CN107450051A - 基于最小误差传播和优化选择的加权质心定位方法 - Google Patents

基于最小误差传播和优化选择的加权质心定位方法 Download PDF

Info

Publication number
CN107450051A
CN107450051A CN201710734229.1A CN201710734229A CN107450051A CN 107450051 A CN107450051 A CN 107450051A CN 201710734229 A CN201710734229 A CN 201710734229A CN 107450051 A CN107450051 A CN 107450051A
Authority
CN
China
Prior art keywords
mrow
distance
mass center
node
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710734229.1A
Other languages
English (en)
Inventor
蔚保国
罗清华
甘兴利
王垚
焉晓贞
崔淼
何成龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN201710734229.1A priority Critical patent/CN107450051A/zh
Publication of CN107450051A publication Critical patent/CN107450051A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于最小误差传播和优化选择的加权质心定位方法,涉及高精度的距离估计和无线定位技术领域。本发明创造性地提出了一种基于最小误差传播和优化选择的加权质心定位方法,该方法综合考虑未知节点与锚节点之间的距离以及距离的不确定度,能够优化对距离值和锚节点的选择,减小距离估计误差对定位结果的影响,从而提高加权质心定位的精度,是对现有技术的一种重要改进。

Description

基于最小误差传播和优化选择的加权质心定位方法
技术领域
本发明涉及高精度的距离估计和无线定位技术领域,特别是指一种基于最小误差传播和优化选择的加权质心定位方法。
背景技术
实际无线通信环境中,由于噪声、环境和测量误差等不良因素的影响,导致通信距离估计具有较大的误差,从而使得现有技术中的加权质心定位精度较低。
发明内容
有鉴于此,本发明提供一种基于最小误差传播和优化选择的加权质心定位方法,其能够优化对距离值和锚节点的选择,减小距离估计误差对定位结果的影响,从而提高加权质心定位的精度。
为了实现上述目的,本发明所采用的技术方案是:
一种基于最小误差传播和优化选择的加权质心定位方法,用于对建立无线网络的未知节点进行定位,包括以下步骤:
步骤一,部署I个位置已知的无线传感器作为锚节点,并将锚节点加入所述未知节点所建立的无线网络,I至少为5;
步骤二,通过未知节点依次向每个锚节点发送定位请求数据包,第i个锚节点收到定位请求数据包后,采用距离估计算法与未知节点进行多次距离估测,将多次距离估测的统计平均值作为第i个锚节点与未知节点之间的距离di_u,并将多次距离估测的统计标准差作为第i个锚节点与未知节点的距离测量不确定度di_σ;
步骤三,根据获得的未知节点与所有I个锚节点的距离{d1_u,d2_u,d3_u,…,dI_u}以及相应的不确定度{d1_σ,d2_σ,d3_σ,…,dI_σ},定义误差传播序列Q={d1_σ*d1_u,d2_σ*d2_u,d3_σ*d3_u,…,dI_σ*dI_u};
步骤四,对误差传播序列Q进行排序,得到排序后的误差传播序列Q',并取序列Q'中最小的K个值{d'1_σ*d'1_u,d'2_σ*d'2_u,d'3_σ*d'3_u,…,d'K_σ*d'K_u},从而获得该K个值所对应的距离{d'1_u,d'2_u,d'3_u,…,d'K_u};
步骤五,根据步骤四所得的K个距离{d'1_u,d'2_u,d'3_u,…,d'K_u},以及该K个距离所对应的K个锚节点的坐标信息(x'1,y'1),(x'2,y'2),(x'3,y'3),…,(x'K,y'K),依据加权质心定位算法确定所述未知节点的坐标。
可选的,用于在二维空间内对未知节点进行定位,所述K值最小为3。
可选的,用于在三维空间内对未知节点进行定位,所述K值最小为4。
可选的,所述未知节点的坐标(x,y)为:
可选的,所述锚节点的个数I为5~12个。
可选的,所述步骤四中对误差传播序列Q进行排序的方式为冒泡排序。
可选的,所述步骤二中的距离估计算法为基于SDS-TWR、RSSI、TOA、TDOA或AOA的测距方法。
可选的,所述步骤二中多次距离估测的次数为60~180次。
可选的,所述锚节点具有nanoLOC无线射频收发器。
从上面的叙述可以看出,本发明的有益效果在于:
发明人在本发明中创造性地提出了一种基于最小误差传播和优化选择的加权质心定位方法,该方法综合考虑未知节点与锚节点之间的距离以及距离的不确定度,能够优化对距离值和锚节点的选择,减小距离估计误差对定位结果的影响,从而提高加权质心定位的精度,是对现有技术的一种重要改进。
附图说明
图1为本发明实施例中基于最小误差传播和优化选择的加权质心定位方法的一种流程图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案做进一步地详细说明。
一种基于最小误差传播和优化选择的加权质心定位方法,用于对建立无线网络的未知节点进行定位,包括以下步骤:
步骤一,部署I个(I≥5)位置已知的无线传感器作为锚节点,并将锚节点加入所述未知节点所建立的无线网络;
步骤二,通过未知节点依次向每个锚节点发送定位请求数据包,第i个锚节点收到定位请求数据包后,采用距离估计算法与未知节点进行多次距离估测,将多次距离估测的统计平均值作为第i个锚节点与未知节点之间的距离di_u,并将多次距离估测的统计标准差作为第i个锚节点与未知节点的距离测量不确定度di_σ;
步骤三,根据获得的未知节点与所有I个锚节点的距离{d1_u,d2_u,d3_u,…,dI_u}以及相应的不确定度{d1_σ,d2_σ,d3_σ,…,dI_σ},定义误差传播序列Q={d1_σ*d1_u,d2_σ*d2_u,d3_σ*d3_u,…,dI_σ*dI_u},其中,di_σ*di_u表示距离di_u与该距离的测量不确定度di_σ的乘积;
步骤四,对误差传播序列Q进行排序,得到排序后的误差传播序列Q',并取序列Q'中最小的K个值{d'1_σ*d'1_u,d'2_σ*d'2_u,d'3_σ*d'3_u,…,d'K_σ*d'K_u},从而获得该K个值所对应的距离{d'1_u,d'2_u,d'3_u,…,d'K_u};
步骤五,根据步骤四所得的K个距离{d'1_u,d'2_u,d'3_u,…,d'K_u},以及该K个距离所对应的K个锚节点的坐标信息(x'1,y'1),(x'2,y'2),(x'3,y'3),…,(x'K,y'K),依据加权质心定位算法确定所述未知节点的坐标。
可选的,用于在二维空间内对未知节点进行定位,所述K值最小为3。
可选的,用于在三维空间内对未知节点进行定位,所述K值最小为4。
可选的,所述未知节点的坐标(x,y)为:
可选的,所述锚节点的个数I为5~12个。
可选的,所述步骤四中对误差传播序列Q进行排序的方式为冒泡排序。
可选的,所述步骤二中的距离估计算法为基于SDS-TWR、RSSI(接收信号强度)、TOA(到达时间位机)、TDOA(到达时间差)或AOA(到达角度)的测距方法。
可选的,所述步骤二中多次距离估测的次数为60~180次。
可选的,所述锚节点具有nanoLOC无线射频收发器。
图1所示是一个更加具体的实施方式,其包括以下步骤:
步骤一、系统中有I+1个无线传感器节点,分别为I个定位的锚节点和1个未知节点,它们都具有nanoLOC无线射频收发器,并可以采用双边对等方法测量得到任意两个节点间的距离估计值,其中,I为用户设定的正整数,且5≤I≤12,本例中I取值为10;
步骤二、系统中各个节点进行初始化,未知节点首先建立无线网络,并等待其它节点申请加入网络;
步骤三、I个锚节点初始化成功后,分别采用射频收发器扫描发现未知节点建立的无线网络,并通过射频收发器发送网络加入请求数据包,申请加入该无线网络,如果加入网络成功,则执行步骤四,否则,执行步骤三;
步骤四、初始化变量i为1,i为正整数,且1≤i≤I;
步骤五、未知节点通过其无线射频收发器向第i个锚节点发送定位请求数据包,第i个锚节点收到定位请求数据包后,采用双边对等测距方法(即SDS-TWR),通过与未知节点间的4J次数据包交互,获得第i个锚节点与未知节点间的距离di的J次测量值:{di1,di2,di3,…,dij,…,diJ},并进行统计计算,将测量值的统计均值di_u作为距离di的估计结果,将测量值的统计标准差di_σ作为距离di估计结果的不确定性,i=i+1,其中j为正整数,且1≤j≤J,J为用户设定的正整数,且60≤J≤180,本例中J取值为150;
步骤六、判断i的值是否大于I,若是,则执行步骤七,否则执行步骤五;
步骤七、系统获得未知节点与I个锚节点间的距离估计结果{d1_u,d2_u,d3_u,…,di_u,…,dI_u},以及它们对应的不确定度序列{d1_σ,d2_σ,d3_σ,…,di_σ,…,dI_σ},定义误差传播序列Q={d1_σ*d1_u,d2_σ*d2_u,d3_σ*d3_u,…,di_σ*di_u,…,dI_σ*dI_u};
步骤八、系统采用冒泡法对误差传播序列Q进行排序,得到排序后的误差传播序列Q'={d'1_σ*d'1_u,d'2_σ*d'2_u,d'3_σ*d'3_u,…,d'i_σ*d'i_u,…,d'I_σ*d'I_u},并取其中最小的K个值:{d'1_σ*d'1_u,d'2_σ*d'2_u,d'3_σ*d'3_u,…,d'k_σ*d'k_u,…,d'K_σ*d'K_u},从而确定对应的距离估计结果{d'1_u,d'2_u,d'3_u,…,d'k_u,…,d'K_u},其中K是用户设定的正整数,且3<K<I,本例中K取值为8;
步骤九、系统根据距离估计结果{d'1_u,d'2_u,d'3_u,…,d'k_u,…,d'K_u},以及对应的K个锚节点坐标的坐标信息(x'1,y'1),(x'2,y'2),(x'3,y'3),…,(x'k,y'k),…,(x'K,y'K),未知节点的坐标(x,y)按公式(1)和公式(2)进行计算:
其中k为正整数,且1≤k≤K;
步骤十、判断加权质心定位计算任务是否完成,如果是,执行步骤十一,否则,在下一个定位点上,执行步骤四;
步骤十一、结束。
该实施方式采用冒泡排序优化选择方法,能够在距离估计统计均值和统计标准差乘积的序列中选择出统计标准差最小的几个,为锚节点的优化选择提供支持。
此外,该实施方式中,采用基于最小误差传播和冒泡排序法优化选择,减小了距离估计误差对定位的影响,实现了高精度的定位。
该实施方式中的距离估计方法也可以采用基于RSSI、TOA、TDOA或AOA的其它距离估计方法。
此外,上述实施方式的方法也可以推广到三维情况下的加权质心定位。
总之,本发明创造性地提出了一种基于最小误差传播和优化选择的加权质心定位方法,该方法综合考虑未知节点与锚节点之间的距离以及距离的不确定度,能够优化对距离值和锚节点的选择,减小距离估计误差对定位结果的影响,从而提高加权质心定位的精度,是对现有技术的一种重要改进。

Claims (9)

1.一种基于最小误差传播和优化选择的加权质心定位方法,其特征在于,用于对建立无线网络的未知节点进行定位,包括以下步骤:
步骤一,部署I个位置已知的无线传感器作为锚节点,并将锚节点加入所述未知节点所建立的无线网络,I至少为5;
步骤二,通过未知节点依次向每个锚节点发送定位请求数据包,第i个锚节点收到定位请求数据包后,采用距离估计算法与未知节点进行多次距离估测,将多次距离估测的统计平均值作为第i个锚节点与未知节点之间的距离di_u,并将多次距离估测的统计标准差作为第i个锚节点与未知节点的距离测量不确定度di_σ;
步骤三,根据获得的未知节点与所有I个锚节点的距离{d1_u,d2_u,d3_u,…,dI_u}以及相应的不确定度{d1_σ,d2_σ,d3_σ,…,dI_σ},定义误差传播序列Q={d1_σ*d1_u,d2_σ*d2_u,d3_σ*d3_u,…,dI_σ*dI_u};
步骤四,对误差传播序列Q进行排序,得到排序后的误差传播序列Q',并取序列Q'中最小的K个值{d'1_σ*d'1_u,d'2_σ*d'2_u,d'3_σ*d'3_u,…,d'K_σ*d'K_u},从而获得该K个值所对应的距离{d'1_u,d'2_u,d'3_u,…,d'K_u};
步骤五,根据步骤四所得的K个距离{d'1_u,d'2_u,d'3_u,…,d'K_u},以及该K个距离所对应的K个锚节点的坐标信息(x'1,y'1),(x'2,y'2),(x'3,y'3),…,(x'K,y'K),依据加权质心定位算法确定所述未知节点的坐标。
2.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,用于在二维空间内对未知节点进行定位,所述K值最小为3。
3.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,用于在三维空间内对未知节点进行定位,所述K值最小为4。
4.根据权利要求2所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,所述未知节点的坐标(x,y)为:
<mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <mrow> <mo>(</mo> <msub> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mi>k</mi> </msub> <mo>/</mo> <msub> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> <mi>k</mi> </msub> <mo>_</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> <mi>k</mi> </msub> <mo>_</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
<mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <mrow> <mo>(</mo> <msub> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mi>k</mi> </msub> <mo>/</mo> <msub> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> <mi>k</mi> </msub> <mo>_</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <msup> <mi>d</mi> <mo>&amp;prime;</mo> </msup> <mi>k</mi> </msub> <mo>_</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow>
5.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,所述锚节点的个数I为5~12个。
6.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,所述步骤四中对误差传播序列Q进行排序的方式为冒泡排序。
7.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,所述步骤二中的距离估计算法为基于SDS-TWR、RSSI、TOA、TDOA或AOA的测距方法。
8.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,所述步骤二中多次距离估测的次数为60~180次。
9.根据权利要求1所述的基于最小误差传播和优化选择的加权质心定位方法,其特征在于,所述锚节点具有nanoLOC无线射频收发器。
CN201710734229.1A 2017-08-24 2017-08-24 基于最小误差传播和优化选择的加权质心定位方法 Pending CN107450051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710734229.1A CN107450051A (zh) 2017-08-24 2017-08-24 基于最小误差传播和优化选择的加权质心定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710734229.1A CN107450051A (zh) 2017-08-24 2017-08-24 基于最小误差传播和优化选择的加权质心定位方法

Publications (1)

Publication Number Publication Date
CN107450051A true CN107450051A (zh) 2017-12-08

Family

ID=60493734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710734229.1A Pending CN107450051A (zh) 2017-08-24 2017-08-24 基于最小误差传播和优化选择的加权质心定位方法

Country Status (1)

Country Link
CN (1) CN107450051A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966141A (zh) * 2018-06-19 2018-12-07 广州杰赛科技股份有限公司 定位方法、装置和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185272A (zh) * 2014-07-30 2014-12-03 河海大学 基于优化平均每跳距离和优选锚节点的wsn定位方法
CN105828435A (zh) * 2016-05-30 2016-08-03 天津大学 基于接收信号强度优化的距离修正加权质心定位方法
CN106412821A (zh) * 2016-06-20 2017-02-15 哈尔滨工业大学(威海) 一种基于通信距离估计及其在线评估的最小二乘定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185272A (zh) * 2014-07-30 2014-12-03 河海大学 基于优化平均每跳距离和优选锚节点的wsn定位方法
CN105828435A (zh) * 2016-05-30 2016-08-03 天津大学 基于接收信号强度优化的距离修正加权质心定位方法
CN106412821A (zh) * 2016-06-20 2017-02-15 哈尔滨工业大学(威海) 一种基于通信距离估计及其在线评估的最小二乘定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAN XIAOZHEN ET AL.: "IT-QEAS: An Improved Trilateration Localization Method through Quality Evaluation and Adaptvie Optimization Selection Strategy", 《2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN)》 *
陈燕等: "无线传感器网络加权质心定位算法改进研究", 《软件导刊》 *
陈维克等: "基于RSSI的无线传感器网络加权质心定位算法", 《武汉理工大学学报(交通科学与工程版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966141A (zh) * 2018-06-19 2018-12-07 广州杰赛科技股份有限公司 定位方法、装置和计算机可读存储介质
CN108966141B (zh) * 2018-06-19 2020-11-13 广州杰赛科技股份有限公司 定位方法、装置和计算机可读存储介质

Similar Documents

Publication Publication Date Title
EP3173807B1 (en) System and method for robust and accurate rssi based location estimation
KR101213363B1 (ko) 수신신호강도의 거리추정방식에 의거하여 4개 이상의 앵커노드를 이용한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체
CN106912105B (zh) 基于pso_bp神经网络的三维定位方法
Shi A new weighted centroid localization algorithm based on RSSI
Aparicio et al. A fusion method based on bluetooth and wlan technologies for indoor location
US20170156030A1 (en) System and method for robust and efficient tdoa based location estimation in the presence of various multipath delay
EP3749975A1 (en) Position estimation device and communication device
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
CN107484123B (zh) 一种基于集成HWKNN的WiFi室内定位方法
KR101163335B1 (ko) 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체
Caballero et al. A general gaussian-mixture approach for range-only mapping using multiple hypotheses
CN107613458B (zh) 一种tdoa条件下最优联合时间同步与定位的定位方法
CN107580295A (zh) 基于最小误差传播和优化选择的三边测量定位方法
CN108490392A (zh) 一种基于距离估计值筛选的最小二乘三维定位方法
CN107450051A (zh) 基于最小误差传播和优化选择的加权质心定位方法
CN107404707A (zh) 一种基于最小误差传播的锚节点优化选择的最小二乘定位方法
Sun et al. Successive and asymptotically efficient localization of sensor nodes in closed-form
CN103402255B (zh) 一种基于校正值误差加权的改进DV-Hop定位方法
CN107517500A (zh) 一种基于最小误差传播的锚节点优化选择的三边测量定位方法
CN107454570A (zh) 基于最小误差传播和优化选择的最大似然定位方法
CN103987063B (zh) 一种基于多点监测的消除nlos误差定位方法
CN110881192A (zh) 结合MDS的DV-Hop无线传感器网络节点定位方法
CN107479026A (zh) 一种基于最小误差传播的锚节点优化选择的加权质心定位方法
CN107367708A (zh) 一种基于最小标准差的锚节点优化选择的加权质心定位方法
KR101356856B1 (ko) 복수의 안테나를 포함한 무선 통신 장치 기반 위치 확인 시스템 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208