复杂的机械支撑结构,支撑牵引供电网的全部负荷,并保证供电网的稳定性、可靠性和安全性,也是必须解决的问题。为此,本发明的申请人又申请了中国发明专利申请201410409606.0,以下复述该专利申请的主要内容:如图7和图6所示,外部供电系统是在铁路单行线的一列锚段支柱22的上部设有腕臂定位装置33,在每个腕臂定位装置33 固定设有两条互相平行的承力索44,每条承力索44与吊弦55的一端固定相连,吊弦的另一端与供电接触导线连接。对于单线双相供电,由A、B、C三相高压 110KV(高速列车为220KV)输入牵引变压器S的原边,由牵引变压器S的副边输出α和β双相27.5KV(额定电压25KV)单相电,α和β两路单相电分别与两条单相接触导线111连接。两条承力索44、两条吊弦55、两条供电接触导线 111之间都彼此平行,通过绝缘器M1和M2互相绝缘,绝不能短路。两条单相接触导线111分别与设在双相受电弓T1和T2的顶部的滑动接触器α′和β′接触相连。由滑动接触器α′和β′通过双相受电弓T1和T2的左、右臂La和Ra输入动车组的主断路器开关,由主断路器开关连接断接开关K1α和K1β或K2α和 K2β,向动车组内部供电。对于上下行双线铁路,双线铁路的内侧只设一列锚段支柱22,腕臂定位装置33是对称的设在锚段支柱22的上部,这有利于节省人力和物力,并可增加锚段支柱22的稳定性。
在该中国发明专利申请201410409606.0中,如图9所示,显示了8厢动车组的内部供电线路结构,单相α和单相β两路供电线,由接触器α′和β′经双相受电弓的左臂La和右臂Ra传至动车组内部的供电系统,α单相电和β单相电与双相切断开关K1α和K1β或K2α和K2β相连。双相受电弓T1和T2有一个升起,另一个必须降下。当T1升起时,T2降下,双相切断开关K1α使得α单相电与动车组的牵引供电和辅助供电的负载的基本单元TUBl相连,双相切断开关K1β使得β单相电与车载蓄电池的基本单元TUB2相连。当T2升起时,T1降下,双相切断开关K2β使得β单相电与动车组的牵引供电和辅助供电的负载的基本单元TUBl相连,双相切断开关K2α使得α单相电与车载蓄电池的基本单元TUB2 相连。TUBl和TUB2互相独立、彼此又交替接触,增加了由三相高压电网A、 B、C取电的对称性。因此,在牵引供电区段的α单相电和β单相电两路电线不设过分相中性段,在A、B、C三相专用高压电网也不会引起负序电流。该发明申请虽然叙述了全程无负序、间歇无供电网的内容,但对车载蓄电池的线路结构和连接方式没有具体说明。由上可见,对车载储放电电路结构和元器件的设计,是本发明要解决的问题,已势在必行。
发明内容
相对于现有技术,本发明提出了一种用于高速列车的牵引供电系统,包括车内供电装置,所述车内供电装置包括车内动力供电和辅助供电电路和车载储放电电路,所述车内动力供电和辅助供电电路和车载储放电电路构成复合线路,其中由牵引供电网牵引变压器副边的两路单相α和β电经双相受电弓T1和T2输入车内供电系统,当双相受电弓T1和T2的一个升起时,另一个必须降下,其中单相α电始终与车内动力供电和辅助供电电路相连,单相β电始终与车载储放电电路相连,车内动力供电和辅助供电电路与车载储放电电路彼此独立、互相绝缘,当双相受电弓T1和T2都降下时,单相α电和单相β电不供电。
优选的是,所述车载储放电电路包括超级电容器和高能蓄电池的组合。
优选的是,所述车内动力供电和辅助供电电路包括车内基本线路,其中车内基本线路通过主变流器输出的直流电分为两路:第一路经辅助变流器直接连至辅助供电系统,第二路经牵引变流器供给牵引电动机而连接至动力供电系统,其中在所述主变流器与所述辅助变流器之间设置引出连接线,该引出连接线的接线端A端;在所述主变流器和牵引变流器之间设置双向开关K3,当双向开关 K3的B-C的C端接通时,断开双向开关K3的B-B接线。
优选的是,当动车进入L1区段时,由牵引供电网输至双相受电弓T1,经双相切断开关K1α输入车内的α电,或者动车进入下一个L1区段时,由牵引供电网输至双相受电弓T2,经双相切断开关K2α输入车内的单相α电,单相α电供给车内动力供电和辅助供电电路;当动车进入L1区段时,由牵引供电网输至双相受电弓T1,经双相切断开关K1β输入车内的β电,或者动车进入下一个L1区段时,由牵引供电网输至双相受电弓T2,经双相切断开关K2β输入车内的单相β电,单相β电经主变流器输出的直流电分为两路:一路经二极管直接连至由基本线路的主变流器与辅助变流器之间引出的连接线的A端;另一路由车载储放电电路的输出端经二极管接至基本线路的双向开关K3的C端,二极管防止电流的能量回流。
优选的是,复合线路的主变流器经二极管与基本线路的连接线的A端相连, A端连至基本线路的辅助变流器,于是复合线路的辅助供电和基本线路的辅助供电具有共用的辅助供电系统,共用的辅助供电系统的辅助变流器、滤波变压器的变压器和蓄电池具有增大的容量,其中蓄电池是锂离子蓄电池,其容量大于等于基本线路的蓄电池的容量与动车进入L2区段所需的辅助供电量之和,其中在L2区段不设供电网也无需电网的支撑结构。
优选的是,由车载储放电电路输出的电流经二极管与基本线路的双向开关 K3的C端相连,进入基本线路的动力供电系统,此时,断开双向开关K3的B-B,复合线路的动力供电和基本线路的动力供电具有共用的供电系统,车内储放电线路具有增大能量容量的高能蓄电池,其中高能蓄电池的额定电压与牵引逆变器的电压相匹配,高能蓄电池的能量容量要大于等于动车进入L2区段所需的能量,所述高能蓄电池组由石墨烯、氢燃料、或锂离子电池并串结合。
优选的是,车载储放电电路是由单相β电经主变流器输出的直流电,直流电的负极接至车载储放电电路的主电路的负极,直流电的正极输入充电缓冲电路,充电缓冲电路由短接接触器和充电限流电阻并联后串接在主电路的正极中,当超级电容器组电压低于下限时,断开短接接触器,将充电限流电阻接入电路,限制供电时的瞬时充电电流;当超级电容组电压高于下限时,由控制器输出的信号吸合短接接触器,将充电限流电阻切除,超级电容器组是跨接在主电路的正负极之间,由充电缓冲电路输出的电流给超级电容器组充电。
优选的是,当充电缓冲电路输出的电流充满超级电容器组时,超级电容器组电流传感器的电流为零,将信号输给控制器,控制器的信号输出端将信号输入双向开关的VT1的门极,接通VT1,由高能蓄电池组经电流传感器、双向开关的VT1、并经续流二极管VD2向高能蓄电池组充电,双向开关的VT1的E极和VT2的E极连接在一起,只能有一个处于开通状态。
优选的是,当电流充满高能蓄电池组,即高能蓄电池组电流传感器的电流为零时,或者跨接在超级电容组正负极之间的电压传感器等于跨接在高能蓄电池组之间的电压传感器时,高能蓄电池组放电,此时输入控制器的信号输出端,接通双向开关的VT2,高能蓄电池组通过电流传感器和双向开关的VT2及续流二极管VD1向主电路输出端放电。
优选的是,由主电路的主变流器经不可控二极管接至基本线路的双向开关 K3的C端,断开B-B,接通B-C,由B-C连至基本线路的牵引变流器,然后由牵引变流器给牵引电动机供电,超级电容器组作为主电路的能量缓冲装置,分担高能蓄电池组的瞬间功率负担,其中,较短时间内的电能波动或瞬间过电压、欠电压主要由超级电容组承担,稍长时间的负荷波动则由高能蓄电池组承担主要部分,跨接在主电路正负极间的电解电容被用作高频滤波,主电路的正极通过输出电流传感器接入动力供电能量储放电电路的输入端。
优选的是,主电路的正极通过输出电流传感器和断接开关接至动力供电系统,电压传感器跨接在主电路正负极之间,其信号输出端连接在控制器的信号输入端,高能蓄电池组的电压传感器是跨接在高能蓄电池组的两端,其输出信号连接在控制器的输入端,超级电容组的电流传感器和高能蓄电池组的电流传感器的信号输出端分别接入控制器,输出电流传感器的信号输出端分别接入控制器,控制器的信号输出端分别接在VT1或VT2的门极,控制器的输出端接至电压缓冲电路,控制器的输出端接至断路开关。
车载储放电电路是本发明的主要内容,以下简称主电路。主电路以超级电容器组和高能蓄电池组为核心,辅以双向开关,并结合信号采集和控制器组合而成。超级电容组的功率密度高、高能蓄电池的能量容量大,两者的组合,既能对高能蓄电池组起到能量缓冲作用,又能发挥超级电容组高功率的供电能力。双向开关是由两个功率MOSFET管或IGBT管组成,其击穿电压可达1200V,集电极最大饱和电流已超过1500A,工作频率可达20kHz。由超级电容器组的电流传感器和电压传感器、高能蓄电池组的电流传感器和电压传感器、主电路电流传感器,将信号输入控制器,由控制器输出的控制信号输至充电缓冲器,双向开关的VT1和VT2的栅极和输出电流传感器,实现主电路的运行过程。
当超级电容器组给高能蓄电池组的充电完成时,关断主电路双向开关中的 VT1,只有超级电容组继续参与整流和输出,形成热备份,保证输出端的电压稳定,可起到部分UPS的作用。电流由高能蓄电池组经高能蓄电池的电流传感器、晶闸管VT2和续流二极管VD1,并通过电流传感器向车载储放电电路输出端输电。超级电容组可在很短时间达到满功率输出,使瞬间的电网波动完全被超级电容组所储存,可以尽可能大地经输出电流传感器,输至车载储放电电路的输出端,满足高功率的要求,可承担瞬间的过电压、欠电压,同时避免瞬时的电压跌落,使得瞬间的牵引电动机能量反馈的波动电流,完全被电容组所储存,起到对电能供给或负载波动的削峰填谷,承担能量滤波器的作用。当需要瞬间高脉冲功率输出时,超级电容组可以瞬间工作于充电状态,使高能蓄电池组满足高功率的要求,能有效的保护高能蓄电池组的整体安全性,并稳定母线电压,保证输出电能的可靠。这可以满足外部较大能量的供电需求,而超级电容组可以抑制电压的波动,输出电流传感器负责监视输入电流的大小。这种方式主要用于负载回馈电能,或瞬间因负载波动电压过高的情况。由输出端的输出电压,主电路正负极间的电解电容的高频滤波作用,进一步提高了直流电的质量,由车载储放电电路输出端的直流电经主电路断接开关输入逆变器,连至牵引电动机,完成了车内动力供电的全过程。
本发明的有益效果:
1、本发明尽量利用车外供电和车内供电已有的成熟可靠技术,这可以节省大量的人力、物力和财力。
2、本发明的设计以复合线路为依据,复合线路主要由基本线路和车载储放电电路组成。基本线路是以CRH1线路为主,其中线路的连接方式和元器件与基本线路相同,这就节省了许多线路设计和元器件购置的费用。
3、本发明的基本线路和复合线路共用一套辅助供电系统、共用一套动力供电系统,这便节约了主要能量储存结构。
4、本发明的两路外部交流电α和β通过双相供电网向车内用电线路和车内储放电线路供电,α和β两路单相电彼此独立,相互绝缘,而且用电量相同。外部的α与内部的α始终相连,外部的β与内部的β始终相连,这便保证了电网频率与用电线路的频率绝对相同,相序和电网相同、相位和电网严格同步。
5、本发明的车载储放电电路主要由超级电容器组和高能蓄电池组混合组成,超级电容器组的优点是功率密度高,高能蓄电池组的优点是能量密度高,两者的协调结合是能量存储的最佳方式。
附图说明
图1为根据本发明的一个实施例的内部复合线路图;
图2为根据本发明的一个实施例的车载储放电电路图;
图3为根据本发明的一个实施例的基本线路CRH1结构图;
图4(a)、图4(b)、图4(c)和图4(d)为现有的四种不同车型8厢动车组排列顺序和受电弓设置位置的示意图;
图5为根据本发明的8厢动车组动力供电、辅助供电和车载储放电电路的示意图;
图6为现有的电气化铁路外部双相供电的正视图;
图7为图6的侧视图;
图8为现有电气化铁路外部单相供电示意图;
图9为现有的8厢动车组的内部供电线路结构。
图中:G为发电机;TM1为升压变压器,TM2为降压变压器;ABC为三相高压专用电网;S为牵引变压器;D为动车;T’1、T’2为单相受电弓;T1、T2 为双相受电弓,K1α、K2α为动车组动力和辅助供电的双相切断开关,K1β、 K2β为车载储放电电路供电的切断开关;M为牵引电动机;Rα和Rβ为大电流降压电阻;R为轨道;α′和β′为左臂La和右臂Ra上端的滑动接触器;M1、M2 为左臂La和右臂Ra间的绝缘器。
标记说明:1为接地开关,2为主电路断路器,3为电压测量变压器,4为滤波器,5为电流互感器,6为电涌放电器(避雷器),7为主变压器,8为主变流器,9为牵引变流器,10牵引电动机,11为辅助变流器,12为滤波变压器, 13为充电机,14为电池开关,15为蓄电池,16为直流开关,(1)、(2)不可控二极管,63充电缓冲电路,短接接触器,充电限流电阻R,64控制器,65电压传感器,66超级电容组,67高能蓄电池组,68高能蓄电池的电压传感器,69-1 超级电容器组电流传感器,69-2高能蓄电池组电流传感器,610双向开关,611 电解电容,612主电路电流传感器,613主电路断接开关。
具体实施方式
本发明尽量利用动车组已有成熟可靠的技术,这可以节省大量的人力、物力和财力。本发明的主要设计为复合线路。复合线路由基本线路和车载能量储放电线路组成。以下结合附图对本发明的实施方式作进一步说明。
中国现有的8厢动车组的线路结构都基本相同,只是车厢的排列顺序和受电弓设置的位置不同,如图4(a)、图4(b)、图4(c)和图4(d)所示。本发明的一个实施例选择CRH1型8厢动车组车内动力、辅助供电系统为例,如图3 所示,图3中的标号与原CRH1线路结构元器件的顺序不同,但相应的元件完全相同。
基本线路:中国现有CRH1型、CRH2型、CRH3型和CRH5型8厢动车组,它们的主要区别是动车、拖车的排列顺序和受电弓所设置的车顶不同,其内部线路和元器件基本相同。本发明的一个实施例以CRH1型8厢动车组为代表进行介绍,并不失问题的普遍性,如图3所示。图3中的标号是对应CRH1型结构的元器件标识的。由110KV(高速动车为220KV)的三相交流电输入牵引变电所牵引变压器的原边,由牵引变压器的副边输出27.5KV(额定电压为25KV),50HZ的单相交流电经单相受电弓T’1或T’2,与切断开关K1或K2相连,再经接地开关1,主电路断路器2,电压测量变压器3,滤波器4,电流互感器5,电涌放电器(避雷器)6,主变压器7,主变流器8,由主变流器8输出的直流电分为两路:第一路直接连至基本线路的辅助供电系统,即经辅助变流器11并经滤波变压器12输至充电机13,由充电机13输出的直流电经电池开关14给蓄电池15充电,同时经二极管和直流开关16与DC110V的车内用电相连;第二路经牵引变流器9给牵引电动机10进行动力供电。
根据本发明的一个实施例,在现有的上述基本线路中进行如下的改变:如图3所示,在基本线路的主变流器8与辅助变流器11之间引出连接线100,该引出连接线的接线端为A端;在主变流器8与牵引变流器9之间接入双向开关 K3,在基本线路通电时,K3的B-B端相连。
复合线路:
根据本发明的车内供电装置包括设为车内动力供电和辅助供电电路和车载储放电电路,所述其中车内动力供电和辅助供电电路和车载储放电电路构成复合线路。图1示出了根据本发明的一个实施例的内部复合线路图,其中经主变流器8输出的直流电经不可控二极管(1)与基本线路引出线A端的辅助供电系统相连。由车载储放电电路的输出端,经不可控二极管(2)接至基本线路双向断通开关K3的C端。
图5示出了根据本发明的8厢动车组动力供电、辅助供电和车载储放电电路的示意图。由牵引变压器副边输出的27.5KV(额定电压25KV)的α和β两路单相交流电,接至牵引接触供电网,经双相受电弓T1或T2输入车内供电系统,参见图5所示,根据本发明的一个实施例,车载储放电电路包括设为基本单元 TUB1的车内动力供电和辅助供电系统,和设为基本单元TUB2的车载储放电电路,两单元彼此独立,互相绝缘。当动车进入L1区段,T1升起T2降下,与双相切断开关K1α、K1β相连,当动车进入下一个L1区段,T1降下T2升起,与双相切断开关K2α、K2β相连。当T1升起T2降下或T1降下T2升起时,两路单相电的α相经切断开关K1α或K2α与车内动力供电和辅助供电系统TUB1连接;两路单相电的β相经切断开关K1β或K2β与车载储放电电路TUB2相连。不论动车进入L1区段或动车进入下一个L1区段,α单相电始终与车内动力供电和辅助供电系统TUB1相连,β单相电始终与车载储放电系统TUB2相连,这可以保证电网的频率均为50HZ,相序和电网相同,相位和电网严格同步,电压波形均为正弦波的条件。当动车运行至L2区段时,T1和T2都降下,车内动力供电和辅助供电由车载储放电电路所储的能量供给,即由车载储放电电路的输出端,经不可控二极管接至基本线路双向断通开关K3的C端,此时,断开双向断通开关K3的B-B,接通双向断通开关K3的B-C,车载储放电电路所储存的能量便经基本线路的牵引变流器9给牵引电动机10供电。这样,根据本发明的实施例,在L2区段不设供电网也无需电网的支撑结构。但是在两路α和β接触网的断开端和接通端加设有大电流降压电阻,这可避免双相受电弓接入牵引供电网的短接火花或脱开牵引供电网的断开火花。
根据本发明的实施例,单相α的输电线路基本上与CRH1型基本线路相同,只是在主变流器8与辅助变流器之间增设了引出连接线100;在单相β输电线路的基本线路中主变流器的直流输出端与车载储放电电路的输入端连接,在车载储放电电路的输出端增接通断开关K3,由通断开关K3接至牵引变流器,牵引变流器供给电动机电能,便组成了复合线路。
从基本线路和复合线路的连接关系可知:由复合线路的主变流器8输出的直流电也接至基本线路的车内辅助供电系统,以便满足动车进入L2区段辅助供电的需要,这就应增加基本线路的辅助变流器11、滤波变压器12的变压器和蓄电池15的容量,而且蓄电池15的容量应大于等于原CRH1动车组蓄电池的容量与动车进入L2区段所需的电能,方可保证动车的辅助供电。由于原CRH1型 8厢动车组的蓄电池组15是铅酸蓄电池组或镍铬蓄电池组,本发明用锂离子电池组替换,可减小电池组的重量和所占的空间;由车载储放电电路的输出端是不能与复合线路的动力系统同时直接相连,只有当动车运行到L2区段时,才需供给动力系统用电。因此,需要将车载储放电电路输出端经基本线路双向断通开关K3的C端接入基本线路的动力系统。车载储放电电路的高能蓄电池组67 所储的能量必须大于等于原储存的能量与进入L2区段所需的能量之和,方可保证动力系统的运行,于是就要大大增加高能蓄电池组67的容量,选用石墨烯电池组、氢燃料电池组或锂动力电池组作为高能蓄电池组所需的能量储放器件,可减小能量储存器件的重量和占有空间,也符合技术发展前景。
车载储放电电路:根据本发明的一个实施例,如图2所示,车载储放电电路的主要功能是储电和放电,其核心部件是超级电容器组和高能蓄电池组,并辅以双向开关和控制器组合而成。超级电容器组的最大优点是功率密度高,高能蓄电池组的最大优点是能量容量大,两者的组合既可对高能蓄电池组起到能量缓冲作用,又能发挥超级电容器组高功率的供电能力。双向开关是由两个功率MOSFET晶闸管或IGBT晶闸管组成,全控型晶闸管是绝缘栅极双极型晶体管IGBT为代表的复合型器件。在图2的储放电电路中,由电流传感器612经主电路断接开关613接至基本线路中双向断通开关K3的B-C。现就根据本发明的车载储放电电路的充电和放电过程叙述如下:车载主电路的充电过程,由复合电路的单相β电经主变流器8输出的直流电,直流电的负极为主电路输入端的负极。如图2所示,主变流器8输出的正极连接在充电缓冲电路63的输入端。充电缓冲器63的电路由短接接触器和充电限流电阻R并联后串接在主电路的正极中。跨接在主电路的电压传感器65将信号输入控制器64,由控制器64输出的信号控制短接接触器的接通或断开。当超级电容组电压低于下限时,由控制器64输出的信号断开短接接触器,将充电限流电阻R接入电路,限制供电时的瞬时充电电流;当超级电容组电压高于下限时,由控制器64输出的信号吸合短接接触器,短路了充电限流电阻R。超级电容组66通过电流传感器69-1跨接在主电路的正极和负极之间。由主电路输入端输入的电流便经充电缓冲电路给超级电容组66充电,当充满超级电容组时,电流传感器69-1的电流为零,由电流传感器的输出信号接至控制器64的输入端,由控制器64控制双向开关610的晶闸管VT1和VT2的门极,VT1和VT2只能有一个接通。由控制器64输出的信号接通双向开关610的晶闸管VT1,电流经晶闸管VT1和续流二极管VD2 给高能蓄电池组67充电。如此反复运行直至电能充满高能蓄电池67,于是,由电流传感器69-2输入控制器64的电流信号为零,或者主电路电压传感器65的电压等于高能蓄电池组67的电压传感器68的电压,由电流传感器69-2或者电压传感器65、高能蓄电池组的电压传感器68输出端输入控制器64的信号,控制器64的输出控制信号接通双向开关610的晶闸管VT2,高能蓄电池组67便经电流传感器69-2、双向开关610的晶闸管VT2和续流二极管VD1把电流通过电流传感器612经断接开关613向主电路的输出端送电。当超级电容器组66给高能蓄电池组67的充电完成时,关闭双向开关610的晶闸管VT1,只有超级电容组66继续参与整流和输出,形成热备份,保证输出端的电压稳定,此时,可起到部分UPS的作用。车载主电路的放电过程,如复合线路图1所示,由电流传感器612经断接开关613接至基本线路图3,断开基本线路图3中双向断通开关K3的B-B,接通双向断通开关K3的B-C。车载主电路的输出端经不可控二极管接至图3中双向断通开关K3的B-C的C端,由C端经牵引逆变器 9,输至牵引电动机10,完成了车载主电路的放电过程。
超级电容器组66作为车内主电路的能量缓冲装置,是可以分担高能蓄电池组67的瞬间功率负担的。这要视外部交流电能输入和直流电能输出的实际负载情况而定,较短时间内的电能波动或瞬间过电压、欠电压主要由超级电容组66 承担,稍长时间的负荷波动则由高能蓄电池组67承担主要部分。超级电容组66 可在十几秒内达到满功率输出,故可做为能量滤波使用,使瞬间的电网波动完全被电容组所储存,可以尽可能大地经输出电流传感器612和断接开关613输出,满足高功率的要求,可承担瞬间的过电压、欠电压,同时避免瞬时的电压跌落,使得瞬间的电网波动电流完全被电容组所储存。当需要瞬间高脉冲功率输出时,超级电容组66可以满足高功率的要求,能有效地保护高能蓄电池组67,提高高能蓄电池组的整体安全性。超级电容组66可以瞬间工作于充电状态,主要目的是稳定母线电压,保证输出电能的可靠,并起到对电能供给或负载波动的削峰填谷作用。跨接在主电路正负极间的电解电容611可起到高频滤波的作用。当充满高能蓄电池组67时,电流通过输出电流传感器612和断接开关613 输给动力供电系统。电压传感器65跨接在主电路的正负极之间,其信号输出端连接在控制器64的信号输入端,高能蓄电池组的电压传感器68是跨接在高能蓄电池组67的两端,其输出信号连接在控制器64的输入端,超级电容组的电流传感器69-1和高能蓄电池组的电流传感器69-2的信号输出端分别接入控制器 64,输出电流传感器612的信号输出端接入控制器64。控制器64的信号输出端分别接在双向开关610的晶闸管VT1或VT2的门极,控制器64的信号输出端接至电压缓冲电路,控制器64的输出端接至断路开关613。
根据本发明的实施例的车载储放电电路包括超级电容器组、高能蓄电池组和全控型晶闸管等元器件,超级电容器最大的优点是功率密度高,可达 300W/kg~5000W/kg,相当于普通蓄电池的数十倍,可提供大电流放电能力,超强功率转换效率高,大电流能量循环效率≥90%,充电电流高达1500A~ 3000A,充满单块超级电容器只需几秒钟,上百块串联在一起充电,只需几十秒钟到6分钟便可充满95%以上。此外,尚有循环使用寿命长,深度充放电循环使用次数可达50万次。温度特性好,使用环境温度范围宽达-40℃~+70℃。由于产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是绿色环保产品。超级电容可在无负载电阻情况下直接充电,同时也具有蓄电池特性,是一种介于蓄电池和电容器之间的新型特殊元器件。超级电容器的比能量虽然远远大于电解电容,但是相对于蓄电池,超级电容器的比能量还是偏低。目前双电层单体超级电容器的最大电容量可达10000F。但是现有的超级电容器电压超过标称电压时,将会导致电解液分解,寿命缩短。近年来,日本开发的一种新型超级电容器,其标称电压可达100V以上;高能蓄电池的优点是能量密度高,理论比能量可达400W.h/kg,充放电寿命高达1000-5000次。其中,石墨烯电池是一种新型电池,可把数小时的充电时间缩短到不到一分钟,石墨烯聚合材料电池,其储电量是目前最好产品的3倍。氢燃料电池,只产生水和热,对环境、噪声无污染,燃料氢来自水的电解产物和其它碳水化合物的分解产物,是目前最有发展前景的新能源方式,氢的化学特性活跃,可被某些金属或合金化合物吸收,形成一种金属氢化合物,而且氢的含量很高,甚至高于液氢的密度,是一种良好的储氢材料。大容量锂离子电池,已在几种电动汽车上试用,一次充电可行驶345km,每次充电前不放电,可以随时充电,也不存在有毒物质。超级电容组或高能蓄电池组,是以单体并联串联组合而成,先并联达到所需的电能容量,再串联达到所需的额定电压值。超级电容组的功率密度高、高能蓄电池的能量容量大,两者的协调组合,既能对高能蓄电池组起到能量缓冲作用,又能发挥超级电容组高功率的供电能力,是超级电容器组和高能蓄电池组储能结构的最好方式;双向开关由晶闸管VT1和晶闸管VT2组成,是全控型器件,全控型的特点是通过对门极的控制,既可使其开通又可使其关断。以绝缘栅极双极型晶体管(IGBT)为代表的复合型器件,是MOSFET和BJT的复合,IGBT 为绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物,其击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。
尽管已经相对于实施例显示和描述了本发明,但是本领域的技术人员应当理解,可以不脱离本发明的范围而做出各种变化和改进。

Claims (12)

1.一种用于高速列车的牵引供电系统,包括车内供电装置,所述车内供电装置包括车内动力供电和辅助供电电路和车载储放电电路,所述车内动力供电和辅助供电电路和车载储放电电路构成复合线路,其中由牵引供电网牵引变压器副边的两路单相α和β电经双相受电弓T1和T2输入车内供电系统,当双相受电弓T1和T2的一个升起时,另一个必须降下,其中单相α电始终与车内动力供电和辅助供电电路相连,单相β电始终与车载储放电电路相连,车内动力供电和辅助供电电路与车载储放电电路彼此独立、互相绝缘,当双相受电弓T1和T2都降下时,单相α电和单相β电不供电。
2.根据权利要求1所述的牵引供电系统,其特征在于,所述车载储放电电路包括超级电容器和高能蓄电池的组合。
3.根据权利要求1或2所述的牵引供电系统,其特征在于,所述车内动力供电和辅助供电电路包括车内基本线路,其中车内基本线路通过主变流器输出的直流电分为两路:第一路经辅助变流器直接连至辅助供电系统,第二路经牵引变流器供给牵引电动机而连接至动力供电系统,其中在所述主变流器与所述辅助变流器之间设置引出连接线,该引出连接线的接线端为A端,以及在所述主变流器和牵引变流器之间设置双向开关K3,当双向开关K3的B-C的C端接通时,断开双向开关K3的B-B接线。
4.根据权利要求3所述的牵引供电系统,其特征在于,当动车进入L1区段时,由牵引供电网输至双相受电弓T1,经双相切断开关K1α输入车内的α电,或者动车进入下一个L1区段时,由牵引供电网输至双相受电弓T2,经双相切断开关K2α输入车内的单相α电,单相α电供给车内动力供电和辅助供电电路;当动车进入L1区段时,由牵引供电网输至双相受电弓T1,经双相切断开关K1β输入车内的β电,或者动车进入下一个L1区段时,由牵引供电网输至双相受电弓T2,经双相切断开关K2β输入车内的单相β电,单相β电经主变流器输出的直流电分为两路:一路经二极管直接连至由基本线路的主变流器与辅助变流器之间引出的连接线的A端;另一路由车载储放电电路的输出端经二极管接至基本线路的双向开关K3的C端,二极管防止电流的能量回流。
5.根据权利要求4所述的牵引供电系统,其特征在于,复合线路的主变流器经二极管与基本线路的连接线的A端相连,A端连至基本线路的辅助变流器,于是复合线路的辅助供电和基本线路的辅助供电具有共用的辅助供电系统,共用的辅助供电系统的辅助变流器、滤波变压器的变压器和蓄电池具有增大的容量,其中蓄电池是锂离子蓄电池,其容量大于等于基本线路的蓄电池的容量与动车进入L2区段所需的辅助供电量之和,其中在L2区段不设供电网也无需电网的支撑结构。
6.根据权利要求3所述的牵引供电系统,其特征在于,由车载储放电电路输出的电流经二极管与基本线路的双向开关K3的C端相连,进入基本线路的动力供电系统,此时,断开双向开关K3的B-B,复合线路的动力供电和基本线路的动力供电具有共用的供电系统,车内储放电线路具有增大能量容量的高能蓄电池,其中高能蓄电池的额定电压与牵引逆变器的电压相匹配,高能蓄电池的能量容量要大于等于动车进入L2区段所需的能量,所述高能蓄电池组由石墨烯、氢燃料、或锂离子电池并串结合。
7.根据权利要求3所述的牵引供电系统,其特征在于,车载储放电电路是由单相β电经主变流器输出的直流电,直流电的负极接至车载储放电电路的主电路的负极,直流电的正极输入充电缓冲电路,充电缓冲电路由短接接触器和充电限流电阻并联后串接在主电路的正极中,当超级电容器组电压低于下限时,断开短接接触器,将充电限流电阻接入电路,限制供电时的瞬时充电电流;当超级电容组电压高于下限时,由控制器输出的信号吸合短接接触器,将充电限流电阻切除,超级电容器组是跨接在主电路的正负极之间,由充电缓冲电路输出的电流给超级电容器组充电。
8.根据权利要求7所述的牵引供电系统,其特征在于,当充电缓冲电路输出的电流充满超级电容器组时,超级电容器组电流传感器的电流为零,将信号输给控制器,控制器的信号输出端将信号输入双向开关的VT1的门极,接通VT1,由高能蓄电池组经电流传感器、双向开关的VT1、并经续流二极管VD2向高能蓄电池组充电,双向开关的VT1的E极和VT2的E极连接在一起,只能有一个处于开通状态。
9.根据权利要求7所述的牵引供电系统,其特征在于,当电流充满高能蓄电池组,即高能蓄电池组电流传感器的电流为零时,或者跨接在超级电容组正负极之间的电压传感器等于跨接在高能蓄电池组之间的电压传感器时,高能蓄电池组放电,此时输入控制器的信号输出端,接通双向开关的VT2,高能蓄电池组通过电流传感器和双向开关的VT2及续流二极管VD1向主电路输出端放电。
10.根据权利要求9所述的牵引供电系统,其特征在于,由主电路的主变流器经不可控二极管接至基本线路的双向开关K3的C端,断开B-B,接通B-C,由B-C连至基本线路的牵引变流器,然后由牵引变流器给牵引电动机供电,超级电容器组作为主电路的能量缓冲装置,分担高能蓄电池组的瞬间功率负担,其中,较短时间内的电能波动或瞬间过电压、欠电压主要由超级电容组承担,稍长时间的负荷波动则由高能蓄电池组承担主要部分,跨接在主电路正负极间的电解电容被用作高频滤波,主电路的正极通过输出电流传感器接入动力供电能量储放电电路的输入端。
11.根据权利要求10所述的牵引供电系统,其特征在于,主电路的正极通过输出电流传感器和断接开关接至动力供电系统,电压传感器跨接在主电路正负极之间,其信号输出端连接在控制器的信号输入端,高能蓄电池组的电压传感器是跨接在高能蓄电池组的两端,其输出信号连接在控制器的输入端,超级电容组的电流传感器和高能蓄电池组的电流传感器的信号输出端分别接入控制器,输出电流传感器的信号输出端分别接入控制器,控制器的信号输出端分别接在双向开关的VT1的门极或VT2的门极,控制器的输出端接至电压缓冲电路,控制器的输出端接至断路开关。
12.一种高速列车,其特征在于,具有根据权利要求1-11的任一项所述的牵引供电系统。
CN201610398211.4A 2016-06-07 2016-06-07 一种用于高速列车的牵引供电系统及其车载储放电系统 Expired - Fee Related CN107472037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610398211.4A CN107472037B (zh) 2016-06-07 2016-06-07 一种用于高速列车的牵引供电系统及其车载储放电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610398211.4A CN107472037B (zh) 2016-06-07 2016-06-07 一种用于高速列车的牵引供电系统及其车载储放电系统

Publications (2)

Publication Number Publication Date
CN107472037A CN107472037A (zh) 2017-12-15
CN107472037B true CN107472037B (zh) 2020-06-12

Family

ID=60593660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610398211.4A Expired - Fee Related CN107472037B (zh) 2016-06-07 2016-06-07 一种用于高速列车的牵引供电系统及其车载储放电系统

Country Status (1)

Country Link
CN (1) CN107472037B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303904B (zh) * 2018-03-08 2021-04-20 比亚迪股份有限公司 轨道交通车辆的充电控制方法和充电设备
CN109346786A (zh) * 2018-12-05 2019-02-15 湖北圣融科技有限公司 三极柱复合电池系统
CN109861372B (zh) * 2018-12-30 2022-10-25 宁波中车新能源科技有限公司 一种分散式车门应急供电装置
CN110018683B (zh) * 2019-05-17 2021-01-08 西南交通大学 一种动车组门控系统故障排查及解决方法
CN114179624B (zh) * 2021-12-16 2024-01-30 西安中车永电电气有限公司 一种三合一混合能源供电的轨道车牵引供电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209001A (ja) * 1983-05-11 1984-11-27 Hitachi Ltd 電気車用誘導障害防止装置
JPH0793761B2 (ja) * 1986-03-11 1995-10-09 三菱電機株式会社 電気車用誘導障害防止装置
CN201278310Y (zh) * 2008-09-16 2009-07-22 卧龙电气集团股份有限公司 不等容平衡牵引变压器
CN103078315B (zh) * 2012-12-28 2014-08-13 西南交通大学 一种单相三相组合式同相供变电装置
CN104015632B (zh) * 2014-05-30 2016-06-01 吉林大学 高速客运专线动车组全程不设过分相的供电系统
CN104210385B (zh) * 2014-08-19 2016-09-07 吉林大学 全程无负序间歇无供电网的电气化铁路电网系统

Also Published As

Publication number Publication date
CN107472037A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CA3024347C (en) Traction power supply system for high speed train and its on-board power storage and discharge system
CN107472037B (zh) 一种用于高速列车的牵引供电系统及其车载储放电系统
CN107499190B (zh) 高速动车组动力牵引和再生制动的能量储放电系统
CN107776416A (zh) 一种轨道交通混合动力电路、储能动力包及其供电方法
CN105539164B (zh) 一种双源制电力机车变流装置
CN111591424B (zh) 一种纯电动公务艇动力系统
CN201328023Y (zh) 用于风力发电机组电动变桨系统的后备电源
CN101442207A (zh) 一种新型储能装置
CN103825337B (zh) 基于v2g恒流放电系统及其控制方法
CN111532291B (zh) 轨道交通无网自行走双路输出蓄电池与双向充电机系统
CN217607526U (zh) 一种动力电池充电切换系统、动力车辆
CN211335659U (zh) 基于混合储能的电气化铁路牵引供电系统
Zhang et al. Research on power quality control method of v2g system of electric vehicle based on apf
CN207311178U (zh) 高速动车组动力牵引和再生制动的能量储放电系统
CN113595119A (zh) 一种火电混合储能高穿低穿协调控制系统
CN113580963A (zh) 一种电动汽车充电系统
CN111478616A (zh) 一种地铁牵引供电系统及双向变流装置
CN205017058U (zh) 一种充换电式充电站两段式直流母线供电系统
CN209608359U (zh) 电车储能系统
CN105207326A (zh) 一种新能源汽车电池更换充电模式共直流母线的新型结构
CN215378469U (zh) 调配稳定式混合储能光伏发电系统
CN113422386A (zh) 调配稳定式混合储能光伏发电系统
CN205989665U (zh) 电动车电气系统
CN212908988U (zh) 一种用于地铁控制电路的整流装置
CN111668888A (zh) 电车储能系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200612

Termination date: 20210607

CF01 Termination of patent right due to non-payment of annual fee