CN107437069B - 基于轮廓的猪只饮水行为识别方法 - Google Patents

基于轮廓的猪只饮水行为识别方法 Download PDF

Info

Publication number
CN107437069B
CN107437069B CN201710569039.9A CN201710569039A CN107437069B CN 107437069 B CN107437069 B CN 107437069B CN 201710569039 A CN201710569039 A CN 201710569039A CN 107437069 B CN107437069 B CN 107437069B
Authority
CN
China
Prior art keywords
contour
vector
points
matching
similarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710569039.9A
Other languages
English (en)
Other versions
CN107437069A (zh
Inventor
朱伟兴
谭辉磊
李新城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710569039.9A priority Critical patent/CN107437069B/zh
Publication of CN107437069A publication Critical patent/CN107437069A/zh
Application granted granted Critical
Publication of CN107437069B publication Critical patent/CN107437069B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了基于轮廓的猪只饮水行为识别方法。首先从采集的俯频视群养猪视帧分离出饮水区域,并采用二维OTSU法得到初步分割结果,对该结果进行二值化以及形态学处理,获得目标轮廓;其后采用多边形近似法得到轮廓的多边形拟合图,针对该多边形,提取具有尺度不变性和旋转不变性的二维特征量;接着通过匈牙利算法对两个多边形相关特征量进行最优匹配;最后计算两个多边形之间的相似度,完成待识别轮廓和训练样本轮廓的匹配,实现猪只的饮水行为识别。该方法为今后对群养猪采食、排便等行为的识别研究打下了基础,也为探索畜牧的行为识别方法提供了新思路。

Description

基于轮廓的猪只饮水行为识别方法
技术领域
本发明涉及机器视觉技术与模式识别技术,具体涉及一种俯视状态下群养猪监控视频中猪只饮水行为识别方法。
背景技术
随着农业改革以及现代养猪技术的逐步引入,养猪业在规模化和智能化方面都已经有所提高,探讨基于机器视觉的俯视群养猪视频序列中猪个体行为研究等已经越来越受到国内外学者的关注。对于猪个体的行为识别,目前广泛使用的方法是耳标RFID,现阶段采用计算机视觉技术监测猪只饮水行为的研究少有相关报道,考虑到机器视觉算法在猪只其他行为的应用,对于饮水行为的识别成为发展的趋势。本发明给出了一种基于轮廓的猪只饮水行为识别方法,为今后对群养猪采食、排便等行为的识别研究打下了基础。
发明内容
本发明的目的是对俯视状态下群养猪监控视频中猪只饮水行为进行识别,为此提出一种基于轮廓的猪只饮水行为识别方法。
本发明采用的技术方案是:基于轮廓的猪只饮水行为识别方法,包括以下步骤:
(1)获取俯视状态下群养猪视频,然后进行图像预处理,主要是饮水区域内猪个体目标的提取,样本库的建立;(2)将任一曲线看作为一系列点的集合,逐步减少点的数量,达到简化曲线的目的;经过多次化简,保留其中满足条件的坐标点,从而去掉了其他对曲线影响相对较弱的点,对猪个体的轮廓进行多边形拟合;(3)针对近似得到的多边形,提取具有代表性的多边形的轮廓特征;(4)计算两个多边形之间的相似度,从而完成轮廓的匹配。
进一步,所述步骤(1)具体包括改建实验用猪舍,在猪舍正上方安装拍摄俯视视频的图像采集系统,获取俯视群养猪彩色视频片段,选取符合条件的视频帧,提取饮水区域内猪个体目标和建立样本库。
进一步,所述步骤(1)中猪个体目标提取的具体方法是,对单帧图像采用改进的二维Otsu图像算法进行分割,接着对分割结果做数学形态学处理,得到饮水区域内的猪个体轮廓图像。
进一步,所述步骤(3)中多边形的轮廓特征提取,该过程是对近似多边形所保留的点建立特征量的一个过程,采用角度和距离来构建二维特征量pij=(dijij);根据其在离散空间的分布情况,将距离和角度离散化,建立任一基向量
Figure BDA0001349149740000022
的直方图hi
进一步,所述步骤(4)中基于多边形特征的轮廓匹配,首先要求基线段具有相似的描述子,利用匈牙利算法得到代价最小的最优匹配,得到轮廓基向量之间的最优匹配关系;其次匹配代价公式,当最优匹配下的基向量之间的代价值小于某个阈值T时,就认为该基向量匹配正确,最后计算待匹配轮廓上正确匹配的基向量个数和样本库中的训练样本轮廓上基向量的总数的比值,该比值越大表明相似程度越高,反之越低,从而得到两个轮廓之间的相似度,完成轮廓的匹配工作。
进一步,实验猪舍长度为4m,宽为3.5m,围栏高1m,猪舍中安放了体态、颜色、生长期各有差异的7头猪,拍摄俯视视频的摄像机安装在猪舍正上方,距离地面高度约3m,采集到包含背景的俯视状态下群养猪的RGB彩色视频。
进一步,所述步骤2的具体过程为:
将任一曲线看作为一系列点的集合,逐步减少点的数量,从而去掉了其他对曲线影响相对较弱的点,但对于一些复杂曲线,阈值t选取过大时容易出现自相交现象,阈值t选取过小时达不到多边形近似的效果,通过反复试错选取经验值;
获取曲率最大的点:在数字图像中,轮廓是一系列离散坐标点的集合,曲率可以通过插值的方法来近似定义,假设曲线方程为y=y(x),曲率定义为:
Figure BDA0001349149740000021
根据不共线3点确定一个圆的公理,多边形上任意相邻的3个顶点(pi-1,pi,pi+1)可以构成圆的一段弧,线段pi+1pi和pipi-1中垂线的交点O就是圆的圆心,过点pi且垂直于Opi的直线M即为点pi的切线,pi的一阶导数就是直线M的斜率,记作ki,同理可获取pi+1和pi-1的一阶导数;然后采用三次Hermite差值定义[pi,pi+1]的近似曲线:
Si(x)=H0(x)pi+H1(x)pi+1+H2(x)ki+H3(x)ki+1 (7)
式(7)中,Hi(x)|i=0,1,2,3是混合函数,对方程求二阶导得到:
si”(0)=-6pi+6pi+1-4ki-2ki+1 (8)
综合式(6)和(8)得到点pi处的曲率:
Figure BDA0001349149740000031
进一步,所述步骤(3)的具体过程为:
假设轮廓上有个K个保留点,分别是P1,P2,…,PK,用
Figure BDA0001349149740000032
表示轮廓有向线段的集合,其中
Figure BDA0001349149740000033
称为轮廓的基向量,对于每一条基向量,连接其中点到其他基线段中点得到的向量叫做二分向量,P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)是轮廓上的4个点,向量
Figure BDA0001349149740000034
M1和M2分别是
Figure BDA0001349149740000035
Figure BDA0001349149740000036
的中点,二分向量
Figure BDA0001349149740000037
表示为:
Figure BDA0001349149740000038
为了保持尺度不变性,在选取距离作为特征时不能选取绝对距离,而应该选取相对距离,同时又为了反映轮廓各点的分布情况,定义基向量
Figure BDA0001349149740000039
和基向量
Figure BDA00013491497400000310
的距离特征量为:
Figure BDA00013491497400000311
按照向量的夹角公式可知,
Figure BDA00013491497400000312
Figure BDA00013491497400000313
夹角θ表示为:
Figure BDA0001349149740000041
角度特征具有天然的尺度不变性和旋转不变性,但当轮廓的起始点选取不同时,夹角θ可能会是锐角或者钝角,但锐角加上钝角的和为180°,这里统一采用锐角做为特征角度,因此定义基向量
Figure BDA0001349149740000042
和基向量
Figure BDA0001349149740000043
的角度特征量为:
Figure BDA0001349149740000044
因此,基向量
Figure BDA0001349149740000045
和其他基向量
Figure BDA0001349149740000046
的特征量为pij=(dijij),j=1,2,…K-1并且j≠i,进一步得到基向量
Figure BDA0001349149740000047
的特征量为Pi={pi1,pi2,…,pi,K-1},这样一个完整的轮廓特征描述子由所有基向量之间的特征量组成,描述如下:
P={P1,P2,...,PK-1} (14)
进一步,所述步骤(4)的具体过程为:
给定两个轮廓S1和S2,它们的轮廓特征描述子分别是P={P1,P2,...,Pn1}和Q={Q1,Q2,...,Qn2},假定P和Q的对应关系用集合F表示,F的元素是一个分配(i,j),其中Pi∈P,Qj∈Q,求解P和Q的正确匹配即求解F的一个子集f,使得满足子集f中所有分配的匹配最优;设相似度为H(S1,S2),要计算其值首先需找到P和Q之间基向量的映射关系,这里根据轮廓基线段的个数,映射关系最多有
Figure BDA0001349149740000048
种组成,这些组合共同构成集合F,求解最优解即找到F的子集f:P→Q,若两个轮廓在分配f的情况下得到的相似度H(S1,S2)最大,则f就是最优分配;
对于每一个最优分配a=(i,j),这里采用x2距离统计分布来度量Pi和Qj的匹配代价,公式如下:
Figure BDA0001349149740000049
该代价值介于0到1之间,其值越小,Pi和Qj的相似程度越大,对于轮廓所有基向量的代价值Cij的集合,可以得到总的代价值,其值越小,说明两个轮廓越相似;这样求解轮廓的相似度就转为求解最优匹配f,利用匈牙利算法可以得到代价最小的最优匹配,得到轮廓基向量之间的最优匹配关系,当最优匹配下的基向量之间的代价值小于某个阈值T时,就认为该基向量匹配正确,最后计算待匹配轮廓上正确匹配的基向量个数和训练样本轮廓上基向量的总数的比值,从而得到两个轮廓之间的相似度,完成轮廓的匹配工作。
本发明的有益效果是:
传统人工观察识别猪只饮水行为的方式费时费力,且影响工作人员的健康。耳标RFID方式虽然无需人工实时观察,但是它是一种侵扰式方法,也会一定程度上干扰猪只正常生活和生长。通过机器视觉技术无应激对猪只饮水行为进行识别,有助于实现自动监控猪舍内猪只的饮水行为,并及时预警异常猪只,同时减少猪只饲养过程中的人工干扰活动,改善猪只福利,对提高规模养殖业自动化和智能化监控水平提供技术支撑。
附图说明
下面结合附图和具体实施方式对本发明做进一步详细说明:
图1是猪只饮水行为识别流程图。
图2是轮廓的多边形拟合示例图。
图3是离散点曲率定义示例图。
图4是轮廓特征提取示例图。
具体实施方式
下面结合该图,进一步说明具体涉及的各部分具体实施方式。
图1为猪只饮水行为识别流程图,饮水区域提取和轮廓提取的目的是获取该区域内猪只轮廓;轮廓多边形近似法完成轮廓的多边形拟合;轮廓特征提取采用角度和距离来构建二维特征量;相似度计算采用匈牙利算法进行最优匹配,并通过计算两个多边形之间的相似度,完成待识别轮廓和训练样本轮廓的匹配;最终可以实现基于机器视觉的猪只饮水行为识别方法。
步骤1:获取俯视状态下群养猪视频,然后进行图像预处理,主要是饮水区域内猪个体目标的提取,最后是样本库的建立。
(1)获取俯视状态下群养猪视频。
实验猪舍长度为4m,宽为3.5m,围栏高1m,猪舍中安放了体态、颜色、生长期各有差异的7头猪,拍摄俯视视频的摄像机安装在猪舍正上方,距离地面高度约3m,可以采集到包含背景的俯视状态下群养猪的RGB彩色视频。
(2)对单帧图像采用改进的二维Otsu图像算法进行分割。
选取符合条件的视频帧,对单帧图像采用改进的二维Otsu图像算法进行分割,具体过程如下:首先设原始二维灰度直方图为Ω,将纵轴和横轴分成M组,每组有N(L/M)个灰度级,其中L为图像灰度级,这样Ω分为M×M个区域,即
Ω={Ωpq|p,q=0,1,…,M-1} (1)
其中p,q分别是纵横轴的组号,每个区域有N×N个点,即区域:
Ωpq={(pN,qN),(pN+1,qN),…((p+1)N-1),(qN+1),…,((p+1)N-1)(q+1)N} (2)
其中(pN,qN)表示Ω中横坐标pN纵坐标qN的点。
Ωpq内的概率之和
Figure BDA0001349149740000064
为:
Figure BDA0001349149740000061
将每个区域Ωpq合并成一个点,建立一个新的二维直方图Ω',对Ω'使用二维Otsu算法,得到阈值(s,t):
Figure BDA0001349149740000062
由(s,t)可知道分割阈值的位置,即位于区域Ωst内。对Ωst使用二维Otsu算法:
Figure BDA0001349149740000063
最后得到原图像的分割阈值(s',t'),从而实现目标的分割。
步骤2:将任一曲线看作为一系列点的集合,逐步减少点的数量,达到简化曲线的目的;经过多次化简,保留其中满足条件的坐标点,从而去掉了其他对曲线影响相对较弱的点,对猪个体的轮廓进行多边形拟合。
图2的算法具体描述如下:
(1)计算各点的曲率,取曲率最大的点c,连接首尾两点和点c,得到两条线段ac和cb,然后分别进行处理;
(2)对于线段cb,计算这两点之间其他点到该线段的距离,取线段de为最大距离dmax,对应的轮廓点为点d;
(3)比较dmax和给定阈值t的大小关系:如果dmax小于t,该直线段cb作为曲线的近似,如果dmax大于t,则曲线被分割为cd和db两段;
(4)重复上述2步的操作,直到c点到b点之间的轮廓全部处理完毕;
(5)对于线段ac,采取上述3步的操作,最后得到完整的近似曲线。
算法原理示意如图2所示。在图2(1)中a和b之间共有坐标点6个,经过3次化简,保留其中满足条件的3个坐标点,从而去掉了其他对曲线影响相对较弱的点,算法简单、高效、直观形象。对于如图2中的简单曲线,其形态特点得到了完整的保留,但对于一些复杂曲线,阈值t选取过大时容易出现自相交现象,阈值t选取过小时达不到多边形近似的效果,因此这里选取经验值t=0.3。
在轮廓多边形近似算法第一步中,需获取曲率最大的点。在数字图像中,轮廓是一系列离散坐标点的集合,曲率可以通过插值的方法来近似定义。假设曲线方程为y=y(x),曲率定义为:
Figure BDA0001349149740000071
根据不共线3点确定一个圆的公理,多边形上任意相邻的3个顶点(pi-1,pi,pi+1)可以构成圆的一段弧,线段pi+1pi和pipi-1中垂线的交点O就是圆的圆心,过点pi且垂直于Opi的直线M即为点pi的切线,如图3所示,pi的一阶导数就是直线M的斜率,记作ki,同理可获取pi+1和pi-1的一阶导数。然后采用三次Hermite差值定义[pi,pi+1]的近似曲线:
Si(x)=H0(x)pi+H1(x)pi+1+H2(x)ki+H3(x)ki+1 (7)
式(7)中,Hi(x)|i=0,1,2,3是混合函数,对方程求二阶导得到:
si”(0)=-6pi+6pi+1-4ki-2ki+1 (8)
综合式(6)和(8)得到点pi处的曲率:
Figure BDA0001349149740000081
曲率体现了曲线的弯曲程度,值越大表明该处曲线的弯曲程度越大。对于饮水猪只头部而言,曲率的极值点也正是多边形近似时需要保留的点。
步骤3:轮廓特征提取,针对近似得到的多边形,提取具有代表性的多边形特征。
假设轮廓上有个K个保留点,分别是P1,P2,…,PK,用
Figure BDA0001349149740000082
表示轮廓有向线段的集合,其中
Figure BDA0001349149740000083
称为轮廓的基向量,如图4的黑色实线,对于每一条基向量,连接其中点到其他基线段中点得到的向量叫做二分向量,如图4的黑色虚线。P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)是轮廓上的4个点,向量
Figure BDA0001349149740000084
Figure BDA0001349149740000085
M1和M2分别是
Figure BDA0001349149740000086
Figure BDA0001349149740000087
的中点,二分向量
Figure BDA0001349149740000088
表示为:
Figure BDA0001349149740000089
为了保持尺度不变性,在选取距离作为特征时不能选取绝对距离,而应该选取相对距离,同时又为了反映轮廓各点的分布情况,定义基向量
Figure BDA00013491497400000810
和基向量
Figure BDA00013491497400000811
的距离特征量为:
Figure BDA00013491497400000812
按照向量的夹角公式可知,
Figure BDA00013491497400000813
Figure BDA00013491497400000814
夹角θ表示为:
Figure BDA00013491497400000815
角度特征具有天然的尺度不变性和旋转不变性,但当轮廓的起始点选取不同时,夹角θ可能会是锐角或者钝角,但锐角加上钝角的和为180°,这里统一采用锐角做为特征角度,因此定义基向量
Figure BDA00013491497400000816
和基向量
Figure BDA00013491497400000817
的角度特征量为:
Figure BDA0001349149740000091
因此,基向量
Figure BDA0001349149740000092
和其他基向量
Figure BDA0001349149740000093
的特征量为pij=(dijij),j=1,2,…K-1并且j≠i,进一步得到基向量
Figure BDA0001349149740000094
的特征量为Pi={pi1,pi2,…,pi,K-1},这样一个完整的轮廓特征描述子由所有基向量之间的特征量组成,描述如下:
P={P1,P2,...,PK-1} (14)
步骤4:相似度计算,通过计算轮廓特征量构成的矩阵之间的相似度识别猪只的饮水状态。
给定两个轮廓S1和S2,它们的轮廓特征描述子分别是P={P1,P2,...,Pn1}和Q={Q1,Q2,...,Qn2},假定P和Q的对应关系用集合F表示,F的元素是一个分配(i,j),其中Pi∈P,Qj∈Q,求解P和Q的正确匹配即求解F的一个子集f,使得满足子集f中所有分配的匹配最优。这里主要研究的是轮廓的匹配,因此允许P中某个基向量最多只能和Q中一个基向量达成匹配,计算轮廓间的相似度的问题就转换成了计算最优解的问题。
设相似度为H(S1,S2),要计算其值首先需找到P和Q之间基向量的映射关系,这里根据轮廓基线段的个数,映射关系最多有
Figure BDA0001349149740000095
种组成,这些组合共同构成集合F。求解最优解即找到F的子集f:P→Q,若两个轮廓在分配f的情况下得到的相似度H(S1,S2)最大,则f就是最优分配。
对于每一个最优分配a=(i,j),这里采用x2距离统计分布来度量Pi和Qj的匹配代价,公式如下:
Figure BDA0001349149740000096
该代价值介于0到1之间,其值越小,Pi和Qj的相似程度越大,对于轮廓所有基向量的代价值Cij的集合,可以得到总的代价值,其值越小,说明两个轮廓越相似。这样求解轮廓的相似度就转为求解最优匹配f,这是一个最优化问题求解,同时也是一个典型的线性分配问题。在实际应用中,通常采用匈牙利算法进行求解。利用匈牙利算法可以得到代价最小的最优匹配,得到轮廓基向量之间的最优匹配关系,当最优匹配下的基向量之间的代价值小于某个阈值T时,就认为该基向量匹配正确,最后计算待匹配轮廓上正确匹配的基向量个数和训练样本轮廓上基向量的总数的比值,从而得到两个轮廓之间的相似度,完成轮廓的匹配工作。经上述步骤,可以实现对待识猪只饮水状态的识别。
综上,本发明的一种利用机器视觉技术对俯视群养猪视频中猪只饮水行为进行识别的方法。首先从采集的俯频视群养猪视帧分离出饮水区域,并采用二维OTSU法得到初步分割结果,对该结果进行二值化以及形态学处理,获得目标轮廓;其后采用多边形近似法得到轮廓的多边形拟合图,针对该多边形,提取具有尺度不变性和旋转不变性的二维特征量;接着通过匈牙利算法对两个多边形相关特征量进行最优匹配;最后计算两个多边形之间的相似度,完成待识别轮廓和训练样本轮廓的匹配,实现猪只的饮水行为识别。该方法为今后对群养猪采食、排便等行为的识别研究打下了基础,也为探索畜牧的行为识别方法提供了新思路。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (6)

1.基于轮廓的猪只饮水行为识别方法,其特征在于,包括以下步骤:
(1)获取俯视状态下群养猪视频,然后进行图像预处理,提取饮水区域内猪个体目标,样本库的建立;(2)将任一曲线看作为一系列点的集合,逐步减少点的数量,达到简化曲线的目的;经过多次化简,保留其中满足条件的坐标点,从而去掉了其他对曲线影响相对弱的点,对猪个体的轮廓进行多边形拟合;(3)针对近似得到的多边形,提取具有代表性的多边形的轮廓特征;(4)计算两个多边形之间的相似度,从而完成轮廓的匹配;
所述步骤2的具体过程为:
将任一曲线看作为一系列点的集合,逐步减少点的数量,从而去掉了其他对曲线影响相对弱的点,但对于一些复杂曲线要通过反复试错选取经验值;
获取曲率最大的点:在数字图像中,轮廓是一系列离散坐标点的集合,曲率可以通过插值的方法来近似定义,假设曲线方程为y=y(x),曲率定义为:
Figure FDA0002376852630000011
根据不共线3点确定一个圆的公理,多边形上任意相邻的3个顶点(pi-1,pi,pi+1)构成圆的一段弧,线段pi+1pi和pipi-1中垂线的交点O就是圆的圆心,过点pi且垂直于Opi的直线M即为点pi的切线,pi的一阶导数就是直线M的斜率,记作ki,同理可获取pi+1和pi-1的一阶导数;然后采用三次Hermite差值定义[pi,pi+1]的近似曲线:
Si(x)=H0(x)pi+H1(x)pi+1+H2(x)ki+H3(x)ki+1 (7)
式(7)中,Hi(x)|i=0,1,2,3是混合函数,对方程求二阶导得到:
si”(0)=-6pi+6pi+1-4ki-2ki+1 (8)
综合式(6)和(8)得到点pi处的曲率:
Figure FDA0002376852630000012
所述步骤(3)中多边形的轮廓特征提取是对近似多边形所保留的点建立特征量的一个过程,采用角度和距离来构建二维特征量pij=(dijij);根据其在离散空间的分布情况,将距离和角度离散化,建立任一基向量
Figure FDA0002376852630000021
的直方图hi
所述步骤(3)的具体过程为:
假设轮廓上有个K个保留点,分别是P1,P2,…,PK,用
Figure FDA0002376852630000022
表示轮廓有向线段的集合,其中
Figure FDA0002376852630000023
称为轮廓的基向量,对于每一条基向量,连接其中点到其他基线段中点得到的向量叫做二分向量,P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)是轮廓上的4个点,向量
Figure FDA0002376852630000024
M1和M2分别是
Figure FDA0002376852630000025
Figure FDA0002376852630000026
的中点,二分向量
Figure FDA0002376852630000027
表示为:
Figure FDA0002376852630000028
为了保持尺度不变性,在选取距离作为特征时不能选取绝对距离,而应该选取相对距离,同时又为了反映轮廓各点的分布情况,定义基向量
Figure FDA0002376852630000029
和基向量
Figure FDA00023768526300000210
的距离特征量为:
Figure FDA00023768526300000211
按照向量的夹角公式可知,
Figure FDA00023768526300000212
Figure FDA00023768526300000213
夹角θ表示为:
Figure FDA00023768526300000214
角度特征具有天然的尺度不变性和旋转不变性,但当轮廓的起始点选取不同时,夹角θ会是锐角或者钝角,但锐角加上钝角的和为180°,这里统一采用锐角做为特征角度,因此定义基向量
Figure FDA00023768526300000215
和基向量
Figure FDA00023768526300000216
的角度特征量为:
Figure FDA00023768526300000217
因此,基向量
Figure FDA00023768526300000218
和其他基向量
Figure FDA00023768526300000219
的特征量为pij=(dijij),j=1,2,…K-1并且j≠i,进一步得到基向量
Figure FDA00023768526300000220
的特征量为Pi={pi1,pi2,…,pi,K-1},这样一个完整的轮廓特征描述子由所有基向量之间的特征量组成,描述如下:
P={P1,P2,…,PK-1} (14)。
2.根据权利要求1所述的基于轮廓的猪只饮水行为识别方法,其特征在于:所述步骤(1)具体包括改建实验用猪舍,在猪舍正上方安装拍摄俯视视频的图像采集系统,获取俯视群养猪彩色视频片段,选取符合条件的视频帧,提取饮水区域内猪个体目标和建立样本库。
3.根据权利要求1所述的基于轮廓的猪只饮水行为识别方法,其特征在于:所述步骤(1)中猪个体目标提取的具体方法是,对单帧图像采用改进的二维Otsu图像算法进行分割,接着对分割结果做数学形态学处理,得到饮水区域内的猪个体轮廓图像。
4.根据权利要求1所述的基于轮廓的猪只饮水行为识别方法,其特征在于:所述步骤(4)中基于多边形特征的轮廓匹配,首先要求基线段具有相似的描述子,利用匈牙利算法得到代价最小的最优匹配,得到轮廓基向量之间的最优匹配关系;其次匹配代价公式,当最优匹配下的基向量之间的代价值小于某个阈值T时,就认为该基向量匹配正确,最后计算待匹配轮廓上正确匹配的基向量个数和样本库中的训练样本轮廓上基向量的总数的比值,该比值越大表明相似程度越高,反之越低,从而得到两个轮廓之间的相似度,完成轮廓的匹配工作。
5.根据权利要求2所述的基于轮廓的猪只饮水行为识别方法,其特征在于:实验猪舍长度为4m,宽为3.5m,围栏高1m,猪舍中安放了体态、颜色、生长期各有差异的7头猪,拍摄俯视视频的摄像机安装在猪舍正上方,距离地面高度为3m,采集到包含背景的俯视状态下群养猪的RGB彩色视频。
6.根据权利要求1所述的基于轮廓的猪只饮水行为识别方法,其特征在于:所述步骤(4)的具体过程为:
给定两个轮廓S1和S2,它们的轮廓特征描述子分别是P={P1,P2,...,Pn1}和Q={Q1,Q2,...,Qn2},假定P和Q的对应关系用集合F表示,F的元素是一个分配(i,j),其中Pi∈P,Qj∈Q,求解P和Q的正确匹配即求解F的一个子集f,使得满足子集f中所有分配的匹配最优;设相似度为H(S1,S2),要计算其值首先需找到P和Q之间基向量的映射关系,这里根据轮廓基线段的个数,映射关系最多有
Figure FDA0002376852630000041
种组成,这些组合共同构成集合F,求解最优解即找到F的子集f:P→Q,若两个轮廓在分配f的情况下得到的相似度H(S1,S2)最大,则f就是最优分配;
对于每一个最优分配a=(i,j),这里采用x2距离统计分布来度量Pi和Qj的匹配代价,公式如下:
Figure FDA0002376852630000042
该代价值介于0到1之间,其值越小,Pi和Qj的相似程度越大,对于轮廓所有基向量的代价值Cij的集合,可以得到总的代价值,其值越小,说明两个轮廓越相似;这样求解轮廓的相似度就转为求解最优匹配f,利用匈牙利算法可以得到代价最小的最优匹配,得到轮廓基向量之间的最优匹配关系,当最优匹配下的基向量之间的代价值小于某个阈值T时,就认为该基向量匹配正确,最后计算待匹配轮廓上正确匹配的基向量个数和训练样本轮廓上基向量的总数的比值,从而得到两个轮廓之间的相似度,完成轮廓的匹配工作。
CN201710569039.9A 2017-07-13 2017-07-13 基于轮廓的猪只饮水行为识别方法 Active CN107437069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710569039.9A CN107437069B (zh) 2017-07-13 2017-07-13 基于轮廓的猪只饮水行为识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710569039.9A CN107437069B (zh) 2017-07-13 2017-07-13 基于轮廓的猪只饮水行为识别方法

Publications (2)

Publication Number Publication Date
CN107437069A CN107437069A (zh) 2017-12-05
CN107437069B true CN107437069B (zh) 2020-06-26

Family

ID=60460330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710569039.9A Active CN107437069B (zh) 2017-07-13 2017-07-13 基于轮廓的猪只饮水行为识别方法

Country Status (1)

Country Link
CN (1) CN107437069B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035277B (zh) * 2018-07-13 2022-05-27 沈阳理工大学 基于显著性轮廓特征片段的目标识别方法
CN111161214B (zh) * 2019-12-09 2023-05-05 江苏大学 一种基于双目视觉的猪只体重测量及饮水行为识别系统及方法
CN111401386B (zh) * 2020-03-30 2023-06-13 深圳前海微众银行股份有限公司 牲畜舍栏的监控方法、装置、智能巡航机器人及存储介质
CN111462153B (zh) * 2020-04-30 2023-05-19 柳州智视科技有限公司 一种基于图像轮廓Freeman链码的角点特征提取方法
CN112926474A (zh) * 2021-03-08 2021-06-08 商汤集团有限公司 一种行为识别及特征提取的方法、装置、设备及介质
CN113160332A (zh) * 2021-04-28 2021-07-23 哈尔滨理工大学 一种基于双目视觉的多目标识别与定位方法
CN113642455B (zh) * 2021-08-11 2024-05-17 云从科技集团股份有限公司 行人数量确定方法、装置以及计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311294B2 (en) * 2009-09-08 2012-11-13 Facedouble, Inc. Image classification and information retrieval over wireless digital networks and the internet
CN102510401B (zh) * 2011-11-09 2014-11-19 南京农业大学 基于机器视觉技术的群养母猪饮水行为无线监测系统及其监测方法
CN103248703B (zh) * 2013-05-16 2016-01-13 中国农业大学 生猪行为自动监测系统及方法
CN106778784B (zh) * 2016-12-20 2020-06-09 江苏大学 基于机器视觉的猪个体识别与饮水行为分析方法

Also Published As

Publication number Publication date
CN107437069A (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
CN107437069B (zh) 基于轮廓的猪只饮水行为识别方法
Fang et al. Comparative study on poultry target tracking algorithms based on a deep regression network
CN106778902B (zh) 基于深度卷积神经网络的奶牛个体识别方法
CN107016677B (zh) 一种基于fcn和cnn的云图分割方法
CN105718945B (zh) 基于分水岭和神经网络的苹果采摘机器人夜间图像识别方法
CN106778784B (zh) 基于机器视觉的猪个体识别与饮水行为分析方法
CN107563384B (zh) 基于广义Hough聚类的粘连猪的头尾识别方法
CN107437068B (zh) 基于Gabor方向直方图和猪体毛发模式的猪个体识别方法
Umamaheswari et al. Weed detection in farm crops using parallel image processing
CN116229335B (zh) 基于图像数据的畜禽养殖场环境识别方法
CN116452667B (zh) 一种基于图像处理的目标识别与定位方法
CN108364300A (zh) 蔬菜叶部病害图像分割方法、系统及计算机可读存储介质
CN109492535B (zh) 一种计算机视觉的母猪哺乳行为识别方法
CN107516315B (zh) 一种基于机器视觉的掘进机出渣监测方法
Lu et al. Extracting body surface dimensions from top-view images of pigs
Moorthy et al. Effective segmentation of green vegetation for resource-constrained real-time applications
CN116993947B (zh) 一种三维场景可视化展示方法及系统
CN108288273B (zh) 基于多尺度耦合卷积网的铁路接触网异常目标自动检测法
CN114155377A (zh) 基于人工智能和生长周期分析的禽类自适应喂食方法
CN111428677B (zh) 无人机自动监测海上网箱养殖鱼类水面环游状态的方法
Zhou et al. Method for segmentation of overlapping fish images in aquaculture
CN106611418A (zh) 一种图像分割算法
CN113780421B (zh) 基于人工智能的脑部pet影像识别方法
CN108830834A (zh) 一种爬索机器人视频缺陷信息自动提取方法
Li et al. A novel denoising autoencoder assisted segmentation algorithm for cotton field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant