CN107421752B - 一种智能汽车测试场景加速重构方法 - Google Patents

一种智能汽车测试场景加速重构方法 Download PDF

Info

Publication number
CN107421752B
CN107421752B CN201710568536.7A CN201710568536A CN107421752B CN 107421752 B CN107421752 B CN 107421752B CN 201710568536 A CN201710568536 A CN 201710568536A CN 107421752 B CN107421752 B CN 107421752B
Authority
CN
China
Prior art keywords
vehicle
test
follows
distribution
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710568536.7A
Other languages
English (en)
Other versions
CN107421752A (zh
Inventor
孙剑
徐一鸣
叶颖俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710568536.7A priority Critical patent/CN107421752B/zh
Publication of CN107421752A publication Critical patent/CN107421752A/zh
Application granted granted Critical
Publication of CN107421752B publication Critical patent/CN107421752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Computational Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Operations Research (AREA)
  • Strategic Management (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Development Economics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Educational Administration (AREA)
  • Software Systems (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种智能汽车测试场景加速重构方法,旨在提高对于智能汽车测试的效率,提取具有代表性的交通场景,减少测试次数,从而实现对智能汽车行驶安全性的全面快速测试。该方法首先基于现场交通场景采集数据,获得车辆的行驶场景参数;之后对关键参数的分布进行拟合;然后根据重要度抽样理论,使用测度指数变换(ECM)和交叉熵(CE)方法,获得用于加速测试的参数分布,基于新分布重构生成测试事件,计算高风险事件发生率,同时计算使高风险事件发生率收敛时的测试次数,计算加速测试的加速比,最终实现快速测试。

Description

一种智能汽车测试场景加速重构方法
技术领域
本发明属于智能网联汽车与智慧交通领域,更具体的说,本发明涉及一种基于重要度抽样理论,对智能汽车行驶安全性进行快速测试的方法。
背景技术
随着科学技术的发展,人工智能技术日渐成熟。作为人工智能技术在汽车和交通领域的应用,自动驾驶技术也迅速发展。自动驾驶技术在交通安全的提升和交通拥堵的防治等方面具有巨大的发展潜力,基于自动驾驶技术的智能汽车具有广阔的市场前景。目前,众多的汽车厂商及互联网科技公司都在致力于自动驾驶技术的研究,自动驾驶是汽车行业和交通运行发展的方向。
智能汽车的自动驾驶系统由环境感知、规划决策和车辆控制三大模块组成。环境感知模块通过设置在智能车上的传感器,感知车辆周边交通参与者的交通参数,同时识别标志标线、信号控制、天气条件等交通环境信息。规划决策模块通过环境感知模块得到的信息,对车辆的行驶路径进行规划,同时对车辆的加减速等行为进行决策。车辆控制模块根据规划决策模块的路径规划和行为决策,对车辆的行驶方向和速度进行控制。三大模块互相联系,层层递进,最终实现自动驾驶。本发明关注的是对智能汽车三大模块中的规划决策模块的快速测试。
智能汽车在一般道路上行驶时,需要应对各种复杂的交通环境和天气状况,如混合交通流环境、大雪及雾霾天气等。因此,智能车上路之前必须经过全面严格的测试,以保证交通安全。当前,对智能汽车驾驶水平的测试主要通过实地路测和测试场测试进行。根据美国兰德公司的研究报告,因为交通事故是极小概率事件,如果要证明智能汽车比人类驾驶安全性能高20%,约需要100辆车,一天24小时,全年无休测试225年。因此,智能汽车测试需要关注高风险场景的加速加载方法,使得车辆的规划决策“智力水平”得到快速有效的测试。
针对以上问题,本发明提出了一种基于重要度抽样理论的智能汽车快速测试方法,基于实测数据,通过对少量样本的测试,实现对大量样本安全性的评估,从而实现对智能汽车行驶安全性的快速全面测试。
发明内容
本发明要解决的技术问题是基于实测数据,通过对少量样本的测试,实现对大量样本安全性的评估。该方法首先基于现场交通场景采集数据,获得车辆的行驶场景参数;之后对关键参数的分布进行拟合;然后根据重要度抽样理论,使用测度指数变换(ECM)和交叉熵(CE)方法,获得用于加速测试的参数分布,基于新分布重构生成测试事件,计算高风险事件发生率,同时计算使高风险事件发生率收敛时的测试次数,计算加速测试的加速比,最终实现快速测试
本发明提出的智能汽车快速测试方法,所述方法基于重要度抽样理论,具体步骤如下:
(1)获取测试车辆和换道车辆的行驶数据:
(1.1)通过设置在测试车辆上的传感器,获取测试车辆的速度v,换道车辆的速度vc,两车之间的距离R的数据。
(1.2)计算每组数据中测试车辆到冲突点的时间(TTC),计算公式如下:
式中,R——测试车辆与换道车辆之间的距离;
——R的导数;
(2)拟合关键参数的分布:
(2.1)计算测试车辆与换道车辆距离R的倒数R-1,使用Pareto分布拟合R-1的分布,公式如下:
(2.2)计算测试车辆到冲突车点的时间TTC的倒数TTC-1,使用负指数分布拟合TTC-1的分布,公式如下:
(3)根据重要度抽样理论,进行加速测试:
(3.1)对R-1进行测度指数变换(ECM),使用新的密度函数代替步骤(2.1)中的分布函数公式如下:
(3.2)对TTC-1进行测度指数变换(ECM),使用新的密度函数代替步骤(2.2)中的分布函数公式如下:
(3.3)计算总体似然比,公式如下:
(3.4)使用交叉熵(CE)方法计算最优参数计算公式如下:
式中,——总体似然比;
——测试车辆与换道车辆距离倒数的分布参数;
——TTC的分布参数;
Iε(xj)——高风险事件是否发生的指示函数,计算公式如下:
(3.5)将求得的参数代入步骤(3.3),重复步骤(3.3)和(3.4),进行迭代计算使参数收敛,最终求得最优的参数
(3.6)根据实际的换道车辆的速度vc,以及拟合得到的测试车辆与换道车辆距离R的倒数的分布和TTC的倒数的分布生成事件x=[vc,R-1,TTC-1]。
(3.7)将事件x代入测试的智能汽车控制模型,计算高风险事件ε发生的概率,计算公式如下:
P(ε)=Ef*(Iε(x)L(x))
(4)计算加速比:
(4.1)逐渐增加样本容量,重复步骤(3.6)和(3.7),直至高风险事件ε发生的概率收敛。判定是否收敛的指标为相对半宽lr,计算公式如下:
γ=E(Iε(x))
zα=Φ-1(1-α/2)
式中,lα——半宽;
γ——高风险事件发生的概率;
——样本标准差;
Φ-1——正态分布N(0,1)的逆累积分布函数;
α——置信度;
n——样本容量;
在80%的置信度下,认为相对半宽lr满足lr<0.2时,高风险事件ε发生的概率收敛。记录实现收敛时的测试次数Nacc
(4.2)使用实际的vc,R-1,TTC-1,计算实际事件xemp=[vc,R-1,TTC-1]的高风险事件ε发生的概率收敛时的测试次数Nemp
(4.3)计算加速比,计算公式如下:
Demp=rcNemp
τc=min(t|R(t)<Rε)
式中,Demp——实际数据车辆行驶的里程数;
rc——现实中发生一次测试事件车辆行驶的里程数;
Dacc——加速测试里程数;
tc——测试事件发生的时刻;
τc——第n次测试中车辆行驶的时间;
Rε——高风险事件发生的距离阈值;
与现有技术相比,本发明的技术方案具有以下有益效果:
1.本发明提出的智能汽车快速测试方法,应用了重要度抽样理论和交叉熵方法,通过少量样本的测试,使高风险事件发生率收敛,达到与大量样本测试相同的高风险事件发生率,显著提高了测试效率,同时保证了测试的可信度。
2.本发明提出的智能汽车快速测试方法,可以通过对实测数据的分析,生成最具有代表性和最需要测试的交通场景,提供给其他的测试平台,如驾驶模拟器、测试场测试和硬件在环测试等,缩短测试周期,减少时间和资金的消耗,对全面快速地测试智能汽车的安全性具有重要意义。
附图说明
图1本发明提出的智能汽车快速测试方法流程图。
图2本发明实施例中的临近区域示意图。
图3本发明实施例中相对半宽随测试次数的变化曲线图。
具体实施方式
下面结合附图和实施例,对本发明的技术方案作详细说明。本实施例在以本发明技术方案为前提下进行实施,但本发明的保护范围不限于下述的实施例。
实施例1
利用上海市自然驾驶数据,测试本发明在对车辆换道行为测试的加速效果,包括以下详细步骤:
(1)提取测试车辆和换道车辆的行驶数据:
定义换道车辆越过车道中心线的时刻为换道时刻。通过上海市自然驾驶车辆采集的数据,提取换道车辆插入自然驾驶车辆所在车道时刻自然驾驶车辆和换道车辆的行驶数据,包括后车速度v、前车速度vc和前后车距离R,并计算对应的TTC。有效数据需要满足v∈(2m/s,40m/s),vc∈(2m/s,40m/s),R∈(0.1m,75m)。通过数据筛选处理,共提取32104条有效数据。
(2)拟合关键参数的分布:
(2.1)计算前后车距离的倒数R-1,使用Pareto分布拟合R-1的分布,公式如下:
参数的取值为:
(2.2)计算TTC的倒数TTC-1,使用负指数分布拟合TTC-1的分布,公式如下:
参数的取值为:
(3)对关键参数进行ECM变换:
使用新的密度函数代替前后车距离倒数R-1的原分布函数公式如下:
参数的取值为:
使用新的密度函数代替TTC的原分布函数公式如下:
参数的取值为:
则总体似然比为:
(4)定义测试模型及高风险事件:
本实施例中,测试的场景为换道车辆插入测试车辆所在车道时,测试车辆行驶的安全性,测试模型为智能汽车的自动紧急制动(AEB)模型。AEB模型的公式为:
tHW=R/v
模型参数的取值为:
本实施例中,定义的高风险事件为,换道车辆插入测试车辆所在车道后,测试车辆出现在换道车辆的临近区域内。邻近区域定义为,换道车辆前保险杠向前4英尺到后保险杠向后30英尺的区域。如图2所示。
(5)使用CE方法计算最优参数:
最优参数的计算公式如下:
为求得最优参数的值,需要进行迭代计算。第一次迭代的参数取值为:
使用300条实际数据,进行10次迭代计算,参数最终收敛,最优参数的取值为:
(6)进行加速测试,计算高风险事件发生率达到收敛时的测试次数:
根据实际的换道车辆的速度vc,以及拟合得到的测试车辆与换道车辆距离R的倒数的分布和TTC的倒数的分布生成样本x=[vc,R-1,TTC-1]。
逐渐增加样本容量,计算高风险事件ε发生的概率,计算公式如下:
同时计算该样本容量下的相对半宽lr,计算公式如下:
zα=Φ-1(1-α/2
式中,lα——半宽;
γ——高风险事件发生的概率;
——样本标准差;
Φ-1——正态分布N(0,1)的逆累积分布函数;
α——置信度;
n——样本容量;
计算结果显示,在测试次数即样本容量大于435时,相对半宽lr满足lr<0.2,高风险事件发生率达到收敛,即Nacc=435。同理,计算使用实际数据时,高风险事件发生率达到收敛的测试次数,求得Nnature=10391。上述计算结果如图3所示。
(7)计算加速比:
加速比的计算公式如下:
τc=min(t|R(t)<Rε)
式中,Demp——实际数据车辆行驶的里程数;
rc——现实中发生一次测试事件车辆行驶的里程数;
Dacc——加速测试里程数;
tc——测试事件发生的时刻;
τc——第n次测试中车辆行驶的时间;
Rε——高风险事件发生的距离阈值;
计算得到Dacc=33.45,Dnature=7.94×104,因此加速比为:

Claims (1)

1.一种智能汽车测试场景加速重构方法,其特征在于具体步骤如下:
(1)首先基于现场交通场景采集数据,获取测试车辆和换道车辆的行驶数据:
(1.1)通过设置在测试车辆上的传感器,提取换道车辆插入测试车辆所在车道时刻测试车辆和换道车辆的行驶数据,获得测试车辆的速度v,换道车辆的速度vc,测试车辆和换道车辆两车之间的距离R的数据;
(1.2)计算每组数据中测试车辆到冲突点的时间TTC,计算公式如下:
式中,R——测试车辆与换道车辆之间的距离;
——R的导数;
(2)拟合关键参数的分布:
(2.1)计算测试车辆与换道车辆距离R的倒数R-1,使用Pareto分布拟合R-1的分布,公式如下:
(2.2)计算测试车辆到冲突点的时间TTC的倒数TTC-1,使用负指数分布拟合TTC-1的分布,公式如下:
(3)根据重要度抽样理论,进行加速测试:
(3.1)对倒数R-1进行测度指数变换ECM,使用新的密度函数代替步骤(2.1)中的分布函数公式如下:
(3.2)对TTC-1进行测度指数变换ECM,使用新的密度函数代替步骤(2.2)中的分布函数公式如下:
(3.3)计算总体似然比,公式如下:
(3.4)使用交叉熵CE方法计算最优参数计算公式如下:
式中,——总体似然比;
——测试车辆与换道车辆距离倒数的分布参数;
——TTC的分布参数;
Iε(xj)——高风险事件是否发生的指示函数,计算公式如下:
(3.5)将求得的参数代入步骤(3.3),重复步骤(3.3)和(3.4),进行迭代计算使参数收敛,最终求得最优的参数
(3.6)根据实际的换道车辆的速度vc,以及拟合得到的测试车辆与换道车辆距离R的倒数的分布和TTC的倒数的分布生成事件x=[vc,R-1,TTC-1];
(3.7)将事件x代入测试的智能汽车控制模型,计算高风险事件ε发生的概率,计算公式如下:
P(ε)=Ef*(Iε(x)L(x))
(4)计算加速比:
(4.1)逐渐增加样本容量,重复步骤(3.6)和(3.7),直至高风险事件ε发生的概率收敛,判定是否收敛的指标为相对半宽lr,计算公式如下:
γ=E(Iε(x))
zα=Φ-1(1-α/2)
式中,lα——半宽;
γ——高风险事件发生的概率;
——样本标准差;
Φ-1——正态分布N(0,1)的逆累积分布函数;
α——置信度;
n——样本容量;
在80%的置信度下,认为相对半宽lr满足lr<0.2时,高风险事件ε发生的概率收敛,记录实现收敛时的测试次数Nacc
(4.2)使用实际的vc,R-1,TTC-1,计算实际事件xemp=[vc,R-1,TTC-1]的高风险事件ε发生的概率收敛时的测试次数Nemp
(4.3)计算加速比,计算公式如下:
Demp=rcNemp
τc=min(t|R(t)<Rε)
式中,Demp——实际数据车辆行驶的里程数;
rc——现实中发生一次测试事件车辆行驶的里程数;
Dacc ——加速测试里程数;
tc——测试事件发生的时刻;
τc——第n次测试中车辆行驶的时间;
Rε——高风险事件发生的距离阈值。
CN201710568536.7A 2017-07-13 2017-07-13 一种智能汽车测试场景加速重构方法 Active CN107421752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710568536.7A CN107421752B (zh) 2017-07-13 2017-07-13 一种智能汽车测试场景加速重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710568536.7A CN107421752B (zh) 2017-07-13 2017-07-13 一种智能汽车测试场景加速重构方法

Publications (2)

Publication Number Publication Date
CN107421752A CN107421752A (zh) 2017-12-01
CN107421752B true CN107421752B (zh) 2019-06-11

Family

ID=60427157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710568536.7A Active CN107421752B (zh) 2017-07-13 2017-07-13 一种智能汽车测试场景加速重构方法

Country Status (1)

Country Link
CN (1) CN107421752B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332977B (zh) * 2018-01-23 2020-06-12 常熟昆仑智能科技有限公司 一种对智能网联汽车测试场景的分类分析方法
CN110188797B (zh) * 2019-04-26 2023-08-04 同济大学 一种基于贝叶斯优化的智能汽车快速测试方法
CN111145554B (zh) * 2019-12-09 2021-06-25 武汉光庭信息技术股份有限公司 一种基于自动驾驶aeb的场景定位方法和装置
CN111426486B (zh) * 2020-03-30 2022-01-21 中国标准化研究院 辅助驾驶系统的测试方法、装置、设备及存储介质
CN111580500B (zh) * 2020-05-11 2022-04-12 吉林大学 一种针对自动驾驶汽车安全性的评价方法
CN111765903B (zh) * 2020-06-29 2022-08-09 阿波罗智能技术(北京)有限公司 自动驾驶车辆的测试方法、装置、电子设备和介质
CN112036001B (zh) * 2020-07-01 2024-04-23 长安大学 自动驾驶测试场景构建方法、装置、设备及可读存储介质
CN112526893B (zh) * 2020-10-30 2024-04-02 长安大学 一种智能汽车的测试系统
CN112668100B (zh) * 2020-11-19 2022-08-19 同济大学 基于自然驾驶实验的智能汽车交通场景事件链重构方法
CN112583414A (zh) * 2020-12-11 2021-03-30 北京百度网讯科技有限公司 场景处理方法、装置、设备、存储介质以及产品
CN113514254B (zh) * 2021-04-30 2022-05-17 吉林大学 一种针对自动驾驶仿真的并行加速测试方法
CN113360412B (zh) * 2021-07-20 2021-11-02 北京赛目科技有限公司 一种测试场景选取方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211576A (zh) * 2010-03-17 2011-10-12 通用汽车环球科技运作有限责任公司 带有ecm和tcm间参数传输的动力系控制系统和方法
CN102832967A (zh) * 2012-08-31 2012-12-19 中国人民解放军空军工程大学 一种超宽带脉冲信号检测方法
CN103597527A (zh) * 2011-06-13 2014-02-19 丰田自动车株式会社 驾驶辅助装置和驾驶辅助方法
CN103996287A (zh) * 2014-05-26 2014-08-20 江苏大学 一种基于决策树模型的车辆强制换道决策方法
CN106165000A (zh) * 2014-03-31 2016-11-23 株式会社电装 车辆用显示控制装置
CN106233356A (zh) * 2014-04-25 2016-12-14 日产自动车株式会社 信息呈现装置以及信息呈现方法
CN106781551A (zh) * 2017-03-08 2017-05-31 东南大学 车联网环境下的高速公路出入口匝道联合控制系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211576A (zh) * 2010-03-17 2011-10-12 通用汽车环球科技运作有限责任公司 带有ecm和tcm间参数传输的动力系控制系统和方法
CN103597527A (zh) * 2011-06-13 2014-02-19 丰田自动车株式会社 驾驶辅助装置和驾驶辅助方法
CN102832967A (zh) * 2012-08-31 2012-12-19 中国人民解放军空军工程大学 一种超宽带脉冲信号检测方法
CN106165000A (zh) * 2014-03-31 2016-11-23 株式会社电装 车辆用显示控制装置
CN106233356A (zh) * 2014-04-25 2016-12-14 日产自动车株式会社 信息呈现装置以及信息呈现方法
CN103996287A (zh) * 2014-05-26 2014-08-20 江苏大学 一种基于决策树模型的车辆强制换道决策方法
CN106781551A (zh) * 2017-03-08 2017-05-31 东南大学 车联网环境下的高速公路出入口匝道联合控制系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种改进的混合交通交叉口安全仿真评价方法;孙剑 等;《中国安全科学学报》;20110630;第21卷(第6期);第32-37页
城市快速路驶入匝道瓶颈车辆汇入行为;孙剑 等;《同济大学学报(自然科学版)》;20150430;第43卷(第4期);第549-554页

Also Published As

Publication number Publication date
CN107421752A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN107421752B (zh) 一种智能汽车测试场景加速重构方法
Essa et al. Simulated traffic conflicts: do they accurately represent field-measured conflicts?
CN109242251A (zh) 行车行为安全性检测方法、装置、设备及存储介质
CN110502852B (zh) 一种自动驾驶仿真测试场景的生成方法及生成系统
CN108492562A (zh) 基于定点检测与电警数据融合的交叉口车辆轨迹重构方法
CN111243338A (zh) 基于车辆加速度的碰撞风险评价方法
CN110196587A (zh) 车辆自动驾驶控制策略模型生成方法、装置、设备及介质
CN107985189A (zh) 面向高速驾驶环境下的驾驶员变道深度预警方法
CN112818612B (zh) 基于隧道口行车安全仿真研究的安全管控措施确定方法
CN109658694A (zh) 一种卷积神经网络高危车辆交通流预测方法和系统
CN111369053B (zh) 一种人车交互场景下行人与车辆的轨迹预测方法
Wang et al. Digital twin analysis for driving risks based on virtual physical simulation technology
CN115291515A (zh) 一种基于数字孪生的自动驾驶仿真测试系统及评价方法
CN115238958A (zh) 一种基于复杂交通场景的危险事件链提取方法及系统
Xue et al. A context-aware framework for risky driving behavior evaluation based on trajectory data
CN109948419A (zh) 一种基于深度学习的违法停车自动审核方法
Hu et al. Automatic generation of intelligent vehicle testing scenarios at intersections based on natural driving datasets
CN110458370A (zh) 一种基于开放数据的城市道路安全预测方法及系统
CN112052829B (zh) 一种基于深度学习的飞行员行为监控方法
CN116580523A (zh) 交通能耗监测与管理方法、系统、电子装置和存储介质
Qu et al. Towards efficient traffic crash detection based on macro and micro data fusion on expressways: A digital twin framework
CN114862159B (zh) 一种自动驾驶测试场景的评价方法
CN114579088A (zh) 基于数据挖掘和测试闭环的无人驾驶算法开发方法
Lu et al. Safety Benefits Evaluation of Mixed Traffic Flow with Connected and Automated Vehicles under Snowy Conditions
Zhang et al. A method for evaluating the complexity of test scenarios for autonomous vehicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant