CN107437831A - 用于直接电池充电的开关功率变换器 - Google Patents

用于直接电池充电的开关功率变换器 Download PDF

Info

Publication number
CN107437831A
CN107437831A CN201710374467.6A CN201710374467A CN107437831A CN 107437831 A CN107437831 A CN 107437831A CN 201710374467 A CN201710374467 A CN 201710374467A CN 107437831 A CN107437831 A CN 107437831A
Authority
CN
China
Prior art keywords
output voltage
limit
docket
output current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710374467.6A
Other languages
English (en)
Other versions
CN107437831B (zh
Inventor
K-W·金
李勇
F·史
姚建明
C·郑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialog Semiconductor Inc
Original Assignee
Dialog Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialog Semiconductor Inc filed Critical Dialog Semiconductor Inc
Publication of CN107437831A publication Critical patent/CN107437831A/zh
Application granted granted Critical
Publication of CN107437831B publication Critical patent/CN107437831B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J7/0077
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供了一种直接充电方法,其警告移动设备开关功率变换器何时操作在恒流模式中以在不使用次级侧电流感测电阻器的情况下向移动设备警告输出电流。

Description

用于直接电池充电的开关功率变换器
相关申请的交叉引用
本申请主张2016年5月25日提交的美国临时申请No.62/341,621的权益。
技术领域
本申请涉及对电池充电,并且更特别地涉及借助反激式变换器直接对电池充电的电路和技术。
背景技术
诸如蜂窝电话的电池供电设备通过允许用户具有在不连接到电力网的情况下操作设备的能力而提供自由和移动性。随着这些设备集成更多功能并且力图获得更高性能,它们消耗更多的电力并且需要更长的电池寿命。因此对电池再充电所需要的充电量增加,但是再充电时间越长,移动设备变得越不可用。因此,减少电池供电设备的充电时间增加此种设备的利用和益处。
常规上通过诸如通用串行总线(USB)线缆的数据接口线缆来对诸如蜂窝电话的移动设备充电。USB线缆具有出于安全原因而不能超过的电流限。驱动USB线缆对移动设备的电池再充电的电力适配器(例如反激式变换器)因此不能超过该电流限,这不期望地延长了充电时间。为了在存在USB线缆的电流限的情况下减少充电时间,已经开发了某些快充协议,在其中由功率变换器通过USB线缆驱动的输出电压从默认电平提高(例如,从5V至9V或12V等)以在不将电流增加到超过充电电缆限制的情况下输送较高的功率。但是,如此增加的电压需要移动设备包括DC-DC变换器以将接收的电压降低到合适的电平用于电池充电。DC-DC变换器生成的热量限制了充电时间的减少。此外,移动设备制造成本由于包括了DC-DC变换器而增加。
为了在移动设备中消除对DC-DC变换器的需要,开发了直接充电技术,在其中反激式变换器直接对移动设备的电池充电。因此移动设备在直接充电模式期间或者不包括这样的中介DC-DC开关功率变换器或者避开对其的使用。此外,现代USB电缆电流限已经增加到例如4安培,这使得直接充电提供了令人满意地减少的充电时间。对放完电的电池的直接充电一般在三个阶段上进行。在第一阶段中,电池电压低,因而直接充电在恒流模式中发生,其中用USB线缆上的最大可允许电流(例如4A)来驱动电池。放完电的电池的电压在第一阶段上逐渐上升直到其到达电池电压限(例如4.3V)。直接电池充电随后进入涉及一系列恒流模式的第二阶段,在其中电流限从USB电流限逐步连续减少到降低至最小的最小电流(例如2A)。随着电流限的每次降低,电池电压首先下降然后增加直到其到达最大电压,届时施加较低的电流限。当电流限处于第二阶段的最低限且电池电压再次到达最大电压时,直接电池充电程序在最大电压处进入恒压操作的第三阶段。在第三阶段期间电流缓慢减少直到电池被完全充电。
但是,现代智能电话常常相当昂贵,因此如果电力适配器在直接充电过程中损毁智能电话的电池的话,这将是灾难性的。就这点而言,通常必须在直接充电过程中密切监测来自电力适配器的输出电压和输出电流。可以通过反激式变换器的次级侧控制器利用模数转换器(ADC)来检测输出电压。但是检测输出电流一般需要使用与变压器的次级绕组串联的感测电阻器以使得可以通过ADC来感测输出电流并将其报告给移动设备。鉴于在直接充电中使用的高输出电流(例如4A),即便感测电阻器的非常小的电阻值(例如几十毫欧姆)也会引入很大的功率损失。
因此,在现有技术中存在对配置成在不使用次级侧感测电阻器的情况下进行直接充电的反激式变换器的需要。
发明内容
为了消除对次级侧感测电阻器的需要,提供了一种直接充电方案,在其中次级侧控制器配置为检测初级侧控制器是在恒压还是恒流模式中调节对移动设备的电池的电力输送。为简洁起见,初级侧控制器在本文也表示为初级控制器。类似地,次级侧控制器在本文也表示为次级控制器。恒压模式在由移动设备设置的输出电压进行。类似地,恒流模式在由移动设备设置的输出电流进行。充电通过诸如USB线缆或闪电线缆的数据接口线缆进行以使得移动设备可以通过数据接口线缆中的数据通道方便地将期望的输出电压限和输出电流限传送到反激式变换器中的次级控制器。但是次级控制器通过反激式变换器的变压器而与初级控制器隔离。为了使得次级控制器能够将输出电压限和输出电流限传送到初级控制器,反激式变换器包括耦接在两个控制器之间的数据通道。例如,初级侧和次级侧控制器可以通过诸如光耦合器或电容器的独立的数据通道而耦接。如本领域中已知的,次级控制器通过独立的数据通道传输电压脉冲以将期望的数据传输到初级控制器。独立的数据通道专用于数据传输以使得初级控制器使用仅初级反馈技术(primary-only feedbacktechnique)来测量输出电压
替代地,次级控制器可以使用仅初级技术来传输期望的数据。所产生的通信在本文中表示为仅初级数据通信以将其与通过专用数据通道的数据通信进行区分。在仅初级数据通信的实施例中,次级控制器通过选择性地禁止次级侧电流的整流(例如通过使输出二极管短路或通过使同步整流晶体管开关脉动)来传输数据脉冲。使输出二极管短路或关闭同步整流开关使得电压脉冲被反映到初级绕组上(并且如果包括辅助绕组的话也反映到辅助绕组上)。初级控制器感测其MOSFET功率开关晶体管的漏极电压所产生的脉动(更一般地,诸如双极结型功率开关晶体管端子的功率开关晶体管端子的脉动)以接收传输的数据。
不管移动设备的输出电压命令和输出电流命令是通过光耦合器传送还是通过仅初级数据通信传送,初级侧随后开始调节功率开关的循环以尝试首先满足期望的输出电压。如果虽然进行功率开关循环的这种调节,次级控制器检测输出电压小于期望的输出电压达阈值量,输出电压检测调节是恒流(CC)调节。如果次级侧控制器检测到期望的输出电压在距输出电压的阈值量内(正或负),次级控制器检测调节是恒压(CV)调节。
通过次级控制器所产生的恒流和恒压调节检测相当有利,原因是初级控制器利用IOUT=kcc/2*Npri/Nsec/Rs可以容易确定输出电流在期望的恒流限,其中kcc是用于恒流限的系数,Npri/Nsec是变压器初级侧与次级侧的匝数比,并且Rs是在初级侧与功率MOSFET串联的电流感测电阻。Kcc系数取决于对功率开关晶体管循环的调节,例如功率开关晶体管接通时间以及变压器重置时间。关于功率开关循环的调节,初级控制器因此具有对于是在恒压还是恒流模式中继续这种调节的选择。在恒流模式中,初级控制器随后从上面讨论的方程获知所产生的输出电流。注意,在初级侧使用电流感测电阻器是常规的,并且由于通过初级侧感测电阻器的电流减少所以不至于使功率损失担忧上升,而次级侧感测电阻器存在功率损失的担忧。由于次级侧控制器知晓恒电流限——由于其从移动设备接收该信息,所以如果输出电压低于期望的输出电压达阈值量则次级控制器能够被确保输出电流等于恒流限。次级控制器可以随后断言恒流旗标信号以警告移动设备期望的输出电流已经到达恒流限。这是相当有利的,因为直接充电需要反激式变换器的输出电压的知识,而要不是这样则将需要掠夺功率的次级侧感测电阻器。
恒流旗标信号(CC_Flag)的断言通过到移动设备的数据接口线缆中的数据通道进行,以向移动设备发信号告知输出电流等于期望的电流限(Icmd)。移动设备因此获知功率开关调节是在恒压还是恒流模式中。通过故意增加或减少输出电流限或输出电压限(Vcmd),移动设备从而能够强制进入恒流模式和离开恒流模式以实现来自反激式变换器的期望的输出电流或输出电压。
次级控制器从移动设备接收请求的电流限(Icmd)和请求的输出电压(Vcmd)。次级控制器随后可以将期望的电流限和请求的输出电压传输到在上面讨论的初级控制器。次级控制器随后检查输出电压(USB线缆的Vbus)是否达到Vcmd。如果Vbus大致等于Vcmd并且输出电流还没有到达Icmd,则次级控制器不断言恒流旗标以指示输出电流低于请求的电流限。恒流旗标的解除断言通知移动设备其可以增加其电压请求。在接收增加的电压限命令之后,次级控制器随后会将相应更新的Vcmd传输到初级控制器。初级控制器随后改变功率开关调节以使得输出电压增加。但是当输出电压小于更新的电压限时,次级控制器断言恒流旗标以向移动设备发信号告知输出电流等于电流限(反激式变换器操作在恒流模式)。当输出电压到达电压限时,恒流旗标被解除断言以向移动设备发信号告知反激式变换器操作在恒压模式中。
附图说明
图1示意了根据公开的一个方面的示例电池充电系统。
图2是用于直接电池充电方法的第一阶段的流程图。
图3示意了根据公开的一个方面的在直接电池充电的第一和第二阶段期间直接电池充电系统的波形。
图4示意了根据公开的一个方面的在直接电池充电的第一阶段期间恒压操作模式和恒流操作模式的转换。
图5示意了根据公开的一个方面的在直接电池充电的第二阶段期间恒压操作模式和恒流操作模式的转换。
图6示意了根据公开的一个方面的在直接电池充电的第三阶段期间恒压操作模式和恒流操作模式的转换。
具体实施方式
提供了一种电池充电的高效手段,在其中通过电流或电压旗标和比较系统来控制充电操作。下面的讨论将针对反激式变换器电力适配器(PA)(例如旅行适配器或USB电力供应)以及电池供电设备(BPD)(例如电话、平板或USP供电设备),但是将要理解,在不背离发明范围的情况下,所产生的技术可以广泛地应用于其他类型的PA和BPD。
图1中示出了包括反激式变换器电力适配器105和移动(客户)设备130的示例充电系统100。反激式变换器包括初级控制器120,初级控制器120调节功率开关晶体管S1的开关,功率开关晶体管S1具有连接到接收输入电压V_IN的变压器的初级绕组T1的漏极。如在仅初级反馈反激式变换器技术领域中已知的,初级控制器120感测功率开关晶体管S1的漏极电压Vdrain以感测来自反激式变换器105的输出电压VBUS。输出二极管D1防止次级绕组在初级电流流经初级绕组T1时传导电流。替代地,可以用同步整流器开关来替代输出二极管D1。
次级控制器125耦接到数据接口线缆/连接器的数据端子,例如端子D+和D-。次级控制器125因此能够从移动(客户)设备130接收数字化输出电压限命令(Vcmd)和数字化输出电流限命令(Icmd)。下面的描述将假设数据接口线缆为USB线缆,但是将要理解,本文公开的直接充电可以用诸如用于iPhone的闪电接口的其他类型的数据接口线缆来实践。USB线缆还包括输出电压端子和接地(GND)端子以使得可以通过USB线缆将输出电压和输出电流驱动到移动设备130。次级控制器125包括用于数字化输出电压的ADC 115以使得其可以通过USB线缆的D+和D-数据通道将数字化输出电压报告给移动设备130。类似地,次级控制器135通过D+和D-数据通道将恒流旗标传输给移动设备130。次级控制器130通过诸如光耦合器的独立数据通道110传输期望的输出电流限和输出电压限,但是将要理解可以利用在上面讨论的仅初级的数据通信将该数据传输到初级控制器120。
如之前指出的,初级控制器120可以在恒流模式中调节功率开关晶体管S1的循环以提供输出电流:IOUT=kcc/2*Npri/Nsec/Rs,其中,kcc为用于恒流限的系数,Npri/Nsec为变压器初级侧与次级侧的匝数比,并且Rs为在初级侧与功率开关晶体管S1串联的电流感测电阻(未示意)。Kcc系数取决于对功率开关晶体管S1的循环的调节,例如功率开关晶体管接通时间以及变压器重置时间。特别地,初级控制器120将尝试将反激式变换器的输出电压Vbus驱动到期望的输出电压限,以使得其将操作在恒压模式中。但是如果为了到达恒压操作的功率开关的循环将导致超过电流限的输出电流的话,初级控制器120转而转换到在期望电流限的恒流操作。关于恒压操作模式和恒流操作模式,次级控制器125将通过例如ADC115来监测输出电压VBUS以确定输出电压是否充分接近期望的输出电压限。例如,次级控制器125可以配置为监测输出电压是否大于期望的输出电压和保护带容限电压(Vmargin)之间的差值。如果次级控制器125确定输出电压小于该差值,则其对恒流旗标解除断言向移动设备130发信号告知反激式变换器105操作在恒流模式中。相反,如果次级控制器125确定输出电压大于输出电压和Vmargin之间的差值,则次级控制器125断言恒流旗标以向移动设备130发信号告知反激式变换器105操作在恒压模式中。次级控制器125因此不需要感测电阻器来监测来自反激式变换器的输出电流,这相比于常规直接充电技术有利地增加了效率。
尽管断言恒流旗标以发信号告知操作是在恒流还是恒压操作模式中进行是便利的,但是要注意,包括恒流旗标是可选的,原因在于移动设备130本身可以配置为确定输出电压是否充分接近期望的电压限。因而在替代实施例中,移动设备130本身可以确定反激式变换器105是操作在恒流还是恒压操作模式中。不管是进行了恒流还是恒压的确定,移动设备130随后都可以继续更改输出电流限或输出电压限以实现用于其电池的期望的充电曲线。这样的充电曲线可以根据上面讨论的三个阶段来进行。在下面将讨论在这三个阶段期间的控制。
在电池充电的第一阶段中,电池放电以使得输出电压将从放电状态爬升到某个最大电压。移动电话将因此在第一阶段期间相继地增加期望的电压Vcmd。期望的输出电流Icmd保持恒定,例如在某个输出最大值(例如4A)。对于Vcmd的给定值,反激式变换器将最初处于恒流模式直到输出电压到达Vcmd,届时进行恒压调制。移动电话通过增加Vcmd以使得反激式变换器转换到恒流调制来对到恒压调制的转换作出反应。但是随着电荷在电池中积累,最终输出电压将再次到达Vcmd的修订值,届时Vcmd被再次增加。以这种方式,在直接电池充电的第一阶段期间输出电压被相继地增加。
在直接电池充电的第一阶段期间由移动设备130对期望的输出电压限和输出电流限所产生的控制归纳在图2示出的流程图中。如图2所示,移动设备(BPD)在动作210中向次级控制器发出对期望Vbus电压(Vcmd)和期望Vbus电流(Icmd)的请求。在动作220中,次级控制器将这些值传送到初级控制器,其开始相应地调节功率开关的循环。在动作230中,次级控制器(或初级控制器)将Vbus与(Vcmd-Vmargin)比较。Vmargin用于避免由于Vbus纹波或其他畸变的不必要调整。基于在Vbus或其他分量中预测或观察到的纹波或畸变,Vmargin的值可以是静态值或动态值。将要理解,通过动作230进行的确定可以通过次级控制器、移动设备、初级控制器或能够获取Vbus信息的任何其他部件或部件的组合来完成。如果Vbus大于(Vcmd–Vmargin),次级控制器可以对恒流旗标解除断言以指示反激式变换器不再操作在恒流模式中。作为响应,移动设备在动作240中增加Vcmd,届时方法在动作210处再次继续。
如果Vbus电压小于(Vcmd–Vmargin),则次级控制器可以在动作250中断言恒流旗标。在随后的动作260中,将Vbus与(Vcmd+Vmargin)比较。如果Vbus不小于Vcmd+Vmargin,则方法返回到动作230。如果Vbus小于Vcmd+Vmargin,则移动设备在动作270中减小期望的Vcmd
一旦Vcmd到达对于直接电池充电的第一阶段的最大量,直接电池充电方法就转换到第二阶段,在第二阶段期望的输出电流Icmd被相继减小。在图3中示出在第二阶段期间用于系统100的各种波形。波形310表示输出电压Vbus。波形340表示来自反激式变换器的输出电流。恒流旗标由波形350来表示。最后,分别由波形360和370表示Vcmd和Icmd。第二阶段开始于时间T1。在这个时间Vcmd等于4.1V而Icmd在整个第二阶段期间(从时间T1到时间T7)等于4A。由于在时间T1输出电压Vbus小于Vcmd,根据恒流操作模式进行调节,以使得在时间T1断言恒流旗标。在时间T2,输出电压到达Vcmd(在该示例中,Vmargin可忽略)以使得恒流旗标被解除断言。在恒压操作模式中继续调节直到时间T3,届时移动设备响应于恒流旗标被解除断言而将Vcmd增加到4.2V。由于在时间T3输出电压小于Vcmd,恒流模式中继续调节直到时间T4,在时间T4点Vout等于Vcmd以使得恒压模式恢复而对恒流旗标解除断言。在时间T5,移动设备通过将Vcmd增加到4.3V而对恒流旗标的解除断言作出反应。以这种方式,Vcmd被相继地增加直到在时间T7,Vbus到达等于最大电压4.5V的Vcmd,从而结束第二阶段。
在图4中示出了在第二阶段期间在恒压和恒流调节之间所产生的转换。恒流操作从时间T1进行到时间T2,而恒压操作从时间T2进行到T3(Vcmd等于4.1V)。响应于在时间T3Vcmd增加到4.2V,反激式变换器将调节推回到恒流模式直到时间T4。从时间T4到时间T5,调节在Vbus等于4.2V的情况下在恒压模式中继续。但是Vcmd在时间T5增加到4.3V以使得最终到达恒流调节直到时间T6,在时间T6点Vbus等于4.3V。然后执行更多几轮对Vcmd的增加直到在时间T7到达4.5V的最大电压。
再次参考图3,从时间T7直到时间T10进行第二阶段操作。在时间T7,移动设备将Vcmd从4.5V稍微降低同时较显著地将Icmd从4A减少到3.5A。鉴于Icmd的减小,在恒流模式中继续调节直到时间T8,届时Vbus等于Vcmd。移动设备再次稍微降低Vcmd而Icmd在时间T8较多地从3.5A减少到3A。移动设备在时间T9继续降低Icmd直到在时间T10到达最小输出电流,例如2A。由于在第二阶段操作期间调节被保持在恒流模式中,从时间T7到时间T10恒流旗标被断言。然后如下面所讨论继续阶段3操作。
在图5中示出了对于第二阶段在恒流和恒压调节之间所产生的转换。在时间T7,Icmd从4A减少到3.5A而Vcmd从4.5V减少到4.475V。然后在恒流模式中继续调节直到时间T8,届时Vbus等于Vcmd。移动设备通过将Icmd减少到3A并且将Vcmd减少到4.45V来对在时间T8Vbus的增加作出反应。然后在恒流模式中继续操作直到Vbus在时间T9到达Vcmd。移动设备通过将Vcmd减少到4.425V并且将Icmd减少到2.5A而对Vbus在时间T9的增加作出反应。然后在恒流模式中继续操作直到Vbus在时间T10到达Vcmd,届时第三阶段操作开始。
第三阶段操作在恒压模式中继续,在所述恒压模式时间期间,输出电流继续下降以保持恒压调节。Icmd和Vcmd值和在第二阶段操作结束时设置的值一样并且不需要在第三阶段操作期间被移动设备改变。图6中示出了所产生的恒压/恒流转换点。在时间T10输出电流从2A继续下降直到电池被完全充电切到达直接电池充电过程的结尾。在该最后阶段输出电压保持恒定,例如在4.4V。
将要理解,替代恒流旗标还可以是使用恒压旗标。这样的旗标可以相互倒转。现在,本领域技术人员将意识到,取决于当前特定的应用,可以在本公开的材料、装置、配置和设备的使用方法中(或对它们)进行许多改进、替换和改变,而不脱离本公开的范围。鉴于这点,本公开的范围不应该被限制于本文所示出和描述的特定实施方式的范围,这是因为这些实施方式仅仅是通过其一些实例来展示,本公开的范围应该与随附权利要求及其功能性等价物的范围完全相当。

Claims (20)

1.一种利用反激式变换器对移动设备的电池直接充电的方法,所述反激式变换器不包括与变压器的次级绕组串联的感测电阻器,所述方法包括:
通过数据接口线缆中的数据通道在所述反激式变换器的次级控制器处接收用于设置第一输出电压限的期望输出电压命令和用于设置第一输出电流的期望输出电流命令;
将所述期望输出电压命令和所述期望输出电流命令从所述次级控制器传输到所述反激式变换器的初级控制器;
当所述反激式变换器的输出电压等于所述第一输出电压限时,在所述初级控制器中根据恒压模式来调节功率开关的循环;
当来自所述反激式变换器的输出电流等于所述第一输出电流限时,在所述初级控制器中根据恒流模式来调节所述功率开关的循环;
在所述次级控制器中确定所述输出电压何时指示所述初级控制器处于恒流模式;以及
向所述移动设备警告所述初级控制器处于恒流模式的确定。
2.如权利要求1所述的方法,还包括:
响应于对所述移动设备的警告,接收设置修订的输出电压限的修订的输出电压命令;以及
响应于所述修订的输出电压限来调节功率开关的循环。
3.如权利要求2所述的方法,其中,所述修订的输出电压限大于所述第一输出电压限。
4.如权利要求1所述的方法,还包括:
数字化所述输出电压以形成数字化输出电压;以及
通过所述数据接口线缆中的所述数据通道将所述数字化的输出电压从所述次级控制器传输到所述移动设备。
5.如权利要求4所述的方法,还包括:
响应于所述数字化的输出电压充分接近所述第一输出电压限,通过所述数据接口线缆中的所述数据通道将修订的输出电流限命令从所述移动设备传输到所述次级控制器,所述修订的输出电流限命令设置小于所述第一输出电流限的第二输出电流限;
将所述修订的输出电流限命令从所述次级控制器传输到所述初级控制器;以及
根据所述第二输出电流限调节功率开关的循环。
6.如权利要求1所述的方法,其中,将所述期望输出电压命令和所述期望输出电流命令从所述次级控制器传输到所述初级控制器包括通过光耦合器传输所述期望输出电压命令和所述期望输出电流命令。
7.如权利要求1所述的方法,其中,将所述期望输出电压命令和所述期望输出电流命令从所述次级控制器传输到所述初级控制器包括通过使同步整流器开关脉动来传输所述期望输出电压命令和所述期望输出电流命令。
8.如权利要求1所述的方法,其中,所述数据接口线缆是通用串行总线线缆。
9.如权利要求1所述的方法,其中,所述数据接口线缆是闪电线缆。
10.一种利用反激式变换器对移动设备的电池直接充电的方法,所述反激式变换器不包括与变压器的次级绕组串联的感测电阻器,所述方法包括:
通过数据接口线缆中的数据通道在所述反激式变换器的次级控制器处接收用于设置第一输出电压限的期望输出电压命令和用于设置第一输出电流的期望输出电流命令;
将所述期望输出电压命令和所述期望输出电流命令从所述次级控制器传输到所述反激式变换器的初级控制器;
当所述反激式变换器的输出电压等于所述第一输出电压限时,在所述初级控制器中根据恒压模式来调节功率开关的循环;
当来自所述反激式变换器的输出电流等于所述第一输出电流限时,在所述初级控制器中根据恒流模式来调节所述功率开关的循环;
数字化所述输出电压以形成数字化输出电压;
通过所述数据接口线缆中的所述数据通道将所述数字化的输出电压从所述次级控制器传输到所述移动设备;以及
在所述移动设备中确定所述数字化输出电压何时指示所述初级控制器处于恒流模式。
11.如权利要求10所述的方法,还包括:
响应于所述数字化的输出电压指示所述初级控制器处于恒流模式中,在所述次级控制器处从所述移动设备接收修订的输出电压命令设置,其中所述修订的输出命令设置修订的输出电压限;以及
响应于所述修订的输出电压限来调节功率开关的循环。
12.如权利要求11所述的方法,其中,所述修订的输出电压限大于所述第一输出电压限。
13.如权利要求11所述的方法,还包括:
响应于所述数字化的输出电压充分接近所述第一输出电压限,通过所述数据接口线缆中的所述数据通道将修订的输出电流限命令从所述移动设备传输到所述次级控制器,所述修订的输出电流限命令设置小于所述第一输出电流限的第二输出电流限;
将所述修订的输出电流限命令从所述次级控制器传输到所述初级控制器;以及
根据所述第二输出电流限调节功率开关的循环。
14.如权利要求10所述的方法,其中,将所述期望输出电压命令和所述期望输出电流命令从所述次级控制器传输到所述初级控制器包括通过光耦合器传输所述期望输出电压命令和所述期望输出电流命令。
15.如权利要求10所述的方法,其中,将所述期望输出电压命令和所述期望输出电流命令从所述次级控制器传输到所述初级控制器包括通过使同步整流器开关脉动来传输所述期望输出电压命令和所述期望输出电流命令。
16.一种反激式变换器,包括:
初级控制器,其配置为响应于输出电压等于第一输出电压限而在恒压模式中使功率开关循环并且响应于输出电流等于第一输出电流限而在恒流模式中使功率开关循环;以及
次级控制器,其配置为通过数据接口线缆中的数据通道从移动设备接收所述第一输出电压限和所述第一输出电流限并将所述第一输出电压限和所述第一输出电流限传输到所述初级控制器,其中,所述次级控制器还配置为响应于输出电压等于所述第一输出电压限而将恒流旗标信号传输到所述移动设备。
17.如权利要求16所述的反激式变换器,其中,所述次级控制器还配置为将输出电压数字化为数字化的输出电压并且通过所述数据接口缆线中的数据通道将所述数字化的输出电压传输到所述移动设备。
18.如权利要求17所述的反激式变换器,其中,所述数据接口线缆是通用串行总线线缆。
19.如权利要求17所述的反激式变换器,其中,所述数据接口线缆是闪电线缆。
20.如权利要求17所述的反激式变换器,其中,所述次级控制器还配置为通过所述数据接口缆线中的数据通道从所述移动设备接收修订的输出电流限并且将所述修订的输出电流限传输到所述初级控制器。
CN201710374467.6A 2016-05-25 2017-05-24 用于直接电池充电的开关功率变换器 Active CN107437831B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662341621P 2016-05-25 2016-05-25
US62/341,621 2016-05-25

Publications (2)

Publication Number Publication Date
CN107437831A true CN107437831A (zh) 2017-12-05
CN107437831B CN107437831B (zh) 2022-10-11

Family

ID=60418447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710374467.6A Active CN107437831B (zh) 2016-05-25 2017-05-24 用于直接电池充电的开关功率变换器

Country Status (2)

Country Link
US (1) US10541550B2 (zh)
CN (1) CN107437831B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711921A (zh) * 2018-04-16 2018-10-26 广州昂宝电子有限公司 用于电池充电的交流信号功率变换系统、充电系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081260B1 (fr) * 2018-05-16 2021-12-03 St Microelectronics Tours Sas Procede de recharge d'une batterie electrique
CN109193834B (zh) * 2018-09-13 2021-11-30 深圳市沃特沃德信息有限公司 过压保护装置、方法及系统
DE102018217445A1 (de) * 2018-10-11 2020-04-16 Dialog Semiconductor (Uk) Limited Zweistufige Batterieladevorrichtung
CN110311571B (zh) * 2019-07-26 2021-04-16 广州金升阳科技有限公司 一种用于双向变换器的双向恒流控制电路
RU194680U1 (ru) * 2019-11-08 2019-12-19 Общество с ограниченной ответственностью «НЕОКОМ» Устройство электропитания системы оповещения
JP2021145429A (ja) * 2020-03-11 2021-09-24 株式会社オートネットワーク技術研究所 電力変換装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067994A1 (en) * 2006-09-18 2008-03-20 Kesterson John W Constant Current Mode Ripple Attenuation Method In Flyback Power Supply
CN101350560A (zh) * 2007-04-23 2009-01-21 技领半导体(上海)有限公司 实现输出端电压恒定的功率变换器及方法
CN101662210A (zh) * 2009-09-29 2010-03-03 上海导向微电子有限公司 恒流恒压功率控制器及其封装、电源变换器
CN101795073A (zh) * 2008-08-05 2010-08-04 技领半导体(上海)有限公司 控制反激式转换器输出电流的方法及其相关电源转换器
CN102769383A (zh) * 2011-05-05 2012-11-07 广州昂宝电子有限公司 用于利用初级侧感测和调整进行恒流控制的系统和方法
CN104052290A (zh) * 2013-03-13 2014-09-17 戴乐格半导体公司 具有次级到初级消息传送的开关功率变换器
CN104578826A (zh) * 2014-12-31 2015-04-29 上海新进半导体制造有限公司 开关电源及在开关电源中提供恒压和恒流控制的方法
US20150280573A1 (en) * 2014-04-01 2015-10-01 Infineon Technologies Austria Ag System and Method for a Switched-Mode Power Supply
WO2015199995A1 (en) * 2014-06-26 2015-12-30 Intel Corporation Adaptive step and charge current battery charging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140254215A1 (en) * 2011-08-29 2014-09-11 Power Systems Technologies Ltd. Controller for a power converter and method of operating the same
US9331589B2 (en) * 2012-09-24 2016-05-03 Dialog Semiconductor Inc. Primary feedback switching power converter controller with intelligent determination of and response to output voltage drops due to dynamic load conditions
US8854842B2 (en) * 2012-12-11 2014-10-07 Dialog Semiconductor Inc. Digital communication link between secondary side and primary side of switching power converter
US9331587B2 (en) * 2013-01-22 2016-05-03 Power Integrations, Inc. Power converter controller with multiple power sources
WO2015054539A1 (en) * 2013-10-11 2015-04-16 Dialog Semiconductor Inc. Protocol for communication between secondary side and primary side of isolated switching power converters
US9780666B2 (en) * 2014-11-14 2017-10-03 Power Integrations, Inc. Power converter controller with stability compensation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067994A1 (en) * 2006-09-18 2008-03-20 Kesterson John W Constant Current Mode Ripple Attenuation Method In Flyback Power Supply
CN101350560A (zh) * 2007-04-23 2009-01-21 技领半导体(上海)有限公司 实现输出端电压恒定的功率变换器及方法
CN101795073A (zh) * 2008-08-05 2010-08-04 技领半导体(上海)有限公司 控制反激式转换器输出电流的方法及其相关电源转换器
CN101662210A (zh) * 2009-09-29 2010-03-03 上海导向微电子有限公司 恒流恒压功率控制器及其封装、电源变换器
CN102769383A (zh) * 2011-05-05 2012-11-07 广州昂宝电子有限公司 用于利用初级侧感测和调整进行恒流控制的系统和方法
US20120281438A1 (en) * 2011-05-05 2012-11-08 Lieyi Fang Systems and methods for constant current control with primary-side sensing and regulation in various operation modes
CN104052290A (zh) * 2013-03-13 2014-09-17 戴乐格半导体公司 具有次级到初级消息传送的开关功率变换器
US20150280573A1 (en) * 2014-04-01 2015-10-01 Infineon Technologies Austria Ag System and Method for a Switched-Mode Power Supply
WO2015199995A1 (en) * 2014-06-26 2015-12-30 Intel Corporation Adaptive step and charge current battery charging
CN104578826A (zh) * 2014-12-31 2015-04-29 上海新进半导体制造有限公司 开关电源及在开关电源中提供恒压和恒流控制的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711921A (zh) * 2018-04-16 2018-10-26 广州昂宝电子有限公司 用于电池充电的交流信号功率变换系统、充电系统及方法

Also Published As

Publication number Publication date
CN107437831B (zh) 2022-10-11
US10541550B2 (en) 2020-01-21
US20170346329A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US11239708B2 (en) In-band communication during wireless battery charging
CN107437831A (zh) 用于直接电池充电的开关功率变换器
EP3282550B1 (en) Adapter and charging control method
WO2020103401A1 (en) Out-of-band communication during wireless battery charging
US11289936B2 (en) Wireless battery charging with improved efficiency
US20190058343A1 (en) Charger system and power adapter thereof
TWI646754B (zh) 適配器和充電控制方法
US10784707B2 (en) Inductive power transfer system
CN112803610A (zh) 待充电设备、系统以及无线充电方法、存储介质
CN113872449A (zh) 具有初级侧和次级侧之间的数据通信功能的隔离开关电源转换器
US20240072574A1 (en) Wireless charging method and apparatus, and storage medium
US20220407336A1 (en) Charging control method and charging system capable of tracking maximum efficiency
JP6710106B2 (ja) 電力供給システム及び電力供給方法
US11728736B2 (en) Non-dissipative output voltage transition for an isolated switching power converter
US11996707B2 (en) Wireless power transfer power control techniques
US20230100393A1 (en) Wireless power transfer power control techniques
CN118100464A (zh) 无线电池充电期间的带内通信

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant