CN107451651A - A kind of driving fatigue detection method of the H ELM based on particle group optimizing - Google Patents
A kind of driving fatigue detection method of the H ELM based on particle group optimizing Download PDFInfo
- Publication number
- CN107451651A CN107451651A CN201710632344.8A CN201710632344A CN107451651A CN 107451651 A CN107451651 A CN 107451651A CN 201710632344 A CN201710632344 A CN 201710632344A CN 107451651 A CN107451651 A CN 107451651A
- Authority
- CN
- China
- Prior art keywords
- particle
- hidden layer
- learning machine
- output
- frequency band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 54
- 238000001514 detection method Methods 0.000 title claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 14
- 238000005457 optimization Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 9
- 230000003595 spectral effect Effects 0.000 claims abstract description 5
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 210000004556 brain Anatomy 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 241000380131 Ammophila arenaria Species 0.000 abstract description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000007635 classification algorithm Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/59—Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
- G06V20/597—Recognising the driver's state or behaviour, e.g. attention or drowsiness
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及驾驶疲劳的检测方法,特别涉及一种基于粒子群优化的多层学习超限学习机的驾驶疲劳检测方法。The invention relates to a driving fatigue detection method, in particular to a driving fatigue detection method based on particle swarm optimization multi-layer learning extreme learning machine.
背景技术Background technique
超限学习机(Extreme Learning Machine,ELM)是一种单隐含层前馈神经网络(Single-Hidden Layer Feedforward Neural Networks,SLFNs),仅有一个隐含层。相比较于传统的BP神经网络需要多次迭代进行参数的调整,训练速度慢,容易陷入局部极小值,无法达到全局最小等缺点,ELM算法随机产生输入层与隐含层的连接权值与偏置,且在训练过程中无需进行隐层参数迭代调整,只需要设置隐含层神经元的个数以及激活函数,便可以通过最小化平方损失函数得到输出权值。Extreme Learning Machine (ELM) is a single hidden layer feedforward neural network (Single-Hidden Layer Feedforward Neural Networks, SLFNs), only one hidden layer. Compared with the traditional BP neural network, which requires multiple iterations to adjust parameters, the training speed is slow, it is easy to fall into local minimum, and it cannot reach the global minimum. The ELM algorithm randomly generates the connection weights of the input layer and the hidden layer. Bias, and there is no need to iteratively adjust the hidden layer parameters during the training process, only need to set the number of hidden layer neurons and the activation function, and then the output weight can be obtained by minimizing the square loss function.
多层学习超限学习机(H-ELM)先将输入转换入一个随机的特征空间,再通过多层的无监督学习,提取了数据的高层特征,再通过普通的超限学习机对特征进行学习和分类。而超限学习机的范数和比例因子的选择直接影响超限学习机的分类效果。The multi-layer learning extreme learning machine (H-ELM) first converts the input into a random feature space, and then extracts the high-level features of the data through multi-layer unsupervised learning, and then uses the ordinary extreme learning machine to process the features. Learn and classify. The choice of the norm and scale factor of the ELM directly affects the classification effect of the ELM.
发明内容Contents of the invention
本发明的目的是在功率谱对信号进行特征提取的基础上,结合粒子群优化算法(PSO)对多层学习超限学习机的范数和比例因子进行迭代寻优,提出了一种基于粒子群优化的多层学习超限学习机(PSO-HELM)的驾驶疲劳检测方法。The purpose of the present invention is on the basis that power spectrum carries out feature extraction to signal, combines particle swarm optimization algorithm (PSO) to carry out iterative optimization to norm and scale factor of multilayer learning extreme learning machine, proposes a kind of based on particle Group-optimized multilayer learning extreme learning machine (PSO-HELM) approach to driver fatigue detection.
按照本发明提供的技术方案,提出了一种基于粒子群优化的多层学习超限学习机驾驶疲劳检测方法,包括如下步骤:According to the technical scheme provided by the present invention, a kind of multi-layer learning extreme learning machine driving fatigue detection method based on particle swarm optimization is proposed, comprising the following steps:
步骤1、使用脑电采集设备采集32个信道的驾驶脑电信号;Step 1. Use EEG acquisition equipment to collect 32 channels of driving EEG signals;
步骤2、对采集到的脑电信号进行预处理,包括降频、降噪;Step 2. Preprocessing the collected EEG signals, including frequency reduction and noise reduction;
步骤3、对预处理后的数据加窗进行离散傅里叶变换;Step 3, performing discrete Fourier transform on the preprocessed data window;
步骤4、根据离散傅里叶变换后的数据求功率谱密度,并根据脑电信号的频带进行频带划分,以各频带的功率作为特征;Step 4, calculate the power spectral density according to the data after the discrete Fourier transform, and divide the frequency bands according to the frequency bands of the EEG signal, and use the power of each frequency band as a feature;
步骤5、对提取的特征使用多层学习超限学习机进行分类学习、识别;Step 5, using the multi-layer learning extreme learning machine to classify and identify the extracted features;
步骤6、通过粒子群算法对超限学习机的分类、识别效果进行优化。Step 6: Optimizing the classification and recognition effects of the extreme learning machine through the particle swarm optimization algorithm.
所述的步骤4中根据脑电信号的频带进行频带划分,具体为:在每个信道的频域信号中提取五个频带,分别为δ(0.1-3Hz)、θ(4-7Hz)、α(8-15Hz)、β(16-31Hz)、γ(32-50Hz);Carry out frequency band division according to the frequency band of EEG signal in the described step 4, specifically: extract five frequency bands in the frequency domain signal of each channel, be respectively δ (0.1-3Hz), θ (4-7Hz), α (8-15Hz), β(16-31Hz), γ(32-50Hz);
所述的步骤5中,多层学习超限学习机进行分类学习、识别的步骤具体为:In the described step 5, the steps of classification learning and recognition performed by the multi-layer learning extreme learning machine are as follows:
5-1.将输入转换入一个随机的特征空间;5-1. Transform the input into a random feature space;
5-2.经过K层隐藏层,每一层隐藏层进行无监督学习,输出的ΗK代表了输入数据的高层特征,此时再通过普通的超限学习机对特征进行学习和分类;5-2. After K layers of hidden layers, each layer of hidden layers carries out unsupervised learning, and the output H K represents the high-level features of the input data, and then the features are learned and classified by common extreme learning machines;
其中每一层隐藏层的输出可以表达为The output of each hidden layer can be expressed as
Hi=g(Hi-1·β),H i =g(H i-1 ·β),
其中,Ηi是第i个隐藏层的输出,Ηi-1是第i-1个隐藏层的输出,g(·)是隐藏层的激活函数,β是隐藏层的输出权重;Wherein, H i is the output of the i-th hidden layer, H i-1 is the output of the i-1 hidden layer, g ( ) is the activation function of the hidden layer, and β is the output weight of the hidden layer;
在隐藏层自学习的过程中,利用无限逼近方法设计隐藏层自编码公式In the process of hidden layer self-learning, use the infinite approximation method to design the hidden layer self-encoding formula
其中,Oβ为隐藏层输入数据X和输出数据的最小误差,Η为自编码的随机输出映射,β为隐藏层的输出权重,l1为范数优化参数。Among them, O β is the minimum error between the input data X and the output data of the hidden layer, H is the random output mapping of the self-encoder, β is the output weight of the hidden layer, and l1 is the norm optimization parameter.
所述的步骤6中,通过粒子群算法对超限学习机的分类、识别效果进行优化,具体步骤为:In the described step 6, the classification and identification effect of the extreme learning machine are optimized by the particle swarm optimization algorithm, and the specific steps are:
6-1.在D维空间中,初始化M个粒子的初始位置和速度,包括设定粒子群初始参数c1和c2,确定每个粒子的位置范围以及每个粒子的速度范围;6-1. In the D-dimensional space, initialize the initial positions and velocities of M particles, including setting the initial parameters c 1 and c 2 of the particle swarm, and determining the position range of each particle and the speed range of each particle;
6-2.定义每个粒子的最优位置和整个粒子群的全局最优位置:6-2. Define the optimal position of each particle and the global optimal position of the entire particle swarm:
pbesti=(pi1,pi2,...,piD)pbest i =(p i1 ,p i2 ,...,p iD )
gbesti=(gi1,gi2,...,giD)gbest i =(g i1 ,g i2 ,...,g iD )
其中pbest为第i个粒子的最优位置,gbest为种群的全局最优位置,i=1,2,...M;Where pbest is the optimal position of the i-th particle, gbest is the global optimal position of the population, i=1,2,...M;
6-3.利用初始化的参数建立多层学习超限学习机,根据训练样本对该模型进行训练,并计算适应度函数值;6-3. Use the initialized parameters to establish a multi-layer learning extreme learning machine, train the model according to the training samples, and calculate the fitness function value;
6-4.根据粒子的初始适应度值得到初始的个体及全局最优位置;6-4. Obtain the initial individual and global optimal positions according to the initial fitness value of the particles;
6-5.根据粒子的位置和速度迭代更新公式,对粒子状态进行更新:6-5. According to the iterative update formula of the particle's position and velocity, update the state of the particle:
xij(t+1)=xij(t)+vij(t+1)x ij (t+1)=x ij (t)+v ij (t+1)
vij(t+1)=ωvij(t)+c1r1(pbestij(t)-xij(t))+c2r2(gbestj(t)-xij(t))v ij (t+1)=ωv ij (t)+c 1 r 1 (pbest ij (t)-x ij (t))+c 2 r 2 (gbest j (t)-x ij (t))
其中,xij(t)为粒子i在第j代的位置,vij(t)为粒子i在第j代的速度,r1和r2是[0,1]的随机数;Among them, x ij (t) is the position of particle i in generation j, v ij (t) is the velocity of particle i in generation j, r 1 and r 2 are random numbers in [0,1];
6-6.计算粒子的适应度值,并更新个体及全局最优位置;6-6. Calculate the fitness value of the particle, and update the individual and global optimal positions;
6-7.保持迭代更新,直到达到最大的迭代次数或满足要求的误差条件。此时,全局最优位置即为参数的最优解;6-7. Keep updating iteratively until the maximum number of iterations is reached or the required error condition is met. At this time, the global optimal position is the optimal solution of the parameters;
6-8.以此时的参数构建多层学习超限学习机,对驾驶疲劳进行检测。6-8. Construct a multi-layer learning extreme learning machine with the parameters at this time to detect driving fatigue.
本发明有益效果如下:The beneficial effects of the present invention are as follows:
利用功率谱密度进行特征提取后,将基于PSO-HELM分类识别结果与单一HELM进行分类识别、传统的SVM分类识别结果、传统的kNN分类识别结果进行对比,结果表明,使用PSO优化后的H-HELM分类器对驾驶疲劳进行检测的正确率更高,有效的提高了分类检测识别率。After using the power spectral density for feature extraction, the classification recognition results based on PSO-HELM were compared with those of single HELM classification recognition, traditional SVM classification recognition results, and traditional kNN classification recognition results. The results show that using PSO-optimized H- The HELM classifier has a higher correct rate of detecting driving fatigue, which effectively improves the recognition rate of classification detection.
附图说明Description of drawings
图1为多层学习极限学习机原理图;Fig. 1 is a schematic diagram of a multi-layer learning extreme learning machine;
图2为PSO-HELM迭代寻优流程图。Fig. 2 is the flow chart of PSO-HELM iterative optimization.
具体实施方式:detailed description:
下面结合具体实施例对本发明作进一步说明。以下描述仅作为示范和解释,并不对本发明作任何形式上的限制。The present invention will be further described below in conjunction with specific examples. The following description is only for demonstration and explanation, and does not limit the present invention in any form.
如图1与图2所示本发明实现的步骤如下:The steps that the present invention realizes as shown in Figure 1 and Figure 2 are as follows:
步骤1、使用脑电采集设备采集驾驶脑电信号;Step 1. Use EEG acquisition equipment to collect driving EEG signals;
步骤2、对采集到的脑电信号进行预处理,包括降频、降噪;Step 2. Preprocessing the collected EEG signals, including frequency reduction and noise reduction;
步骤3、对预处理后的数据加窗进行离散傅里叶变换;Step 3, performing discrete Fourier transform on the preprocessed data window;
步骤4、根据离散傅里叶变换后的数据求功率谱密度,并根据脑电信号的频带进行频带划分,以各频带的功率作为特征;Step 4, calculate the power spectral density according to the data after the discrete Fourier transform, and divide the frequency bands according to the frequency bands of the EEG signal, and use the power of each frequency band as a feature;
步骤5、对提取的特征使用多层学习超限学习机进行分类学习、识别;Step 5, using the multi-layer learning extreme learning machine to classify and identify the extracted features;
步骤6、通过粒子群算法对超限学习机的分类、识别效果进行优化。Step 6: Optimizing the classification and recognition effects of the extreme learning machine through the particle swarm optimization algorithm.
所述的步骤4中,所述的步骤4中根据脑电信号的频带进行频带划分,具体为:在每个信道的频域信号中提取五个频带,分别为δ(0.1-3Hz)、θ(4-7Hz)、α(8-15Hz)、β(16-31Hz)、γ(32-50Hz)五个频带,此时,每个信道的信号特征维度已减少至五维。In the described step 4, in the described step 4, the frequency band is divided according to the frequency band of the EEG signal, specifically: five frequency bands are extracted from the frequency domain signal of each channel, which are respectively δ (0.1-3Hz), θ (4-7Hz), α(8-15Hz), β(16-31Hz), γ(32-50Hz) five frequency bands, at this time, the signal feature dimension of each channel has been reduced to five dimensions.
其中步骤5中,多层学习超限学习机进行分类学习、识别的步骤具体为:Among them, in step 5, the steps of classifying learning and identifying by the multi-layer learning extreme learning machine are as follows:
5-1.将输入转换入一个随机的特征空间;5-1. Transform the input into a random feature space;
5-2.经过K层隐藏层,每一层隐藏层进行无监督学习,输出的ΗK代表了输入数据的高层特征,此时再通过普通的超限学习机对特征进行学习和分类;5-2. Through K layers of hidden layers, each hidden layer carries out unsupervised learning, and the output H K represents the high-level features of the input data, and then the features are learned and classified by common extreme learning machines;
其中每一层隐藏层的输出可以表达为The output of each hidden layer can be expressed as
Hi=g(Hi-1·β),H i =g(H i-1 ·β),
其中,Ηi是第i个隐藏层的输出,Ηi-1是第i-1个隐藏层的输出,g(·)是隐藏层的激活函数,β是隐藏层的输出权重;Wherein, H i is the output of the i-th hidden layer, H i-1 is the output of the i-1 hidden layer, g ( ) is the activation function of the hidden layer, and β is the output weight of the hidden layer;
在隐藏层自学习的过程中,利用无限逼近方法设计隐藏层自编码公式In the process of hidden layer self-learning, use the infinite approximation method to design the hidden layer self-encoding formula
其中,Oβ为隐藏层输入数据X和输出数据的最小误差,Η为自编码的随机输出映射,β为隐藏层的输出权重,l1为范数优化参数。Among them, O β is the minimum error between the input data X and the output data of the hidden layer, H is the random output mapping of the self-encoder, β is the output weight of the hidden layer, and l1 is the norm optimization parameter.
所述的步骤6中,通过粒子群算法对超限学习机的分类、识别效果进行优化,具体步骤为:6-1.在D维空间中,初始化M个粒子的初始位置和速度,包括设定粒子群初始参数c1和c2,确定每个粒子的位置范围以及每个粒子的速度范围;In the described step 6, the classification and recognition effect of the extreme learning machine are optimized by the particle swarm optimization algorithm, and the specific steps are: 6-1. In the D-dimensional space, initialize the initial positions and speeds of the M particles, including setting Determine the initial parameters c 1 and c 2 of the particle swarm, determine the position range of each particle and the speed range of each particle;
6-2.定义每个粒子的最优位置和整个粒子群的全局最优位置:6-2. Define the optimal position of each particle and the global optimal position of the entire particle swarm:
pbesti=(pi1,pi2,…,piD)pbest i =(p i1 ,p i2 ,…,p iD )
gbesti=(gi1,gi2,…,giD)gbest i =(g i1 ,g i2 ,…,g iD )
其中pbest为第i个粒子的最优位置,gbest为种群的全局最优位置,i=1,2,...M;Where pbest is the optimal position of the i-th particle, gbest is the global optimal position of the population, i=1,2,...M;
6-3.利用初始化的参数建立多层学习超限学习机,根据训练样本对该模型进行训练,并计算适应度函数值;6-3. Use the initialized parameters to establish a multi-layer learning extreme learning machine, train the model according to the training samples, and calculate the fitness function value;
6-4.根据粒子的初始适应度值定义初始的个体及全局最优位置;6-4. Define the initial individual and global optimal positions according to the initial fitness value of the particles;
6-5.根据粒子的位置和速度迭代更新公式,对粒子状态进行更新:6-5. According to the iterative update formula of the particle's position and velocity, update the state of the particle:
xij(t+1)=xij(t)+vij(t+1)x ij (t+1)=x ij (t)+v ij (t+1)
vij(t+1)=ωvij(t)+c1r1(pbestij(t)-xij(t))+c2r2(gbestj(t)-xij(t))v ij (t+1)=ωv ij (t)+c 1 r 1 (pbest ij (t)-x ij (t))+c 2 r 2 (gbest j (t)-x ij (t))
其中,xij(t)为粒子i在第j代的位置,vij(t)为粒子i在第j代的速度,r1和r2是[0,1]的随机数;Among them, x ij (t) is the position of particle i in generation j, v ij (t) is the velocity of particle i in generation j, r 1 and r 2 are random numbers in [0,1];
6-6.计算粒子的适应度值,并更新pbest和gbest的值;6-6. Calculate the fitness value of the particle, and update the values of pbest and gbest;
6-7.保持迭代更新,直到达到最大的迭代次数或满足要求的误差条件。此时,全局最优位置即为参数的最优解;6-7. Keep updating iteratively until the maximum number of iterations is reached or the required error condition is met. At this time, the global optimal position is the optimal solution of the parameters;
6-8.以此时的参数构建多层学习超限学习机,对驾驶疲劳进行检测。6-8. Construct a multi-layer learning extreme learning machine with the parameters at this time to detect driving fatigue.
以480个驾驶时的脑电样本为训练数据,960个脑电样本为测试数据时,分别使用kNN,SVM,H-ELM和PSO-HELM算法进行分类,其分类结果如下表1所示。Taking 480 driving EEG samples as training data and 960 EEG samples as testing data, the kNN, SVM, H-ELM and PSO-HELM algorithms are used for classification respectively, and the classification results are shown in Table 1 below.
表1四种分类算法分类准确率对比Table 1 Comparison of classification accuracy of four classification algorithms
通过对比四种算法的分类识别率,可以明显看出H-ELM分类算法比传统的kNN算法和SVM算法有更好的分类效果,而PSO-HELM在H-ELM算法的基础上,进一步优化参数,使分类准确率提高了2.5%左右,表明PSO-HELM获取最优参数的同时有效的提高了多层学习超限学习机的性能。By comparing the classification recognition rates of the four algorithms, it can be clearly seen that the H-ELM classification algorithm has a better classification effect than the traditional kNN algorithm and SVM algorithm, and PSO-HELM further optimizes the parameters on the basis of the H-ELM algorithm , which increases the classification accuracy by about 2.5%, indicating that PSO-HELM obtains the optimal parameters and effectively improves the performance of the multi-layer learning extreme learning machine.
Claims (4)
- A kind of 1. driving fatigue detection method of the H-ELM based on particle group optimizing, it is characterised in that this method specifically include as Lower step:Step 1, the driving EEG signals using brain wave acquisition equipment 32 channels of collection;Step 2, the EEG signals collected are pre-processed, including frequency reducing, noise reduction;Step 3, discrete Fourier transform is carried out to pretreated data adding window;Step 4, power spectral density is sought according to the data after discrete Fourier transform, and frequency band is carried out according to the frequency band of EEG signals Division, feature is used as using the power of each frequency band;Step 5, the feature to extraction learn transfinite learning machine progress classification learning, identification using multilayer;Step 6, optimized by classification of the particle cluster algorithm to the learning machine that transfinites, recognition effect.
- 2. a kind of H-ELM based on particle group optimizing according to claim 1 driving fatigue detection method, its feature exist In:Frequency band division is carried out according to the frequency band of EEG signals in described step 4, is specially:In the frequency-region signal of each channel Extract five frequency bands, respectively δ (0.1-3Hz), θ (4-7Hz), α (8-15Hz), β (16-31Hz), γ (32-50Hz).
- 3. a kind of H-ELM based on particle group optimizing according to claim 1 driving fatigue detection method, its feature exist In:In described step 5, multilayer study transfinite learning machine carry out classification learning, identification the step of be specially:5-1. will be inputted and is converted into a random feature space;5-2. passes through K layer hidden layers, and each layer of hidden layer carries out unsupervised learning, the Η of outputKRepresent the high level of input data Feature, now feature is learnt and classified by the common learning machine that transfinites again;The output of each of which layer hidden layer can be expressed asHi=g (Hi-1β),Wherein, ΗiIt is the output of i-th of hidden layer, Ηi-1It is the output of the i-th -1 hidden layer, g () is the activation of hidden layer Function, β are the output weights of hidden layer;During hidden layer self study, hidden layer own coding formula is designed using unlimited approach method<mrow> <msub> <mi>O</mi> <mi>&beta;</mi> </msub> <mo>=</mo> <munder> <mi>argmin</mi> <mi>&beta;</mi> </munder> <mo>{</mo> <mo>|</mo> <mo>|</mo> <mi>H</mi> <mi>&beta;</mi> <mo>-</mo> <mi>X</mi> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mo>|</mo> <mo>|</mo> <mi>&beta;</mi> <mo>|</mo> <msub> <mo>|</mo> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> <mo>}</mo> </mrow>Wherein, OβFor hidden layer input data X and the minimal error of output data, Η is that the random output of own coding maps, and β is The output weight of hidden layer, l1 are norm optimization parameter.
- 4. a kind of H-ELM based on particle group optimizing according to claim 1 driving fatigue detection method, its feature exist In:In described step 6, optimized by classification of the particle cluster algorithm to the learning machine that transfinites, recognition effect, specific steps For:6-1. initializes the initial position and speed of M particle, including setting population initial parameter c in D dimension spaces1With c2, it is determined that each position range of particle and the velocity interval of each particle;6-2. defines the optimal location of each particle and the global optimum position of whole population:pbesti=(pi1,pi2,...,piD)gbesti=(gi1,gi2,...,giD)Wherein pbest is the optimal location of i-th particle, and gbest is the global optimum position of population, i=1,2 ... M;6-3. establishes multilayer using the parameter of initialization and learns the learning machine that transfinites, and the model is trained according to training sample, And calculate fitness function value;6-4. obtains initial individual and global optimum position according to the initial fitness value of particle;Positions and speed iteration more new formula of the 6-5. according to particle, are updated to particle state:xij(t+1)=xij(t)+vij(t+1)vij(t+1)=ω vij(t)+c1r1(pbestij(t)-xij(t))+c2r2(gbestj(t)-xij(t))Wherein, xij(t) for particle i in the position in jth generation, vij(t) for particle i in the speed in jth generation, r1And r2It is [0,1] Random number;6-6. calculates the fitness value of particle, and more new individual and global optimum position;6-7. keeps iteration renewal, until reaching the iterations of maximum or meeting desired error condition;Now, global optimum Position is the optimal solution of parameter;6-8. learns the learning machine that transfinites with parameter structure multilayer now, and driving fatigue is detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710632344.8A CN107451651A (en) | 2017-07-28 | 2017-07-28 | A kind of driving fatigue detection method of the H ELM based on particle group optimizing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710632344.8A CN107451651A (en) | 2017-07-28 | 2017-07-28 | A kind of driving fatigue detection method of the H ELM based on particle group optimizing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107451651A true CN107451651A (en) | 2017-12-08 |
Family
ID=60490342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710632344.8A Pending CN107451651A (en) | 2017-07-28 | 2017-07-28 | A kind of driving fatigue detection method of the H ELM based on particle group optimizing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107451651A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108875933A (en) * | 2018-05-08 | 2018-11-23 | 中国地质大学(武汉) | A kind of transfinite learning machine classification method and the system of unsupervised Sparse parameter study |
CN109389092A (en) * | 2018-10-22 | 2019-02-26 | 北京工业大学 | A kind of local enhancement multitask depth migration transfinites the facial video fatigue detection method of learning machine and individual robust |
CN109886097A (en) * | 2019-01-10 | 2019-06-14 | 杭州电子科技大学 | A Fatigue Driving Detection Method Based on Artificial Fish Swarm Optimization H-ELM |
CN110363152A (en) * | 2019-07-16 | 2019-10-22 | 郑州轻工业学院 | A method for identifying road conditions of lower extremity prosthetic limbs based on surface electromyography signals |
CN110384478A (en) * | 2018-04-18 | 2019-10-29 | 丰田自动车株式会社 | Status predication device and trend prediction method |
CN110464371A (en) * | 2019-08-29 | 2019-11-19 | 苏州中科先进技术研究院有限公司 | Method for detecting fatigue driving and system based on machine learning |
CN110755065A (en) * | 2019-10-14 | 2020-02-07 | 齐鲁工业大学 | Electrocardiosignal classification method and system based on PSO-ELM algorithm |
CN111488850A (en) * | 2020-04-17 | 2020-08-04 | 电子科技大学 | Neural network-based old people falling detection method |
CN118507038A (en) * | 2023-09-26 | 2024-08-16 | 南通理工学院 | A cross-modal human fatigue detection method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102274032A (en) * | 2011-05-10 | 2011-12-14 | 北京师范大学 | Driver fatigue detection system based on electroencephalographic (EEG) signals |
CN103473598A (en) * | 2013-09-17 | 2013-12-25 | 山东大学 | Extreme learning machine based on length-changing particle swarm optimization algorithm |
CN104107042A (en) * | 2014-07-10 | 2014-10-22 | 杭州电子科技大学 | Electromyographic signal gait recognition method based on particle swarm optimization and support vector machine |
CN105354646A (en) * | 2015-12-04 | 2016-02-24 | 福州大学 | Power load forecasting method for hybrid particle swarm optimization and extreme learning machine |
CN105718943A (en) * | 2016-01-19 | 2016-06-29 | 南京邮电大学 | Character selection method based on particle swarm optimization algorithm |
CN105740887A (en) * | 2016-01-26 | 2016-07-06 | 杭州电子科技大学 | Electroencephalogram feature classification method based on PSO-SVM (Particle Swarm Optimization-Support Vector Machine) |
CN106096788A (en) * | 2016-06-21 | 2016-11-09 | 重庆科技学院 | Converter steelmaking process cost control method based on PSO_ELM neutral net and system |
CN106371610A (en) * | 2016-09-23 | 2017-02-01 | 重庆金瓯科技发展有限责任公司 | Method for detecting driving fatigue based on electroencephalogram |
CN106503616A (en) * | 2016-09-20 | 2017-03-15 | 北京工业大学 | A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering |
CN106529421A (en) * | 2016-10-21 | 2017-03-22 | 燕山大学 | Emotion and fatigue detecting auxiliary driving system based on hybrid brain computer interface technology |
-
2017
- 2017-07-28 CN CN201710632344.8A patent/CN107451651A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102274032A (en) * | 2011-05-10 | 2011-12-14 | 北京师范大学 | Driver fatigue detection system based on electroencephalographic (EEG) signals |
CN103473598A (en) * | 2013-09-17 | 2013-12-25 | 山东大学 | Extreme learning machine based on length-changing particle swarm optimization algorithm |
CN104107042A (en) * | 2014-07-10 | 2014-10-22 | 杭州电子科技大学 | Electromyographic signal gait recognition method based on particle swarm optimization and support vector machine |
CN105354646A (en) * | 2015-12-04 | 2016-02-24 | 福州大学 | Power load forecasting method for hybrid particle swarm optimization and extreme learning machine |
CN105718943A (en) * | 2016-01-19 | 2016-06-29 | 南京邮电大学 | Character selection method based on particle swarm optimization algorithm |
CN105740887A (en) * | 2016-01-26 | 2016-07-06 | 杭州电子科技大学 | Electroencephalogram feature classification method based on PSO-SVM (Particle Swarm Optimization-Support Vector Machine) |
CN106096788A (en) * | 2016-06-21 | 2016-11-09 | 重庆科技学院 | Converter steelmaking process cost control method based on PSO_ELM neutral net and system |
CN106503616A (en) * | 2016-09-20 | 2017-03-15 | 北京工业大学 | A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering |
CN106371610A (en) * | 2016-09-23 | 2017-02-01 | 重庆金瓯科技发展有限责任公司 | Method for detecting driving fatigue based on electroencephalogram |
CN106529421A (en) * | 2016-10-21 | 2017-03-22 | 燕山大学 | Emotion and fatigue detecting auxiliary driving system based on hybrid brain computer interface technology |
Non-Patent Citations (1)
Title |
---|
TANG J等: "Extreme learning machine for multilayer perceptron", 《IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110384478A (en) * | 2018-04-18 | 2019-10-29 | 丰田自动车株式会社 | Status predication device and trend prediction method |
CN108875933A (en) * | 2018-05-08 | 2018-11-23 | 中国地质大学(武汉) | A kind of transfinite learning machine classification method and the system of unsupervised Sparse parameter study |
CN109389092A (en) * | 2018-10-22 | 2019-02-26 | 北京工业大学 | A kind of local enhancement multitask depth migration transfinites the facial video fatigue detection method of learning machine and individual robust |
CN109389092B (en) * | 2018-10-22 | 2023-05-02 | 北京工业大学 | Locally-enhanced multitasking depth migration overrun learning machine and individual robust facial video fatigue detection method |
CN109886097A (en) * | 2019-01-10 | 2019-06-14 | 杭州电子科技大学 | A Fatigue Driving Detection Method Based on Artificial Fish Swarm Optimization H-ELM |
CN110363152A (en) * | 2019-07-16 | 2019-10-22 | 郑州轻工业学院 | A method for identifying road conditions of lower extremity prosthetic limbs based on surface electromyography signals |
CN110363152B (en) * | 2019-07-16 | 2022-09-13 | 郑州轻工业学院 | Method for identifying road condition of lower limb prosthesis based on surface electromyographic signals |
CN110464371A (en) * | 2019-08-29 | 2019-11-19 | 苏州中科先进技术研究院有限公司 | Method for detecting fatigue driving and system based on machine learning |
CN110755065A (en) * | 2019-10-14 | 2020-02-07 | 齐鲁工业大学 | Electrocardiosignal classification method and system based on PSO-ELM algorithm |
CN111488850A (en) * | 2020-04-17 | 2020-08-04 | 电子科技大学 | Neural network-based old people falling detection method |
CN111488850B (en) * | 2020-04-17 | 2022-07-12 | 电子科技大学 | A neural network-based fall detection method for the elderly |
CN118507038A (en) * | 2023-09-26 | 2024-08-16 | 南通理工学院 | A cross-modal human fatigue detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107451651A (en) | A kind of driving fatigue detection method of the H ELM based on particle group optimizing | |
CN112577747B (en) | Rolling bearing fault diagnosis method based on space pooling network | |
CN112364779B (en) | Underwater sound target identification method based on signal processing and deep-shallow network multi-model fusion | |
CN109102005B (en) | Small sample deep learning method based on shallow model knowledge migration | |
CN107657243B (en) | A Neural Network Radar One-Dimensional Range Profile Target Recognition Method Based on Genetic Algorithm Optimization | |
CN108827605B (en) | An automatic extraction method of mechanical fault features based on improved sparse filtering | |
CN104616033A (en) | Fault diagnosis method for rolling bearing based on deep learning and SVM (Support Vector Machine) | |
CN113780242A (en) | Cross-scene underwater sound target classification method based on model transfer learning | |
CN102915445A (en) | Method for classifying hyperspectral remote sensing images of improved neural network | |
CN109859771B (en) | An acoustic scene clustering method for jointly optimizing deep transformation features and clustering process | |
CN105243398A (en) | Method of improving performance of convolutional neural network based on linear discriminant analysis criterion | |
CN103473598A (en) | Extreme learning machine based on length-changing particle swarm optimization algorithm | |
CN110399854B (en) | Rolling bearing fault classification method based on hybrid feature extraction | |
CN108509701B (en) | A Direct Intelligent Diagnosis Method for Rotating Machinery Faults Based on Vibration Signals | |
CN116894215B (en) | Gear box fault diagnosis method based on semi-supervised dynamic graph attention | |
CN106503731A (en) | A kind of based on conditional mutual information and the unsupervised feature selection approach of K means | |
CN108478216A (en) | A kind of epileptic seizure intelligent Forecasting early period based on convolutional neural networks | |
CN111967308A (en) | Online road surface unevenness identification method and system | |
CN115965057B (en) | Brain-like continuous learning fault diagnosis method for train transmission system | |
CN104156628A (en) | Ship radiation signal recognition method based on multi-kernel learning and discriminant analysis | |
CN115601583A (en) | A Deep Convolutional Network Object Recognition Method with Dual-Channel Attention Mechanism | |
CN104463251A (en) | Cancer gene expression profile data identification method based on integration of extreme learning machines | |
CN116805051A (en) | Dual convolution dynamic domain adaptive equipment fault diagnosis method based on attention mechanism | |
CN114139598A (en) | Fault diagnosis method and diagnosis framework based on deep cost sensitive convolution network | |
CN117606801A (en) | A cross-domain bearing fault diagnosis method based on multi-representation adaptive network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171208 |
|
RJ01 | Rejection of invention patent application after publication |