CN107465191A - Photovoltaic plant DC/DC DC/AC Harmonic Control Methods - Google Patents

Photovoltaic plant DC/DC DC/AC Harmonic Control Methods Download PDF

Info

Publication number
CN107465191A
CN107465191A CN201710916647.2A CN201710916647A CN107465191A CN 107465191 A CN107465191 A CN 107465191A CN 201710916647 A CN201710916647 A CN 201710916647A CN 107465191 A CN107465191 A CN 107465191A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
alpha
photovoltaic plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710916647.2A
Other languages
Chinese (zh)
Other versions
CN107465191B (en
Inventor
李春来
左浩
滕云
张海宁
杨金路
孙鹏
张玉龙
程珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
State Grid Qinghai Electric Power Co Ltd
Electric Power Research Institute of State Grid Qinghai Electric Power Co Ltd
Original Assignee
Shenyang University of Technology
State Grid Qinghai Electric Power Co Ltd
Electric Power Research Institute of State Grid Qinghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology, State Grid Qinghai Electric Power Co Ltd, Electric Power Research Institute of State Grid Qinghai Electric Power Co Ltd filed Critical Shenyang University of Technology
Priority to CN201710916647.2A priority Critical patent/CN107465191B/en
Publication of CN107465191A publication Critical patent/CN107465191A/en
Application granted granted Critical
Publication of CN107465191B publication Critical patent/CN107465191B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • H02J3/383
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention proposes a kind of photovoltaic plant DC/DC DC/AC Harmonic Control Methods, DC/DC chopper circuits and inverter will be set gradually between photo-voltaic power generation station DC output end and power network, and DC/DC chopper circuits are triggered by SPWM triggers;Obtain photovoltaic plant photovoltaic array output voltage;Obtain each triggering moment and correspond to Trigger Angle, determine photovoltaic plant SPWM triggered time;Determine the output voltage of DC/DC chopper circuit chopper circuits;Calculate the harmonic voltage of inverter output;Photovoltaic plant harmonic content percentage is calculated according to the harmonic voltage that the output voltage of DC/DC chopper circuit chopper circuits and inverter export;Judge current photovoltaic plant harmonic content percentage size, determine that photovoltaic plant DC/DC DC/AC harmonic controling processes meet the requirements.Traditional inverter is improved by the present invention, and the direct current that photovoltaic is sent carries out corresponding copped wave, effectively weakens each harmonic content.

Description

Photovoltaic plant DC/DC-DC/AC Harmonic Control Methods
Technical field
The invention belongs to electric power network technique field, and in particular to a kind of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods.
Background technology
It is higher to the quality requirement of electricity during photovoltaic electric station grid connection, because traditional inverter uses SPWM technologies, by sine A series of equivalent impulse waveform as constant durations of ripple, by controlling IGBT ON times, the sine wave of needs is formed, but It is the low-order harmonic that such a method can suppress inverter, possible output and the harmonic component of carrier wave correlated frequency, and due to The output voltage of photovoltaic array is unstable, and such a harmonic wave can be effectively reduced using DC/DC-DC/AC harmonic suppressing method Component, and steady dc voltage can be exported so that the quality of electric energy is significantly lifted.
The content of the invention
In view of the shortcomings of the prior art, the present invention proposes a kind of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods.
A kind of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods, comprise the following steps:
Step 1:DC/DC chopper circuits and inverter will be set gradually between photo-voltaic power generation station DC output end and power network, DC/DC chopper circuits are triggered by SPWM triggers;
Step 2:Obtain photovoltaic plant photovoltaic array output voltage Ug, establish DC/DC chopper circuit differences triggering moment electricity The relational expression of pressure value Trigger Angle corresponding with triggering moment, obtains each triggering moment and corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM triggered time;
The relational expression for establishing DC/DC chopper circuit difference triggering moment magnitudes of voltage Trigger Angle corresponding with triggering moment is such as Shown in lower:
DC/DC chopper circuits the first triggering moment voltage u1Trigger Angle α corresponding with the first triggering moment1Relational expression it is as follows It is shown:
Wherein, ut=Ug, α2Trigger Angle, α are corresponded to for the second triggering moment4Trigger Angle is corresponded to for the 4th triggering moment;
The triggering moment voltage u of DC/DC chopper circuits the 3rd3Trigger Angle α corresponding with the 3rd triggering moment3Relational expression it is as follows It is shown:
The triggering moment voltage u of DC/DC chopper circuits the 5th5Trigger Angle α corresponding with the 5th triggering moment5Relational expression it is as follows It is shown:
The triggering moment voltage u of DC/DC chopper circuits the 7th7Trigger Angle α corresponding with the 7th triggering moment7Relational expression it is as follows It is shown:
The triggering moment voltage u of DC/DC chopper circuits the 9th9Trigger Angle α corresponding with the 9th triggering moment9Relational expression it is as follows It is shown:
Step 3:It is determined that photovoltaic plant SPWM triggered time trigger DC/DC chopper circuits, according to photovoltaic plant light Photovoltaic array output voltage UgDetermine the output voltage U of DC/DC chopper circuit chopper circuitsd0
It is described according to photovoltaic plant photovoltaic array output voltage UgDetermine the output voltage of DC/DC chopper circuit chopper circuits Ud0Calculation formula it is as follows:
Wherein, n=6k ..., ∞, k=1,2 ..., ∞, ω are fundamental frequency.
Step 4:It is more defeated than M and photovoltaic plant photovoltaic array than the amplitude modulation of N, inverter according to the frequency modulation(PFM) of inverter Go out voltage UgCalculate the harmonic voltage U of inverter outputxh1
The frequency modulation(PFM) according to inverter exports than the amplitude modulation of N, inverter than M and photovoltaic plant photovoltaic array Voltage UgCalculate the harmonic voltage U of inverter outputxh1Calculation formula it is as follows:
Wherein, m is overtone order,fcFor carrier frequency, fmFor frequency of modulated wave, MmFor carrier wave Amplitude, McTo modulate wave amplitude,For second harmonic initial phase, n=6k ..., ∞, k=1,2 ..., ∞, ω are fundamental wave frequency Rate.
Step 5:According to the output voltage U of DC/DC chopper circuit chopper circuitsd0With the harmonic voltage U of inverter outputxh1 Calculate photovoltaic plant harmonic content percentage υ;
The calculation formula of the photovoltaic plant harmonic content percentage υ is as follows:
Step 6:Judge whether current photovoltaic plant harmonic content percentage υ is less than or equal to the threshold of harmonic content percentage Value, if so, then current photovoltaic plant DC/DC-DC/AC harmonic controling processes meet the requirements, otherwise, adjust DC/DC chopper circuits Each triggering moment corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM triggered time, return to step 3.
The threshold value of the harmonic content percentage is 10%.
Beneficial effects of the present invention:
The present invention proposes a kind of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods, of the invention by traditional inverter It is improved, DC/DC converters is added before inverter, the direct current that photovoltaic is sent carries out corresponding copped wave, becomes another The direct current of kind fixed voltage, the direct current of this fixed voltage is subjected to corresponding SPWM conversion, can effectively be weakened each time Harmonic content.
Brief description of the drawings
Fig. 1 is the FB(flow block) of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods in present embodiment;
Fig. 2 is the apparatus structure block diagram of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods in embodiment of the present invention.
Embodiment
The specific embodiment of the invention is described in detail below in conjunction with the accompanying drawings.
In present embodiment, for certain photovoltaic plant using 36V cell panel, its connection in series-parallel number is 10 and 100;Therefore finally Go out photovoltaic plant photovoltaic array output voltage UgFor 360V, the amplitude modulation of inverter is 0.8 than M, the frequency modulation(PFM) of inverter It is 40 than N, output fundamental frequency ω is 50Hz.
A kind of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods, as shown in figure 1, comprising the following steps:
Step 1:DC/DC chopper circuits and inverter will be set gradually between photo-voltaic power generation station DC output end and power network, DC/DC chopper circuits are triggered by SPWM triggers, as shown in Figure 2.
Step 2:Obtain photovoltaic plant photovoltaic array output voltage Ug, establish DC/DC chopper circuit differences triggering moment electricity The relational expression of pressure value Trigger Angle corresponding with triggering moment, obtains each triggering moment and corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM triggered time.
In present embodiment, DC/DC chopper circuit difference triggering moment magnitudes of voltage Trigger Angle corresponding with triggering moment is established Relational expression it is as follows:
DC/DC chopper circuits the first triggering moment voltage u1Trigger Angle α corresponding with the first triggering moment1Relational expression such as formula (1) shown in:
Wherein, ut=Ug, α2Trigger Angle, α are corresponded to for the second triggering moment4Trigger Angle is corresponded to for the 4th triggering moment.
The triggering moment voltage u of DC/DC chopper circuits the 3rd3Trigger Angle α corresponding with the 3rd triggering moment3Relational expression such as formula (2) shown in:
The triggering moment voltage u of DC/DC chopper circuits the 5th5Trigger Angle α corresponding with the 5th triggering moment5Relational expression such as formula (3) shown in:
The triggering moment voltage u of DC/DC chopper circuits the 7th7Trigger Angle α corresponding with the 7th triggering moment7Relational expression such as formula (4) shown in:
The triggering moment voltage u of DC/DC chopper circuits the 9th9Trigger Angle α corresponding with the 9th triggering moment9Relational expression such as formula (5) shown in:
Make DC/DC chopper circuits the first triggering moment voltage u1Equal to photovoltaic plant photovoltaic array output voltage Ug, make DC/ The triggering moment voltage u of DC chopper circuits the 3rd3, the 5th triggering moment voltage u5, the 7th triggering moment voltage u7, the 9th triggering when Carve voltage u9Equal to 0, formula is obtained such as shown in (6)-(10):
It can be obtained by above-mentioned formula (6)-(7),
Step 3:It is determined that photovoltaic plant SPWM triggered time trigger DC/DC chopper circuits, according to photovoltaic plant light Photovoltaic array output voltage UgDetermine the output voltage U of DC/DC chopper circuit chopper circuitsd0
In present embodiment, according to photovoltaic plant photovoltaic array output voltage UgDetermine DC/DC chopper circuit chopper circuits Output voltage Ud0Calculation formula such as formula (11) shown in:
Wherein, n=6k ..., ∞, k=1,2 ..., ∞, ω are fundamental frequency.
Step 4:It is more defeated than M and photovoltaic plant photovoltaic array than the amplitude modulation of N, inverter according to the frequency modulation(PFM) of inverter Go out voltage UgCalculate the harmonic voltage U of inverter outputxh1
In present embodiment, according to the frequency modulation(PFM) of inverter than N, inverter amplitude modulation than M and photovoltaic plant light Photovoltaic array output voltage UgCalculate the harmonic voltage U of inverter outputxh1Calculation formula such as formula (12) shown in:
Wherein, m is overtone order,fcFor carrier frequency, fmFor frequency of modulated wave, MmFor carrier wave Amplitude, McTo modulate wave amplitude,For second harmonic initial phase, n=6k ..., ∞, k=1,2 ..., ∞, ω are fundamental wave frequency Rate.
Step 5:According to the output voltage U of DC/DC chopper circuit chopper circuitsd0With the harmonic voltage U of inverter outputxh1 Calculate photovoltaic plant harmonic content percentage υ.
In present embodiment, shown in photovoltaic plant harmonic content percentage υ calculation formula such as formula (14):
Step 6:Judge whether current photovoltaic plant harmonic content percentage υ is less than or equal to the threshold of harmonic content percentage Value, if so, then current photovoltaic plant DC/DC-DC/AC harmonic controling processes meet the requirements, otherwise, adjust DC/DC chopper circuits Each triggering moment corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM triggered time, return to step 23.
In present embodiment, the threshold value of harmonic content percentage is 10%, because of the < 10% of υ=8.17%, current photovoltaic electric DC/DC-DC/AC harmonic controling processes of standing meet the requirements.Otherwise, the triggering moment voltage u of DC/DC chopper circuits the 3rd is adjusted3, Five triggering moment voltage u5, the 7th triggering moment voltage u7, the 9th triggering moment voltage u9Value, so as to adjust DC/DC copped waves electricity Each triggering moment in road corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM triggered time, return to step 3.

Claims (5)

1. a kind of photovoltaic plant DC/DC-DC/AC Harmonic Control Methods, it is characterised in that comprise the following steps:
Step 1:DC/DC chopper circuits and inverter will be set gradually between photo-voltaic power generation station DC output end and power network, passed through SPWM triggers trigger DC/DC chopper circuits;
Step 2:Obtain photovoltaic plant photovoltaic array output voltage Ug, establish DC/DC chopper circuits difference triggering moment magnitude of voltage with Triggering moment corresponds to the relational expression of Trigger Angle, obtains each triggering moment and corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM's touches Send out the time;
Step 3:It is determined that photovoltaic plant SPWM triggered time trigger DC/DC chopper circuits, according to photovoltaic plant photovoltaic battle array Row output voltage UgDetermine the output voltage U of DC/DC chopper circuit chopper circuitsd0
Step 4:It is more electric than M and the output of photovoltaic plant photovoltaic array than the amplitude modulation of N, inverter according to the frequency modulation(PFM) of inverter Press UgCalculate the harmonic voltage U of inverter outputxh1
Step 5:According to the output voltage U of DC/DC chopper circuit chopper circuitsd0With the harmonic voltage U of inverter outputxh1Calculate Photovoltaic plant harmonic content percentage υ;
The calculation formula of the photovoltaic plant harmonic content percentage υ is as follows:
<mrow> <mi>&amp;upsi;</mi> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mn>9</mn> <mi>&amp;pi;</mi> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mi>arcsin</mi> <msqrt> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>x</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msup> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </msqrt> </mrow> <mrow> <mn>11</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>&amp;times;</mo> <mn>100</mn> <mi>%</mi> <mo>;</mo> </mrow>
Step 6:Judge whether current photovoltaic plant harmonic content percentage υ is less than or equal to the threshold value of harmonic content percentage, if It is that then current photovoltaic plant DC/DC-DC/AC harmonic controling processes meet the requirements, otherwise, adjustment DC/DC chopper circuits respectively trigger Moment corresponds to Trigger Angle, so that it is determined that photovoltaic plant SPWM triggered time, return to step 3.
2. photovoltaic plant DC/DC-DC/AC Harmonic Control Methods according to claim 1, it is characterised in that the foundation The relational expression of DC/DC chopper circuit difference triggering moment magnitudes of voltage Trigger Angle corresponding with triggering moment is as follows:
DC/DC chopper circuits the first triggering moment voltage u1Trigger Angle α corresponding with the first triggering moment1Relational expression it is as follows:
<mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>u</mi> <mi>t</mi> </msub> </mrow> <mi>&amp;pi;</mi> </mfrac> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mn>4</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mn>5</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
Wherein, ut=Ug, α2Trigger Angle, α are corresponded to for the second triggering moment4Trigger Angle is corresponded to for the 4th triggering moment;
The triggering moment voltage u of DC/DC chopper circuits the 3rd3Trigger Angle α corresponding with the 3rd triggering moment3Relational expression it is as follows:
<mrow> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>u</mi> <mi>t</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;alpha;</mi> <mn>4</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>3</mn> <msub> <mi>&amp;alpha;</mi> <mn>5</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
The triggering moment voltage u of DC/DC chopper circuits the 5th5Trigger Angle α corresponding with the 5th triggering moment5Relational expression it is as follows:
<mrow> <msub> <mi>u</mi> <mn>5</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>u</mi> <mi>t</mi> </msub> </mrow> <mrow> <mn>5</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;alpha;</mi> <mn>4</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>cos</mi> <mrow> <mo>(</mo> <mn>5</mn> <msub> <mi>&amp;alpha;</mi> <mn>5</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
The triggering moment voltage u of DC/DC chopper circuits the 7th7Trigger Angle α corresponding with the 7th triggering moment7Relational expression it is as follows:
<mrow> <msub> <mi>u</mi> <mn>7</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>u</mi> <mi>t</mi> </msub> </mrow> <mrow> <mn>7</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>7</mn> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>7</mn> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>7</mn> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>7</mn> <msub> <mi>&amp;alpha;</mi> <mn>4</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>7</mn> <msub> <mi>&amp;alpha;</mi> <mn>5</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
The triggering moment voltage u of DC/DC chopper circuits the 9th9Trigger Angle α corresponding with the 9th triggering moment9Relational expression it is as follows:
<mrow> <msub> <mi>u</mi> <mn>9</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>u</mi> <mi>t</mi> </msub> </mrow> <mrow> <mn>9</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mi>&amp;alpha;</mi> <mn>4</mn> </msub> <mo>+</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mi>&amp;alpha;</mi> <mn>5</mn> </msub> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mrow> <mn>2</mn> <msub> <mi>U</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>.</mo> </mrow> 1
3. photovoltaic plant DC/DC-DC/AC Harmonic Control Methods according to claim 1, it is characterised in that the basis Photovoltaic plant photovoltaic array output voltage UgDetermine the output voltage U of DC/DC chopper circuit chopper circuitsd0Calculation formula it is as follows It is shown:
<mrow> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> <msub> <mi>U</mi> <mi>g</mi> </msub> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mfrac> <mi>&amp;pi;</mi> <mn>6</mn> </mfrac> </mrow> <mfrac> <mi>&amp;pi;</mi> <mn>6</mn> </mfrac> </msubsup> <mi>cos</mi> <mi>&amp;omega;</mi> <mi>t</mi> <mi>d</mi> <mi>&amp;omega;</mi> <mi>t</mi> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> <mi>k</mi> </mrow> <mi>&amp;infin;</mi> </munderover> <mo>-</mo> <mfrac> <mrow> <mn>6</mn> <msqrt> <mn>2</mn> </msqrt> <msub> <mi>U</mi> <mi>g</mi> </msub> <mi>cos</mi> <mi>k</mi> <mi>&amp;omega;</mi> <mi>t</mi> <mi>&amp;pi;</mi> </mrow> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mi>&amp;pi;</mi> </mrow> </mfrac> <mi>cos</mi> <mi>n</mi> <mi>&amp;omega;</mi> <mi>t</mi> <mo>;</mo> </mrow>
Wherein, n=6k ... ∞, k=1,2 ... ∞, ω are fundamental frequency.
4. photovoltaic plant DC/DC-DC/AC Harmonic Control Methods according to claim 1, it is characterised in that the basis The frequency modulation(PFM) of inverter than N, inverter amplitude modulation than M and photovoltaic plant photovoltaic array output voltage UgCalculate inverter The harmonic voltage U of outputxh1Calculation formula it is as follows:
Wherein, m is overtone order,fcFor carrier frequency, fmFor frequency of modulated wave, MmFor carrier wave width Value, McTo modulate wave amplitude,For second harmonic initial phase, n=6k ... ∞, k=1,2 ... ∞, ω are fundamental frequency.
5. photovoltaic plant DC/DC-DC/AC Harmonic Control Methods according to claim 1, it is characterised in that the harmonic wave The threshold value of percentage composition is 10%.
CN201710916647.2A 2017-09-30 2017-09-30 Photovoltaic power station DC/DC-DC/AC harmonic control method Active CN107465191B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710916647.2A CN107465191B (en) 2017-09-30 2017-09-30 Photovoltaic power station DC/DC-DC/AC harmonic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710916647.2A CN107465191B (en) 2017-09-30 2017-09-30 Photovoltaic power station DC/DC-DC/AC harmonic control method

Publications (2)

Publication Number Publication Date
CN107465191A true CN107465191A (en) 2017-12-12
CN107465191B CN107465191B (en) 2020-10-13

Family

ID=60554187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710916647.2A Active CN107465191B (en) 2017-09-30 2017-09-30 Photovoltaic power station DC/DC-DC/AC harmonic control method

Country Status (1)

Country Link
CN (1) CN107465191B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711858A (en) * 2018-07-19 2018-10-26 沈阳工业大学 Based on the inverter harmonic restraining device and method for following photovoltaic plant to go out fluctuation
CN109167395A (en) * 2018-11-22 2019-01-08 国网宁夏电力有限公司电力科学研究院 The transient state equivalence potential discrimination method of photovoltaic generating system based on ADPSS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784817A (en) * 2003-05-07 2006-06-07 株式会社荏原电产 Power supply including system interconnection inverter
EP2562919A1 (en) * 2010-11-17 2013-02-27 TBEA Sunoasis Co., Ltd. Grid-connected inverter and ac harmonic filtering method for inverter
CN203747431U (en) * 2013-10-15 2014-07-30 北京凯门控制工程研究所 DC/AC converter for photovoltaic power-generation grid-connected system based on phase-shifting transformer
US20160211672A1 (en) * 2007-12-21 2016-07-21 Sunpower Corporation Distributed energy conversion systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784817A (en) * 2003-05-07 2006-06-07 株式会社荏原电产 Power supply including system interconnection inverter
US20160211672A1 (en) * 2007-12-21 2016-07-21 Sunpower Corporation Distributed energy conversion systems
EP2562919A1 (en) * 2010-11-17 2013-02-27 TBEA Sunoasis Co., Ltd. Grid-connected inverter and ac harmonic filtering method for inverter
CN203747431U (en) * 2013-10-15 2014-07-30 北京凯门控制工程研究所 DC/AC converter for photovoltaic power-generation grid-connected system based on phase-shifting transformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任神河: "光伏发电PWM逆变器谐波抑制方法研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711858A (en) * 2018-07-19 2018-10-26 沈阳工业大学 Based on the inverter harmonic restraining device and method for following photovoltaic plant to go out fluctuation
CN108711858B (en) * 2018-07-19 2023-08-08 沈阳工业大学 Inverter harmonic suppression method based on following photovoltaic power station output fluctuation
CN109167395A (en) * 2018-11-22 2019-01-08 国网宁夏电力有限公司电力科学研究院 The transient state equivalence potential discrimination method of photovoltaic generating system based on ADPSS
CN109167395B (en) * 2018-11-22 2021-10-15 国网宁夏电力有限公司电力科学研究院 Transient equivalent potential identification method of photovoltaic power generation system based on ADPSS

Also Published As

Publication number Publication date
CN107465191B (en) 2020-10-13

Similar Documents

Publication Publication Date Title
US9859714B2 (en) Multiple input three-phase inverter with independent MPPT and high efficiency
CN102916437B (en) The soft combination method of a kind of grid-connected converter
CN110829479A (en) High-frequency uncontrolled rectification direct-current power transmission system of offshore wind farm
WO2012010052A1 (en) Mmc-based transformer-free wind power grid-connected topological structure
CN107069803B (en) Low-voltage ride through control device and method for two-stage inverter
CN107181413A (en) Mixed type direct current power electronic transformer
CN103532420B (en) Dual-three-level online-topology switchable inverter
CN107612019B (en) Active power control method and system for string type photovoltaic inverter
CN103515974B (en) The single-phase grid-connected control method of photovoltaic of the two MPPT functions of a kind of efficient stable
CN104753377B (en) A kind of multi-electrical level inverter based on bridge-type modular switch electric capacity
CN116260348B (en) MMC-based high-capacity electrolytic hydrogen production hybrid rectifier and control method
WO2012010068A1 (en) Topology of power-generation and grid-integration of transformerless hydraulic generator
CN107681690A (en) Photovoltaic plant transient state equivalence potential on-line identification method
CN113949089A (en) Electrochemical energy storage commutation system and method with harmonic suppression capability
CN103094918B (en) A kind of single-phase grid-connected device improving the quality of power supply
CN107465191A (en) Photovoltaic plant DC/DC DC/AC Harmonic Control Methods
CN105958808A (en) Control method of photovoltaic grid-connected inverter
CN114530883A (en) Power control method, device and system of light storage integrated grid-connected inverter
CN202633962U (en) Photovoltaic grid connected and electric energy quality comprehensive control apparatus based on TMS320F2812
CN107994603B (en) Fault ride-through control method and system based on virtual synchronous generator
Shanthi et al. Power electronic interface for grid-connected PV array using boost converter and line-commutated inverter with MPPT
CN115276433A (en) Hydrogen production converter
CN208386155U (en) It is a kind of that device is inhibited based on the inverter harmonic for following photovoltaic plant to go out fluctuation
CN104467007B (en) Single-phase cascade multilevel photovoltaic grid-connected inverter control system
CN204644479U (en) A kind of industrialization energy-saving high-frequency impulse electrolysis manganese device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant