CN107417954B - 一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用 - Google Patents

一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用 Download PDF

Info

Publication number
CN107417954B
CN107417954B CN201710587882.XA CN201710587882A CN107417954B CN 107417954 B CN107417954 B CN 107417954B CN 201710587882 A CN201710587882 A CN 201710587882A CN 107417954 B CN107417954 B CN 107417954B
Authority
CN
China
Prior art keywords
ibuprofen
composite membrane
solution
pani
imprinted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710587882.XA
Other languages
English (en)
Other versions
CN107417954A (zh
Inventor
李荷
吴秀玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Pharmaceutical University
Original Assignee
Guangdong Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Pharmaceutical University filed Critical Guangdong Pharmaceutical University
Priority to CN201710587882.XA priority Critical patent/CN107417954B/zh
Publication of CN107417954A publication Critical patent/CN107417954A/zh
Application granted granted Critical
Publication of CN107417954B publication Critical patent/CN107417954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3852Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using imprinted phases or molecular recognition; using imprinted phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明涉及一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用,属于环境材料制备技术领域。本发明以纳米复合膜为基膜,布洛芬(ibuprofen)作为模板分子,丙烯酰胺(AM)为功能单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,结合金属‑有机纳米复合改性过程,将表面接枝原子转移自由基聚合(ATRP)引发剂改性的金属‑有机纳米复合物(Br‑Au@PANI)共混于膜材料中,采用ATRP聚合的方法,制备出布洛芬印迹复合膜。本发明并通过静态吸附实验、选择性吸附试验和选择渗透性试验表明了本发明获得的布洛芬印迹复合膜具有较高的吸附能力和优越的布洛芬识别渗透性能。

Description

一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜 及其制备方法与应用
技术领域
本发明属于材料制备技术领域,具体涉及一种表面接枝原子转移自由基聚合(ATRP)引发的布洛芬印迹复合膜及其制备方法和应用。
背景技术
分子印迹技术(MIT)自创立以来,就引起材料科学、生命科学、化学工程、和药学等领域科学家的极大兴趣。该技术具有以下三大特点:(i)与天然受体相似的高识别性;(ii)与天然分子相比高度的稳定性;(iii)制备过程简单易行具有广泛实用性。MIT是模拟自然界中:酶与底物、抗体与抗原、激素与受体等分子的识别作用,制备对模板分子具有特异选择识别特性的高分子印迹聚合物的一种技术:首先以具有适当功能基的功能单体与模板分子结合形成单体-模板分子复合物;选择适当的交联剂将功能单体互相交联起来形成三维交联的聚合物网络,从而使功能单体上的功能基在空间排列和空间定向上固定下来;最后通过物理化学等方法除去模板分子,就获得了对模板分子具有特殊亲和性及专一结合性的三维空穴,这个三维空穴可以选择性地吸附模板分子,即对模板分子具有专一识别作用。表面分子印迹技术通过把分子识别位点建立在基质材料的表面,从而有利于模板分子的洗脱和再吸附,较好的解决了传统分子印迹技术存在的一些严重缺陷,如活性位点包埋过深,传质和电荷传递的动力学速率慢,吸附-脱附的动力学性能不佳等。
如上所述,分子印迹技术发展历程中,其制备方法经历了由自由基聚合、悬浮聚合和乳液聚合到活性/可控聚合的发展,应用形态由分子印迹聚合物、分子印迹微球到分子印迹膜的发展。创立之初,分子印迹最常用的方法是溶液聚合法,该法通过热引发、光引发聚合包含模板分子、功能单体和交联剂等的预聚合溶液,从而得到块状聚合物,然后通过研磨、过筛、洗涤等步骤制备对模板分子具有特异识别性的分子印迹聚合物,但是后续的研磨过程很容易破坏聚合物的结合位点,操作费时费力,聚合物粒度分布较宽且粒子形态不规则,进而影响印迹效率。将分子印迹技术与膜分离技术相结合产生的分子印迹膜(MIM)的开发应用是最具吸引力的研究热点之一。分子印迹膜兼具分子印迹技术及膜分离技术的优点,一方面,该技术便于连续操作,易于放大,能耗低,能量利用率高,是“绿色化学”的典型;另一方面,它克服了目前的商业膜材料如超滤、微滤及反渗透膜等无法实现单个物质选择分离的缺点,为将特定分子从其结构类似物中分离出来提供了行之有效的解决途径;另外,与传统的分子印迹微球材料相比,分子印迹膜更稳定,抵抗恶劣环境能力更强,扩散阻力小,形态规则,不需要研磨等繁琐的制备过程等优点。七十年代以来,膜分离技术发展迅速,已广泛用于食品、医药、微生物、化学化工、材料等领域。
布洛芬(ibuprofen)是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。因其抗炎、解痛、退热的作用远比阿司匹林、保泰松和扑热息痛强,所以深受临床青睐。由于布洛芬耐受性良好、副作用低,容易造成药物滥用。据报道,在饮用水、地表水、污水及人类排泄物中都检测出了高浓度的布洛芬。例如:在英国的地表水和饮用水中分别检测到0.025-0.475mg·L-1的布洛芬,布洛芬常用的检测方法主要是高效液相色谱、气相色谱、固相萃取、固相微萃取,而采用分子印迹复合膜检测及分离富集布洛芬的方法鲜有报道。
发明内容
为了解决现有技术的不足,本发明以非共价印迹体系为基础,结合金属-有机纳米复合改性过程、分子印迹技术、膜分离技术,提供一种高选择性和稳定性的新型分子印迹复合膜及其制备方法与在布洛芬的特异性识别方面的应用。
本发明的目的将通过以下技术方案实现:一种表面接枝原子转移自由基聚合(ATRP)引发的布洛芬印迹复合膜,以偏聚四氟乙烯膜(PVDF)为膜材料,布洛芬为模板分子,丙烯酰胺(AM)作为功能单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,通过金属-有机纳米复合物改性过程,结合非共价预聚合体系,制备得到的ATRP引发的布洛芬印迹复合膜方法。
一种ATRP引发的布洛芬印迹复合膜的制备方法,具体过程如下:
(1)合成金@聚苯胺(Au@PANI)的金属-有机纳米复合物
首先,将0.75g苯胺和1mL 36%的HCl置于10mL乙二醇溶液中,搅拌均匀,得到苯胺溶液;将0.165g四氯金酸(HAuCl4)加入到15mL乙二醇溶液中,搅拌均匀,得到HAuCl4溶液;将0.91g 30%的双氧水(H2O2)加入到15mL乙二醇溶液中,搅拌均匀,得到H2O2溶液;然后将所得苯胺溶液、HAuCl4溶液、H2O2溶液冷却5℃,搅拌条件下HAuCl4溶液和H2O2溶液同时加入到苯胺溶液中,用石蜡封住反应烧瓶口5℃静止反应24h;最后,在10000r/min的条件下离心,将沉淀物用乙醇和水洗直至上清液为无色,将所得产物(Au@PANI)真空干燥至恒重。
(2)合成ATRP引发剂改性的金属-有机(Br-Au@PANI)纳米复合物
向15mL经过精制的四氢呋喃中加入一定量的溴代异丁酰溴(2-BIB),混和均匀后加入滴液漏斗中备用;将(1)中所得0.2g Au@PANI置于100mL三颈圆底烧瓶中,加入30mL精制四氢吠喃和一定量干燥的三乙胺(TEA)(其中,TEA:2-BIB=1:1,mmol/mmol),在0℃下振荡并通氮气10min,逐滴加入上述2-BIB四氢呋喃溶液,并保持0℃反应2h,取出烧瓶,烧瓶用石蜡封口后25℃继续振荡反应24h,反应结束后10000r/min离心,用乙醇和去离子水彻底清洗后,在40℃下真空干燥箱干燥至恒重,制得Br-Au@PANI。
(3)合成布洛芬印迹复合膜
首先,将0.2g Br-Au@PANI和3.5g偏聚四氟乙烯(PVDF)粉末加入到20mL N-甲基吡咯烷酮溶液中置于100mL单口圆底烧瓶中,超声条件下充分混合,50℃机械搅拌24小时,静止24小时后刮膜,制得Br-Au@PANI掺杂的纳米复合膜(NP-NcMs)。
然后,将一定量的布洛芬和丙烯酰胺(AM)按比例1:4(mmol/mmol)溶解于80mL乙醇中置于250mL单口圆底烧瓶中,超声震荡,使之充分溶解,然后将该体系置于室温静置12h,使其形成稳定的模板-单体复合物,然后向该体系加入一定量的二甲基丙烯酸乙二醇酯(EGDMA)和上述制得的2-4片膜(布洛芬:丙烯酰胺:二甲基丙烯酸乙醇酯=1:4:10,mmol/mmol/mmol,所述NP-NcMs复合膜的半径为1cm)。通氮气15min后,加入0.38mmol溴化亚铜(CuBr)和2.28mmol联吡啶,用石蜡封口后70℃继续振荡反应24h。
最后,反应结束后,先用乙醇和去离子水充分洗涤,再用甲醇/乙酸(95:5,v/v)洗掉模板分子和未聚合的单体和交联剂,直至紫外(UV)检测器在264nm处检测不到模板分子为止,再用甲醇洗涤过量的乙酸,40℃下真空干燥箱干燥至恒重制得布洛芬印迹复合膜(MINcMs)。
(4)将所制得的印迹膜进行选择渗透性能分析测试。
上述技术方案中所述三乙胺为缚酸剂,溴代异丁酰溴为ATRP引发剂,布洛芬为模板分子,丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯为交联剂,溴化亚铜为反应的催化剂,联吡啶为反应的配位剂,PVDF膜为基膜。
上述技术方案中所述的吸附性能分析测试方法具体为:
(i)静态吸附试验
取一定质量的分子印迹复合膜加入相应测试溶液中,恒温水浴震荡,考察不同吸附溶液的初始浓度对复合膜的影响,吸附完成后,未吸附的布洛芬分子浓度用UV测定,并根据结果计算出吸附容量(Qe,mg/g):
Figure BDA0001354015400000041
其中C0(mg/L)和Ce(mg/L)分别是吸附前后布洛芬的浓度,W(g)为吸附分子印迹复合膜的重量,V(mL)为吸附体积。
(ii)选择渗透性试验
自制两个完全相同的带有磨口支管的玻璃池,将印迹膜或空白膜用夹子固定于两个玻璃池中间,组成H-型渗透性装置,保证两池没有渗漏,一池中加入底物为布洛芬和酮洛芬的0.4%NaOH溶液,另一池中加入0.4%NaOH溶液,隔一定时间取样,测定透过聚合物基膜的底物的浓度,并据此计算渗透量。
与现有技术相比,本发明的有益效果:本发明制备了一种布洛芬印迹复合膜,并将该印迹复合膜用于布洛芬和酮洛芬的竞争吸附实验。该印迹复合膜对布洛芬具有较高的选择性,分离效果显著,重复使用次数多的优点。
(1)本发明由于加入了Au@PANI复合物,极大地增加了印迹表面积,避免了部分模板分子因包埋过深而无法洗脱的问题,获得的印迹膜机械强度高,识别点不易破坏,大大地降低了非特异性吸附;
(2)利用本发明获得的布洛芬印迹复合膜具有热稳定性好,快速的吸附动力学性质,明显的布洛芬分子识别性能。
(3)本发明采用非共价印迹原理、膜分离原理结合ATRP聚合体系,在PVDF膜表面合成布洛芬印迹复合膜。
附图说明
图1为制备的Au@PANI复合物的透射电镜图。
图2为制备的Au@PANI复合物的XRD图。
图3分别为单独的PVDF膜(a1and a2),NP-NcMs复合膜(b1and b2),NP-NcMs复合膜的断面(c1and c2),MINcMs印迹膜的扫描电镜图(d1and d2)。
具体实施方式
为更好地理解本发明,下面通过以下实施例对本发明作进一步具体的阐述,但不可理解为对本发明的限定,对于本领域的技术人员根据上述发明内容所作的一些非本质的改进与调整,也视为落在本发明的保护范围内。
实施例1
一种ATRP引发的布洛芬印迹复合膜的制备方法,具体过程如下:
(1)合成金@聚苯胺(Au@PANI)金属-有机纳米复合物
首先,将0.75g苯胺和1mL质量分数为36%的HCl置于10mL乙二醇溶液中,搅拌均匀,得到苯胺溶液;将0.165g四氯金酸(HAuCl4)加入到15mL乙二醇溶液中,搅拌均匀,得到HAuCl4溶液;然后,将0.91g质量分数为30%的双氧水(H2O2)加入到15mL乙二醇溶液中,搅拌均匀,得到H2O2溶液。将所得苯胺溶液、HAuCl4溶液、H2O2溶液分别冷却至5℃,搅拌条件下,将HAuCl4溶液和H2O2溶液同时加入到苯胺溶液中,用石蜡封住反应烧瓶瓶口,5℃静止反应24h;最后在10000r/min的条件下离心,用乙醇和水洗直至上清液为无色,将所得产物(Au@PANI复合物)真空干燥至恒重。
(2)合成ATRP引发剂改性的金属-有机(Br-Au@PANI)复合物
在15mL经过精制的四氢呋喃中加2.25mL的溴代异丁酰溴(2-BIB),混和均匀后加入滴液漏斗中备用,将(1)中所得0.2g Au@PANI置于100mL三颈圆底烧瓶中,加入30mL精制四氢吠喃和2mL的三乙胺(TEA),在0℃下振荡并通氮气10min,逐滴加入上述2-BIB的四氢呋喃溶液,并保持0℃反应2h,取出烧瓶,用石蜡封口后25℃继续振荡反应24h,反应结束后10000r/min离心,用乙醇和去离子水彻底清洗后,在40℃下真空干燥箱干燥至恒重,制得Br-Au@PANI。
(3)合成布洛芬印迹复合膜
首先,将0.2g Br-Au@PANI和3.5g PVDF粉末加入到20ml N-甲基吡咯烷酮溶液中置于100mL单口圆底烧瓶中,超声条件下充分混合,50℃机械搅拌24h,静止24h后刮膜。制得Br-Au@PANI掺杂的纳米复合膜(NP-NcMs)。
然后,将1mmol布洛芬和4mmol丙烯酰胺溶解于80mL乙醇中置于250mL单口圆底烧瓶中,超声震荡,使之充分溶解,然后将该体系置于室温静置12h,使其形成稳定的模板-单体复合物,然后向该体系加入10mmol二甲基丙烯酸乙二醇酯(EGDMA)和上述制得的2片膜。通氮气15min后,加入0.38mmol溴化亚铜(CuBr)和2.28mmol联吡啶,用石蜡封口后70℃继续振荡反应24h。
最后,待反应结束后,先用乙醇和去离子水充分洗涤,再用甲醇/乙酸(95:5,v/v)洗掉模板分子和未聚合的单体和交联剂,直至紫外检测器在264nm紫外波长处检测不到模板分子为止,再用甲醇洗涤过量的乙酸,40℃下真空干燥箱干燥至恒重制得布洛芬印迹复合膜(MINcMs)。
(4)结果表征
图1表示该实施例1中Au@PANI复合物在不同放大倍数下的TEM,从图中可以看出,该材料结构不规则,复合后在聚苯胺的表面覆盖了一层金纳米粒子,说明金纳米粒子成功与聚苯胺复合。由图2可知,Au@PANI复合物的XRD图谱均与JCPDS卡片04-0784号一致,在2θ=38.5°,44.6°,64.8°和77.8°出现四个尖锐的衍射峰,这表明在Au@PANI复合材料存在晶格金,并且在20-32°出现一个较宽的衍射峰,这归因于聚苯胺的特征衍射峰,再次说明了金纳米粒子成功与聚苯胺复合。
图3中a1和a2可以看出在相转化过程后纯的PVDF膜具有光滑表面和多孔膜结构。与a1和a2对比可知,图b1和b2中Br-Au@PANI纳米复合材料均匀分散并粘附到膜上。图c1和c2为NP-NcMs的横截面图,同时可以看出Br-Au@PANI纳米复合物均匀地分布在膜内。综合以上,可以得出改性的金属-有机纳米复合物均匀分布在PVDF膜的内部和表面。与图c1和c2相比,图d1和d2表面覆盖了一层明显的粗糙面,这有力地表明,在PVDF膜表面形成均匀的布洛芬印迹层。
(5)静态吸附试验
分别称取印迹复合膜和非印迹复合膜(所述非印迹复合膜中没有加入布洛芬参与反应,其他步骤与本申请一致)各7份,分别放入到14个锥形瓶中,然后各加入10mL浓度为50、100、200、300、400、500、800mg/L布洛芬的质量分数为0.4%的NaOH溶液,在25℃条件下恒温水浴震荡3h,吸附后完成后,用UV检测器测定未吸附的布洛芬分子的浓度,并根据结果计算出吸附容量。
结果表明,布洛芬印迹复合膜的最高饱和吸附容量为22.02mg/g,明显高于非印迹膜的5.13mg/g。
(6)选择性吸附试验
称取印迹复合膜6份,分别放入到6个锥形瓶中,然后各加入10mL浓度为50、100、200、300、400、800mg/L的布洛芬和酮洛芬的质量分数为0.4%的NaOH溶液,在25℃条件下恒温水浴震荡3h,吸附后完成后,用UV检测仪测定未吸附的布洛芬和酮洛芬分子的浓度,并根据结果计算出吸附容量。
结果表明,布洛芬印迹复合膜在竞争吸附中布洛芬的最高饱和吸附容量为21.83mg/g,对酮洛芬的最高饱和吸附容量为5.35mg/g,选择因子为4.08。
(7)选择渗透性试验
自制两个完全相同的带有磨口支管的玻璃池,将印迹膜用夹子固定于两个玻璃池之间,组成H-型渗透性装置,保证两池没有渗漏,一池中分别加入底物浓度为500mg/L的布洛芬和酮洛芬的0.4%(质量分数)NaOH溶液,另一池中加入质量分数为0.4%质量分数NaOH溶液,取样时间分别为5、10、15、30、60、90、120、150、180min,测定透过印迹复合膜的底物的浓度,并据此计算渗透量。
结果显示,在初始浓度为500mg/L的布洛芬和酮洛芬的0.4%NaOH溶液,取样时间分别为5、10、15、30、60、90、120、150、180min,测得空白样品池中布洛芬溶液的浓度分别为1.70、3.56、6.94、8.32、12.94、16.97、19.67、20.58、22.31mg/L,测得酮洛芬的浓度分别为7.01、11.79、17.47、30.94、42.64、53.42、59.86、66.63、69.23mg/L。
以上可知,布洛芬印迹复合膜对布洛芬有特异识别和促进非布洛芬分子(酮洛芬)渗透性能。
实施例2
一种ATRP引发的布洛芬印迹复合膜的制备方法,具体过程如下:
(1)合成金@聚苯胺(Au@PANI)金属-有机纳米复合物,Au@PANI纳米复合物的合成方法与实施例1相同。
(2)合成ATRP引发剂改性的金属-有机(Br-Au@PANI)纳米复合物
首先,在15mL经过精制的四氢呋喃中加入4.5mL溴代异丁酰溴(2-BIB),混和均匀后加入滴液漏斗中备用,将(1)中所得0.2g Au@PANI置于100mL三颈圆底烧瓶中,加入30mL精制四氢吠喃和4mL干燥的三乙胺(TEA),在0℃下振荡并通氮气10min,逐滴加入上述2-BIB的四氢呋喃溶液,并保持0℃反应2h,取出烧瓶,烧瓶用石蜡封口后25℃继续振荡反应24h,反应结束后10000r/min离心,用乙醇和去离子水彻底清洗后,在40℃下真空干燥箱干燥至恒重,制得Br-Au@PANI。
(3)合成布洛芬印迹复合膜
首先,将0.2g Br-Au@PANI和3.5g PVDF粉末加入到20mL N-甲基吡咯烷酮溶液中置于100mL单口圆底烧瓶中,超声条件下充分混合,50℃机械搅拌24小时,静止24小时后刮膜,制得Br-Au@PANI掺杂的纳米复合膜(NP-NcMs)。
然后,将2mmol布洛芬和8mmol丙烯酰胺溶解于80mL乙醇中置于250mL单口圆底烧瓶中,超声震荡,使之充分溶解,然后将该体系置于室温静置12h,使其形成稳定的模板-单体复合物,再向该体系加入20mmol的二甲基丙烯酸乙二醇酯(EGDMA)和上述制得的4片膜。通氮气15min后,加入0.38mmol溴化亚铜(CuBr)和2.28mmol联吡啶,用石蜡封口后70℃继续振荡反应24h。
最后,待反应结束后,先用乙醇和去离子水充分洗涤,再用甲醇/乙酸(95:5,v/v)洗掉模板分子和未聚合的单体和交联剂,直至紫外(UV)检测器在264nm波长处检测不到模板分子为止,再用甲醇洗涤过量的乙酸,40℃下真空干燥箱干燥至恒重制得布洛芬印迹复合膜(MINcMs)。
(4)静态吸附试验
分别称取印迹复合膜和非印迹复合膜(同上)各7份,分别放入到14个锥形瓶中,然后各加入10mL浓度为50、100、200、300、400、500、800mg/L布洛芬的0.4%NaOH溶液,在25℃条件下恒温水浴震荡3h,吸附后完成后,用UV测定未吸附的布洛芬分子的浓度,并根据结果计算出吸附容量。
结果表明,布洛芬印迹复合膜的最高饱和吸附容量为20.57mg/g,明显高于非印迹膜的4.83mg/g。
(5)选择性吸附试验
称取印迹复合膜6份,分别放入到6个锥形瓶中,然后各加入10mL浓度为50、100、200、300、400、800mg/L的布洛芬和酮洛芬的0.4%(质量分数)NaOH溶液,在25℃条件下恒温水浴震荡3h,吸附后完成后,用UV检测器测定未吸附的布洛芬和酮洛芬分子的浓度,并根据结果计算出吸附容量。
结果表明,布洛芬印迹复合膜在竞争吸附中布洛芬的最高饱和吸附容量为19.98mg/g,对酮洛芬的最高饱和吸附容量为5.06mg/g,选择因子为3.95。
(6)选择渗透性试验
自制两个完全相同的带有磨口支管的玻璃池,将印迹膜用夹子固定于两个玻璃池中间,组成H-型渗透性装置,保证两池没有渗漏,一池中分别加入底物浓度为500mg/L的布洛芬和酮洛芬的0.4%(质量分数)NaOH溶液,另一池中加入质量分数为0.4%NaOH溶液,取样时间分别为5、10、15、30、60、90、120、150、180min,测定透过印迹复合膜的底物的浓度,并据此计算渗透量。
结果显示,在初始浓度为500mg/L的布洛芬和酮洛芬的0.4%NaOH溶液,取样时间分别为5、10、15、30、60、90、120、150、180min,测得空白样品池中布洛芬溶液的浓度分别为2.86、4.98、9.04、11.85、15.77、18.93、21.17、22.62、24.74mg/L,测得酮洛芬的浓度分别为8.24、13.18、19.36、32.97、45.14、56.29、63.06、70.33、73.41mg/L。
以上表明,布洛芬印迹复合膜对布洛芬有特异识别和促进非布洛芬分子(酮洛芬)渗透性能。
以上所述仅为本发明的较佳实施例而已,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜,其特征在于,包括以下组成:
Figure FDA0002493292100000011
其中,所述纳米复合膜为Br改性的Au@PANI纳米复合物与PVDF粉末按照质量比1:17.5制得的NP-NcMs复合膜;
所述布洛芬、所述丙烯酰胺、所述二甲基丙烯酸乙二醇酯、所述溴化亚铜和所述联吡啶的摩尔比为:1~2:4~8:10~20:0.38:2.28,每加入1~2mmol的布洛芬,加入2~4片所述的NP-NcMs复合膜。
2.根据权利要求1所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜,其特征在于:所述Br改性的Au@PANI纳米复合物为Br-Au@PANI复合物。
3.根据权利要求1所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于,包括以下过程:
(1)Br改性的Au@PANI纳米复合物的合成:向装有Au@PANI的烧瓶中加入一定量的四氢吠喃和三乙胺,震荡通氮气10min后,逐滴向烧瓶中加入含有溴代异丁酰溴的四氢吠喃溶液,滴加完成后,在0℃下反应2h,接着将烧瓶用石蜡封口后在25℃继续振荡反应24h,再离心分离,将沉淀物用乙醇和去离子水彻底清洗后,在40℃下真空干燥至恒重,制得Br改性的Au@PANI纳米复合物;
(2)NP-NcMs复合膜的制备:将Br改性的Au@PANI纳米复合物与PVDF粉末加入到N-甲基吡咯烷酮溶液中,超声条件下充分混合,50℃搅拌24h,静止24h后刮膜,制得由Br改性的Au@PANI纳米复合物掺杂的NP-NcMs复合膜;
(3)布洛芬印迹复合膜的合成:首先将布洛芬、丙烯酰胺充分溶解于含有乙醇的烧瓶中,待室温静置12h,形成稳定的模板-单体复合物;然后依次加入二甲基丙烯酸乙二醇酯、NP-NcMs复合膜,通氮气15min后,再加入溴化亚铜和联吡啶,烧瓶用石蜡封口后70℃继续振荡反应24h;最后充分洗涤烧瓶中的反应膜,直至紫外检测器在264nm紫外波长下检测不到模板分子为止,干燥得到布洛芬印迹复合膜。
4.根据权利要求3所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于:所述Au@PANI通过苯胺溶液、HAuCl4溶液、H2O2溶液反应得到,分别将苯胺溶液、HAuCl4溶液、H2O2溶液冷却至5℃,在搅拌条件下,将HAuCl4溶液和H2O2溶液同时加入到苯胺溶液的烧瓶中,用石蜡封住烧瓶的瓶口,在5℃静止24h,离心分离后,将所得产物洗涤干燥,得到产物Au@PANI。
5.根据权利要求4所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于:所述苯胺溶液由0.75g苯胺和1mL质量分数为36%的HCl置于10mL乙二醇溶液中,搅拌均匀后得到;所述HAuCl4溶液由0.165g HAuCl4加入到15mL乙二醇溶液中,搅拌均匀后得到;所述H2O2溶液由0.91g质量分数30%的H2O2加入到15mL乙二醇溶液中,搅拌均匀后得到。
6.根据权利要求3所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于:在所述Br改性的Au@PANI纳米复合物的合成中,每克装有Au@PANI的烧瓶中加入150mL四氢吠喃和10~20mL的三乙胺;溴代异丁酰溴四氢吠喃溶液中四氢呋喃与溴代异丁酰溴的体积比为15:2.25~4.5;每克装有Au@PANI的烧瓶中,溴代异丁酰溴的加入量为11.25~22.5mL。
7.根据权利要求3所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于:在所述NP-NcMs复合膜的制备过程中,Br改性的Au@PANI纳米复合物、PVDF粉末的质量比为1:17.5,每克Br改性的Au@PANI纳米复合物,N-甲基吡咯烷酮溶液的加入量为100mL。
8.根据权利要求3所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于:在所述布洛芬印迹复合膜的合成中,所述布洛芬、丙烯酰胺、二甲基丙烯酸乙二醇酯、溴化亚铜和联吡啶的摩尔比为:1~2:4~8:10~20:0.38:2.28,每加入1~2mmol的布洛芬,加入2~4片NP-NcMs复合膜,所述NP-NcMs复合膜的半径为1cm。
9.根据权利要求3所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的制备方法,其特征在于:在所述布洛芬印迹复合膜的合成中,待震荡反应24h后,先用乙醇和去离子水充分洗涤反应膜,再采用体积比为95:5的甲醇/乙酸溶液洗掉反应膜上的模板分子和未聚合的功能单体和交联剂,直至紫外检测器在264nm紫外波长处检测不到模板分子为止,接着,再用甲醇洗涤过量的乙酸,40℃下真空干燥至恒重,即得布洛芬印迹复合膜。
10.根据权利要求1所述的一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜的应用,其特征在于:布洛芬印迹复合膜在质量分数为0.4%的NaOH溶液中选择性识别和吸附布洛芬分子。
CN201710587882.XA 2017-07-18 2017-07-18 一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用 Active CN107417954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710587882.XA CN107417954B (zh) 2017-07-18 2017-07-18 一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710587882.XA CN107417954B (zh) 2017-07-18 2017-07-18 一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107417954A CN107417954A (zh) 2017-12-01
CN107417954B true CN107417954B (zh) 2020-09-18

Family

ID=60430104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710587882.XA Active CN107417954B (zh) 2017-07-18 2017-07-18 一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107417954B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908589B (zh) * 2021-10-08 2022-09-27 天津工业大学 一种表面印迹抗体的疏水电荷诱导模式膜层析介质及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068925A (zh) * 2010-12-08 2011-05-25 天津大学 聚苯胺纳米复合膜的制备方法
CN102702428A (zh) * 2012-06-05 2012-10-03 同济大学 一种典型酸性药物多模板分子印迹聚合物的制备方法和应用
CN103709434A (zh) * 2013-12-20 2014-04-09 江苏大学 一种青蒿素分子印迹膜的制备方法及其应用
KR20140072264A (ko) * 2012-11-29 2014-06-13 재단법인대구경북과학기술원 C-반응성 단백질 검출용 합성항체
CN104004218A (zh) * 2014-03-10 2014-08-27 江苏大学 一种青蒿素分子印迹膜的制备方法及其应用
CN104119527A (zh) * 2013-04-25 2014-10-29 天津大学 一种金-聚苯胺纳米复合粒子及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068925A (zh) * 2010-12-08 2011-05-25 天津大学 聚苯胺纳米复合膜的制备方法
CN102702428A (zh) * 2012-06-05 2012-10-03 同济大学 一种典型酸性药物多模板分子印迹聚合物的制备方法和应用
KR20140072264A (ko) * 2012-11-29 2014-06-13 재단법인대구경북과학기술원 C-반응성 단백질 검출용 합성항체
CN104119527A (zh) * 2013-04-25 2014-10-29 天津大学 一种金-聚苯胺纳米复合粒子及其制备方法
CN103709434A (zh) * 2013-12-20 2014-04-09 江苏大学 一种青蒿素分子印迹膜的制备方法及其应用
CN104004218A (zh) * 2014-03-10 2014-08-27 江苏大学 一种青蒿素分子印迹膜的制备方法及其应用

Also Published As

Publication number Publication date
CN107417954A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Neolaka et al. A Cr (VI)-imprinted-poly (4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr (VI) ions from electroplating industrial wastewater
US11612878B2 (en) Synthesis and application of a nanomaterial for removal of patulin
CN107469653B (zh) 一种富集和分离诺氟沙星的分子印迹复合膜的合成方法
Zhang et al. Magnetic, core-shell structured and surface molecularly imprinted polymers for the rapid and selective recognition of salicylic acid from aqueous solutions
Yang et al. Ultrasensitive detection of bisphenol A in aqueous media using photoresponsive surface molecular imprinting polymer microspheres
Wei et al. Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization
CN110339816B (zh) 一种锆基金属有机骨架材料的制备方法及其应用
Chen et al. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues
CN109970912B (zh) 黄酮类磁性分子印迹聚合物的制备方法
Sun et al. A restricted access molecularly imprinted polymer coating on metal–organic frameworks for solid-phase extraction of ofloxacin and enrofloxacin from bovine serum
Tan et al. Development of surface imprinted core–shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion
Liu et al. Immobilization of boronic acid and vinyl-functionalized multiwalled carbon nanotubes in hybrid hydrogel via light-triggered chemical polymerization for aqueous phase molecular recognition
CN109400903A (zh) 一种笼型聚倍半硅氧烷/金属-2-氨基对苯二甲酸有机框架杂化材料及其制备方法
Liu et al. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin
Feng et al. Synergistic effect of metal ions pivot and macromolecular crowding reagents on affinity of molecularly imprinted polymer
Li et al. Computer simulation and preparation of molecularly imprinted polymer membranes with chlorogenic acid as template
CN107417954B (zh) 一种表面接枝原子转移自由基聚合引发的布洛芬印迹复合膜及其制备方法与应用
Gao et al. Fabrication of a novel surface molecularly imprinted polymer based on zeolitic imidazolate framework-7 for selective extraction of phthalates
CN112110861B (zh) 一种多菌灵虚拟模板分子印迹聚合物及其制备方法
Zhao et al. Design and preparation of molecularly imprinted membranes for selective separation of acteoside
Tsukagoshi et al. Surface Imprinting. Characterization of a Latex Resin and the Origin of the Imprinting Effect.
Tong et al. Preparation and performance research on glutathione molecularly imprinted polymers
Pu et al. Molecularly imprinted nanoparticles synthesized by electrochemically mediated atom transfer radical precipitation polymerization
Hashemi-Moghaddam et al. Synthesis and comparison of new layer-coated silica nanoparticles and bulky molecularly imprinted polymers for the solid-phase extraction of glycine
Hu et al. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant