CN107449471A - 一种基于高掺锗光纤探头的磁场和温度同时测量装置 - Google Patents

一种基于高掺锗光纤探头的磁场和温度同时测量装置 Download PDF

Info

Publication number
CN107449471A
CN107449471A CN201710903131.4A CN201710903131A CN107449471A CN 107449471 A CN107449471 A CN 107449471A CN 201710903131 A CN201710903131 A CN 201710903131A CN 107449471 A CN107449471 A CN 107449471A
Authority
CN
China
Prior art keywords
fiber
magnetic field
highly doped
doped germanium
fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710903131.4A
Other languages
English (en)
Inventor
包立峰
董新永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201710903131.4A priority Critical patent/CN107449471A/zh
Publication of CN107449471A publication Critical patent/CN107449471A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于高掺锗光纤探头的磁场和温度同时测量装置由宽带光源,入射光纤,高掺锗光纤,出射光纤,光纤光谱仪,高掺锗光纤光栅,锥区,磁流体,石英毛细管,UV胶,磁场发生器和温度控制箱组成。创新地将极短长度的高掺锗光纤熔接在单模光纤之间,并在高掺锗光纤上直接刻写光纤光栅,进一步对该结构进行化学腐蚀增敏,利用M‑Z干涉光谱与光纤光栅对磁场和温度不同的响应直接实现了双参数的同时测量。高掺锗光纤刻写光纤光栅不需要载氢和退火,简化了制作工艺,热敏感性也比石英光纤高,这大幅缩减了探头体积。因此,该发明具有体积小巧,灵敏度高,灵活性强和制作便捷的突出优点,是一种较优的分布式磁场测量设计方案。

Description

一种基于高掺锗光纤探头的磁场和温度同时测量装置
技术领域
本发明属于光纤磁场传感技术领域,具体涉及一种基于高掺锗光纤探头的磁场和温度同时测量装置。
背景技术
光纤磁场传感技术主要致力于弱磁性目标探测,服务于实际的工程和军事应用。按照感应机理的不同,光纤磁场传感器可分为悬臂梁-光纤光栅结构的磁场传感器,基于磁致伸缩材料的光纤磁场传感器和基于磁流体的光纤磁场传感器等不同类型。
磁流体(Magnetic Fluids)是纳米磁性微粒在表面活性剂包裹下均匀弥散在载液中所形成的一种稳定的胶体溶液。当光入射到在外磁场作用下的磁流体薄膜上,磁流体的光学性质会发生变化,进而引起出射光波传输特性的变化,产生磁场调制的双折射效应、折射率可控性和热透镜效应等。
由于外界磁场可以引发磁流体折射率的变化,同时该变化也受到磁性颗粒、浓度和厚度的影响,因此,适当地选择这些参数,就可以达到满足不同测量条件的高精度、高灵敏的测量结果。目前,基于磁流体折射率可控特性的光学传感原理及应用在国内外都是一个热门的研究课题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种基于高掺锗光纤探头的磁场和温度同时测量装置。创新地将极短长度的高掺锗光纤熔接在单模光纤之间,并在高掺锗光纤上直接刻写光纤光栅,进一步对该结构进行化学腐蚀增敏,利用M-Z干涉光谱与光纤光栅对磁场和温度不同的响应直接实现了双参数的同时测量。该设计结构新颖,探头体积小巧,灵敏度高,是一种较优的实现分布式磁场“点”测量的设计方案。
本发明通过以下技术方案实现:一种基于高掺锗光纤探头的磁场和温度同时测量装置由宽带光源(1),入射光纤(2),高掺锗光纤(3),出射光纤(4),光纤光谱仪(5),高掺锗光纤光栅(6),锥区(7),磁流体(8),石英毛细管(9),UV胶(10),磁场发生器(11)和温度控制箱(12)组成;宽带光源(1)与入射光纤(2)的左端连接;入射光纤(2),高掺锗光纤(3)和出射光纤(4)依次熔接,出射光纤(4)的右端与光纤光谱仪(5)连接;高掺锗光纤(3)经倍频氩离子激光刻写形成高掺锗光纤光栅(6),再经化学腐蚀形成锥区(7),水平置于填充磁流体(8)的石英毛细管(9)的轴心处;石英毛细管(9)的两端用UV胶(10)密封,水平置于磁场发生器(11)的中部和温度控制箱(12)内。
所述的高掺锗光纤(3)的长度为1.5mm~4mm,纤芯直径为3µm,纤芯内GeO2的掺杂浓度为98%,入射光纤(2)和出射光纤(4)的纤芯直径为9µm。
所述的高掺锗光纤光栅(6)的Bragg波长为1548nm~1552nm,透射峰强度为10dB~15dB。
所述的锥区(7)的直径为30µm~60µm。
所述的磁流体(8)的密度为1.8g/cc,饱和磁化强度为220Gauss,纳米磁性颗粒的平均直径为10nm。
本发明的工作原理是:入射光在经过入射光纤(2)和高掺锗光纤(3)的熔接点时,由于纤芯失配改变了光场耦合条件,部分光会被耦合到高掺锗光纤(3)的包层中,激发出在包层中传播的包层模,另一部分光作为纤芯模继续沿纤芯向前传播;在高掺锗光纤(3)和出射光纤(4)的熔接点再次发生模式耦合,部分包层模会被重新耦合到出射光纤(4)的纤芯中,从而与纤芯模形成M-Z干涉。包层模和纤芯模的相位差如下式所示:
(1)
其中,n eff m 为纤芯模和第m阶包层模的有效折射率之差,λ为入射光波长,L为高掺锗光纤(3)的长度。
M-Z干涉光谱的强度可表示为:
(2)
其中,I co I cl 分别表示纤芯模和包层模的光强度。
可见,当光纤表面磁流体(8)的折射率跟随外界磁场强度发生变化,进而影响包层模的有效折射率和两个模式之间的相位差,产生了干涉光谱强度和波长的漂移,该信息被光纤光谱仪(12)接收和解调。由于磁流体(8)微量的折射率变化,就能引起较大的相位差改变,因此能够获得较高的灵敏度。
包层的厚度越小磁流体(8)与包层模之间的相互作用就越强烈,因此将高掺锗光纤(3)进行腐蚀获得直径更小的锥区(7),能够提升该结构对磁流体(8)折射率变化的响应,由此实现了光纤磁场传感。
另一方面,高掺锗光纤光栅(6)只能耦合满足的特定波长的光在纤芯内反向传输,在透射光谱中产生一个窄带宽的透射峰。Bragg反射条件如下式所示:
(3)
其中,n eff,core 为纤芯有效折射率,Λ为光栅周期。
高掺锗光纤光栅(6)的反射光不进入包层,因此透射峰对磁流体(8)折射率的变化不敏感。同时,高掺锗光纤(3)的热膨胀系数高于普通石英光纤,当外界温度发生变化时,高掺锗光纤光栅(6)的光栅周期改变进而透射峰发生漂移,通过光纤光谱仪(12)监测透射峰中心波长实现温度测量。
本发明的有益效果是:(1)高掺锗光纤(3)的纤芯掺杂浓度极高,自身光敏性较强,不需要进行载氢和退火操作就可以直接刻写高掺锗光纤光栅(6),简化了制作工艺;(2)高掺锗光纤光栅(6)的长度只有普通标准光纤光栅的四分之一至三分之一,热敏感性也比普通光纤光栅高,仅仅几个毫米的长度就同时制备了光纤M-Z干涉仪和光纤光栅,这大幅缩减了探头体积。因此,本发明具有体积小巧,灵敏度高,灵活性强和制作便捷的突出优点,是一种较优的实现分布式磁场“点”测量的设计方案。
附图说明
图1是一种基于高掺锗光纤探头的磁场和温度同时测量装置的装置结构示意图。
图2是一种基于高掺锗光纤探头的磁场和温度同时测量装置中高掺锗光纤探头的结构示意图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
参见附图1,一种基于高掺锗光纤探头的磁场和温度同时测量装置由宽带光源(1),入射光纤(2),高掺锗光纤(3),出射光纤(4),光纤光谱仪(5),高掺锗光纤光栅(6),锥区(7),磁流体(8),石英毛细管(9),UV胶(10),磁场发生器(11)和温度控制箱(12)组成;宽带光源(1)与入射光纤(2)的左端连接;入射光纤(2),高掺锗光纤(3)和出射光纤(4)依次熔接,出射光纤(4)的右端与光纤光谱仪(5)连接。
参见附图2,高掺锗光纤(3)经倍频氩离子激光刻写形成高掺锗光纤光栅(6),再经化学腐蚀形成锥区(7),水平置于填充磁流体(8)的石英毛细管(9)的轴心处;石英毛细管(9)的两端用UV胶(10)密封,水平置于磁场发生器(11)的中部和温度控制箱(12)内。
进一步的,高掺锗光纤(3)的长度为1.5mm~4mm,纤芯直径为3µm,纤芯内GeO2的掺杂浓度为98%,入射光纤(2)和出射光纤(4)的纤芯直径为9µm;高掺锗光纤光栅(6)的Bragg波长为1548nm~1552nm,透射峰强度为10dB~15dB;锥区(7)的直径为30µm~60µm;磁流体(8)的密度为1.8g/cc,饱和磁化强度为220Gauss,纳米磁性颗粒的平均直径为10nm。
本发明的工作原理是:入射光在经过入射光纤(2)和高掺锗光纤(3)的熔接点时,激发出在包层中传播的包层模,另一部分光作为纤芯模继续沿纤芯向前传播;在高掺锗光纤(3)和出射光纤(4)的熔接点部分包层模会被重新耦合到出射光纤(4)的纤芯中,从而与纤芯模形成M-Z干涉。当光纤表面磁流体(8)的折射率跟随外界磁场强度发生变化,进而影响包层模的有效折射率和两个模式之间的相位差,产生了干涉光谱强度和波长的漂移,实现了光纤磁场传感。另一方面,高掺锗光纤光栅(6)只能耦合满足Bragg反射条件的特定波长的光在纤芯内反向传播,对磁流体(8)折射率的变化不敏感。当外界温度发生变化时,高掺锗光纤光栅(6)的光栅周期改变,监测透射峰中心波长实现温度测量。
UV胶(10)起到密封作用,热膨胀系数也较小。磁场发生器(11)和温度控制箱(12)分别用于产生恒定的磁场和控制探头部分的温度以便对传感器进行磁场和温度响应的标定。
对光纤进行化学腐蚀的过程是:将两端分别熔接上入射光纤(2)和出射光纤(4),并且刻写高掺锗光纤光栅(6)的高掺锗光纤(3)完全浸入体积浓度40%的HF酸中,静置40分钟,在该浓度下HF酸对光纤包层的腐蚀速度约为2µm/min,同时光纤光谱仪(5)监测透射光谱防止结构损坏。取出光纤后,用大量去离子水清洁光纤表面,在干燥箱中快速干燥,置于显微镜下对锥区(7)的直径进行测定。

Claims (5)

1.一种基于高掺锗光纤探头的磁场和温度同时测量装置,其特征在于:由宽带光源(1),入射光纤(2),高掺锗光纤(3),出射光纤(4),光纤光谱仪(5),高掺锗光纤光栅(6),锥区(7),磁流体(8),石英毛细管(9),UV胶(10),磁场发生器(11)和温度控制箱(12)组成;宽带光源(1)与入射光纤(2)的左端连接;入射光纤(2),高掺锗光纤(3)和出射光纤(4)依次熔接,出射光纤(4)的右端与光纤光谱仪(5)连接;高掺锗光纤(3)经倍频氩离子激光刻写形成高掺锗光纤光栅(6),再经化学腐蚀形成锥区(7),水平置于填充磁流体(8)的石英毛细管(9)的轴心处;石英毛细管(9)的两端用UV胶(10)密封,水平置于磁场发生器(11)的中部和温度控制箱(12)内。
2.根据权利要求1所述的一种基于高掺锗光纤探头的磁场和温度同时测量装置,其特征在于:所述的高掺锗光纤(3)的长度为1.5mm~4mm,纤芯直径为3µm,纤芯内GeO2的掺杂浓度为98%,入射光纤(2)和出射光纤(4)的纤芯直径为9µm。
3.根据权利要求1所述的一种基于高掺锗光纤探头的磁场和温度同时测量装置,其特征在于:所述的高掺锗光纤光栅(6)的Bragg波长为1548nm~1552nm,透射峰强度为10dB~15dB。
4.根据权利要求1所述的一种基于高掺锗光纤探头的磁场和温度同时测量装置,其特征在于:所述的锥区(7)的直径为30µm~60µm。
5.根据权利要求1所述的一种基于高掺锗光纤探头的磁场和温度同时测量装置,其特征在于:所述的磁流体(8)的密度为1.8g/cc,饱和磁化强度为220Gauss,纳米磁性颗粒的平均直径为10nm。
CN201710903131.4A 2017-09-29 2017-09-29 一种基于高掺锗光纤探头的磁场和温度同时测量装置 Pending CN107449471A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710903131.4A CN107449471A (zh) 2017-09-29 2017-09-29 一种基于高掺锗光纤探头的磁场和温度同时测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710903131.4A CN107449471A (zh) 2017-09-29 2017-09-29 一种基于高掺锗光纤探头的磁场和温度同时测量装置

Publications (1)

Publication Number Publication Date
CN107449471A true CN107449471A (zh) 2017-12-08

Family

ID=60498458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710903131.4A Pending CN107449471A (zh) 2017-09-29 2017-09-29 一种基于高掺锗光纤探头的磁场和温度同时测量装置

Country Status (1)

Country Link
CN (1) CN107449471A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881952A (zh) * 2020-12-28 2021-06-01 国网江西省电力有限公司信息通信分公司 磁场传感器及其制备方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59670A (ja) * 1982-06-26 1984-01-05 Nec Corp 光フアイバ磁界センサ
US5706079A (en) * 1995-09-29 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy Ultra-high sensitivity transducer with chirped bragg grating relector
GB9916876D0 (en) * 1996-03-11 1999-09-22 Sensor Dynamics Ltd Apparatus for sensing one or more parameters
US6072922A (en) * 1998-06-19 2000-06-06 Science And Engineering Applications Company, Inc. Cryogenic fiber optic temperature sensor
JP2006145883A (ja) * 2004-11-19 2006-06-08 Toshiba Corp ファイバ型ブラッググレーティング素子、その製造方法、およびその固定方法
CN102411131A (zh) * 2011-07-27 2012-04-11 南开大学 基于磁流体填充的倾斜微结构光纤光栅的磁场矢量测量仪
CN103163493A (zh) * 2013-01-29 2013-06-19 中国计量学院 基于磁流体和光纤光栅的反射式磁场传感器
CN103196488A (zh) * 2013-03-12 2013-07-10 东北大学 用于磁场和温度同时检测的光子晶体光纤光栅传感方法
CN103323058A (zh) * 2013-07-12 2013-09-25 华南师范大学 一种光纤折射率和温度传感器及其测量方法
CN103823194A (zh) * 2014-03-10 2014-05-28 天津理工大学 一种基于无芯光纤和磁流体的磁场测量装置
CN103822666A (zh) * 2014-03-03 2014-05-28 中南林业科技大学 基于长周期光纤光栅和马赫-曾德干涉仪的多参量传感器
CN104020424A (zh) * 2014-05-28 2014-09-03 江苏金迪电子科技有限公司 一种全光纤型磁场传感器
CN205691494U (zh) * 2016-06-21 2016-11-16 中国计量大学 一种基于拉锥型的mzi氢气传感器
CN106289407A (zh) * 2016-08-29 2017-01-04 北京信息科技大学 一种利用纤芯气泡光纤同时测量温度和磁场的方法
CN106500740A (zh) * 2016-10-21 2017-03-15 天津理工大学 一种基于磁场和温度的双参量光纤传感器及其制备方法
CN106680740A (zh) * 2017-03-21 2017-05-17 中国计量大学 一种基于磁流体和倾斜光纤光栅的磁场强度传感系统
CN206193216U (zh) * 2016-11-28 2017-05-24 哈尔滨理工大学 基于马赫‑曾德干涉的微纳光纤磁场传感器
CN106842077A (zh) * 2017-03-21 2017-06-13 中国计量大学 一种基于镀银倾斜光纤光栅包覆磁流体的磁场传感器
CN206362915U (zh) * 2016-12-27 2017-07-28 中国计量大学 一种基于fbg构建非本征f‑p谐振腔和磁流体的磁场传感器
CN207180765U (zh) * 2017-09-29 2018-04-03 中国计量大学 一种基于高掺锗光纤探头的磁场和温度同时测量装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59670A (ja) * 1982-06-26 1984-01-05 Nec Corp 光フアイバ磁界センサ
US5706079A (en) * 1995-09-29 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy Ultra-high sensitivity transducer with chirped bragg grating relector
GB9916876D0 (en) * 1996-03-11 1999-09-22 Sensor Dynamics Ltd Apparatus for sensing one or more parameters
US6072922A (en) * 1998-06-19 2000-06-06 Science And Engineering Applications Company, Inc. Cryogenic fiber optic temperature sensor
JP2006145883A (ja) * 2004-11-19 2006-06-08 Toshiba Corp ファイバ型ブラッググレーティング素子、その製造方法、およびその固定方法
CN102411131A (zh) * 2011-07-27 2012-04-11 南开大学 基于磁流体填充的倾斜微结构光纤光栅的磁场矢量测量仪
CN103163493A (zh) * 2013-01-29 2013-06-19 中国计量学院 基于磁流体和光纤光栅的反射式磁场传感器
CN103196488A (zh) * 2013-03-12 2013-07-10 东北大学 用于磁场和温度同时检测的光子晶体光纤光栅传感方法
CN103323058A (zh) * 2013-07-12 2013-09-25 华南师范大学 一种光纤折射率和温度传感器及其测量方法
CN103822666A (zh) * 2014-03-03 2014-05-28 中南林业科技大学 基于长周期光纤光栅和马赫-曾德干涉仪的多参量传感器
CN103823194A (zh) * 2014-03-10 2014-05-28 天津理工大学 一种基于无芯光纤和磁流体的磁场测量装置
CN104020424A (zh) * 2014-05-28 2014-09-03 江苏金迪电子科技有限公司 一种全光纤型磁场传感器
CN205691494U (zh) * 2016-06-21 2016-11-16 中国计量大学 一种基于拉锥型的mzi氢气传感器
CN106289407A (zh) * 2016-08-29 2017-01-04 北京信息科技大学 一种利用纤芯气泡光纤同时测量温度和磁场的方法
CN106500740A (zh) * 2016-10-21 2017-03-15 天津理工大学 一种基于磁场和温度的双参量光纤传感器及其制备方法
CN206193216U (zh) * 2016-11-28 2017-05-24 哈尔滨理工大学 基于马赫‑曾德干涉的微纳光纤磁场传感器
CN206362915U (zh) * 2016-12-27 2017-07-28 中国计量大学 一种基于fbg构建非本征f‑p谐振腔和磁流体的磁场传感器
CN106680740A (zh) * 2017-03-21 2017-05-17 中国计量大学 一种基于磁流体和倾斜光纤光栅的磁场强度传感系统
CN106842077A (zh) * 2017-03-21 2017-06-13 中国计量大学 一种基于镀银倾斜光纤光栅包覆磁流体的磁场传感器
CN207180765U (zh) * 2017-09-29 2018-04-03 中国计量大学 一种基于高掺锗光纤探头的磁场和温度同时测量装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
FANGFANG WEI等: "Simultaneous measurement of both magnetic field strength and temperature with a microfiber coupler based fiber laser sensor", 《2017 25TH OPTICAL FIBER SENSORS CONFERENCE (OFS)》 *
JIELI等: "potential for Simultaneous Measurement of Magnetic Field and Temperature Utilizing Fiber Taper Modal Interferometer and Magnetic Fluid", 《 IEEE PHOTONICS JOURNAL》 *
JUNYING ZHANG等: "All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid", 《APPLIED OPTICS》 *
付兴虎等: "锥形三包层石英特种光纤折射率与温度传感器", 《光学学报》 *
杨菁怡: "光纤传感器在多参量测量方面的应用研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
苗银萍等: "基于磁流体填充微结构光纤的温度特性研究", 《物理学报》 *
谭策等: "基于SPR效应和缺陷耦合的光子晶体光纤高灵敏度磁场与温度传感器", 《中国激光》 *
赵勇等: "基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器", 《物理学报》 *
雷雪芹: "基于磁流体的干涉型光纤磁场传感器研究", 《万方数据知识服务平台硕士论文库》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881952A (zh) * 2020-12-28 2021-06-01 国网江西省电力有限公司信息通信分公司 磁场传感器及其制备方法

Similar Documents

Publication Publication Date Title
Sun et al. An optical fiber Fabry–Perot interferometer sensor for simultaneous measurement of relative humidity and temperature
CN101387519B (zh) 一种空芯光子晶体光纤陀螺
Mumtaz et al. Inter-cross de-modulated refractive index and temperature sensor by an etched multi-core fiber of a MZI structure
Wang et al. Comparative analyses of bi-tapered fiber Mach–Zehnder interferometer for refractive index sensing
Tong et al. Relative humidity sensor based on small up-tapered photonic crystal fiber Mach–Zehnder interferometer
CN104020424A (zh) 一种全光纤型磁场传感器
Chen et al. Review of femtosecond laser machining technologies for optical fiber microstructures fabrication
US4589725A (en) Optical-fiber directional coupler using boron oxide as interstitial material
CN112432715B (zh) 一种基于spr的d型光子晶体光纤温度传感装置及方法
Chen et al. All-fiber modal interferometer based on a joint-taper-joint fiber structure for refractive index sensing with high sensitivity
Sun et al. Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film
CN103674893B (zh) 一种用于研究磁流体折射率与温度和磁场关系的实验装置
Kong et al. Thin-core fiber taper-based multi-mode interferometer for refractive index sensing
Zeng et al. High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid
Ji et al. A high sensitivity curvature sensor based on microfiber Mach-Zehnder interferometer with tapered seven-core fiber
Jiang et al. Fiber vector magnetometer based on polarization-maintaining fiber long-period grating with ferrofluid nanoparticles
Bai et al. An in-fiber coupler for whispering-gallery-mode excitation in a microsphere resonator
CN207180765U (zh) 一种基于高掺锗光纤探头的磁场和温度同时测量装置
Zhao et al. Curvature sensor based on femtosecond laser-inscribed straight waveguide in FMF
CN107449471A (zh) 一种基于高掺锗光纤探头的磁场和温度同时测量装置
Zhang et al. A MMF-TSMF-MMF structure coated magnetic fluid for magnetic field measurement
CN109143458A (zh) 一种在线可调谐双芯光纤偏振器
Shao et al. Experimental demonstration of a compact variable single-mode fiber coupler based on microfiber
Tao et al. High-sensitivity detection of magnetic field and temperature based on magnetic fluid coated bi-tapered Mach-Zehnder interferometer
Chen et al. The fiber temperature sensor with PDMS sensitization based on the T-MFM fiber structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171208

WD01 Invention patent application deemed withdrawn after publication