CN107416759A - 一种纳米喷射微型推进器、其制备方法及其应用 - Google Patents

一种纳米喷射微型推进器、其制备方法及其应用 Download PDF

Info

Publication number
CN107416759A
CN107416759A CN201710190112.1A CN201710190112A CN107416759A CN 107416759 A CN107416759 A CN 107416759A CN 201710190112 A CN201710190112 A CN 201710190112A CN 107416759 A CN107416759 A CN 107416759A
Authority
CN
China
Prior art keywords
nanojet
microdriver
nanopipets
baffle plate
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710190112.1A
Other languages
English (en)
Other versions
CN107416759B (zh
Inventor
沙菁*
沙菁
张帅
莫景文
陈云飞
于弘扬
张仕昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710190112.1A priority Critical patent/CN107416759B/zh
Publication of CN107416759A publication Critical patent/CN107416759A/zh
Application granted granted Critical
Publication of CN107416759B publication Critical patent/CN107416759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种纳米喷射微型推进器、其制备方法及其应用,纳米喷射微型推进器包括玻璃纳米管、离子溶液、电压可调式电源、连接机构和挡板;所述玻璃纳米管一端设有尖端,离子溶液设在玻璃纳米管内,电压可调式电源一端与纳米玻璃纳米管的尖端相接,另一端与挡板相接;挡板设在纳米玻璃纳米管的尖端外侧,挡板通过连接结构与玻璃纳米管外壁相接。本发明纳米喷射微型推进器比冲可控,灵活简单,成本低;电压值可调节,能够在不同的喷射电压下产生不同的推力,以达到不同的运动状态;在微纳卫星上可以进行阵列安装,以提供更大的推力和进行不同方向的调整;玻璃纳米管尺寸小,因此推进器达到的精度高,以实现高精度控制。

Description

一种纳米喷射微型推进器、其制备方法及其应用
技术领域
本发明涉及微推进器领域,尤其涉及一种纳米喷射微型推进器、其制备方法及其应用。
背景技术
随着现代航天技术的发展,卫星朝着微小化方向发展,尤其是随着微纳卫星的出现,微推进器作为微纳卫星的重要组成部分,可以实现微纳卫星的变轨、姿态调整控制和空间制动。现在的微推进器主要可以分为有燃料推进、无燃料推进和电动驱动,微推进器正朝着小型化、轻量化和模块化方向发展。主流的微推进器制造主要有以下几种:一种是传统推进器的微型化,主要有气体推进器、微型离子发动机和固态火箭发动机等;另一种是依赖微机电技术(MEMS)的发展制造的推进器。主要涉及到的工艺如下:光刻技术将制作在光刻掩模上的图形转移到衬底表面;湿法腐蚀就是将晶片置于液态的化学腐蚀液中进行腐蚀,在腐蚀过程中,腐蚀液将把它所接触的材料通过化学反应逐步浸蚀溶掉;真空镀膜是将固体材料置于真空室内,在真空条件下使用一定的能量形态迫使固体材料的原子或分子从表面脱离,并自由地弥布到容器的器壁上;还有氧化、掺杂、化学气相沉积等方法。现在的微推进器存在着如下缺点:体积质量过大无法应用到微纳卫星上;推进剂存储复杂,易泄露等;能量消耗大,需要的启动电压比较大;比冲较小,推力达不到要求。
发明内容
发明目的:为克服现有技术不足,本发明旨于提供一种结构简单,易实现,并且所需启动电压小,能量消耗比较小,能够应用于微纳卫星的变轨和姿态调整的纳米喷射微型推进器。
技术方案:为解决上述技术问题,本发明采用如下技术方案:
一种纳米喷射微型推进器,包括玻璃纳米管、离子溶液、电压可调式电源、连接机构和挡板;所述玻璃纳米管一端设有尖端,离子溶液设在玻璃纳米管内,电压可调式电源一端与纳米玻璃纳米管的尖端相接,另一端与挡板相接;挡板设在纳米玻璃纳米管的尖端外侧,挡板通过连接结构与玻璃纳米管外壁相接。
工作原理:本发明纳米喷射微型推进器,在玻璃纳米管尖端施加电场,离子溶液在电场的作用下喷出玻璃纳米管形成射流,并与倾斜挡板碰撞产生作用力,使推进器产生推力,推动微纳卫星运动;离子溶液先在压力和毛细作用下流动至玻璃纳米管尖端处,由于尺寸效应,在压力作用下离子溶液不能喷出纳米管,所以在纳米管底部施加电压,离子溶液在电压作用下喷出管口,离子溶液喷射至挡板上产生反作用力,改变微纳卫星的姿态或运动轨迹;电压值可调节,能够在不同的喷射电压下产生不同的推力,以达到不同的运动状态。
优选,玻璃纳米管为硅酸盐纳米管或石英纳米管。
所述玻璃纳米管直径为20-100nm;玻璃纳米管尺寸小,能使推进器达到的精度高,实现高精度控制。
所述挡板为倾斜接地挡板,能作为电压可调式电源的低电压端,以便与高压端形成电场。
所述挡板为金属基复合材料,能使挡板导电性良好。
优选,所述离子溶液为电解质溶液。
上述纳米喷射微型推进器的制备方法:推进器用玻璃纳米管作喷嘴,玻璃纳米管采用激光拉制而成,采用激光加热,拉制稳定的纳米尖端,拉制尖端长度为20-100nm;玻璃纳米管内注入离子溶液,采用的离子溶液为电解质溶液,电压可调式电源一端与纳米玻璃纳米管的尖端相接,另一端与挡板相接;挡板采用导电性良好的金属基复合材料,作为电源的低电压端,与高压端形成电场。
上述纳米喷射微型推进器的应用:将纳米喷射微型推进器安装在微纳卫星内。
上述纳米喷射微型推进器的应用:将纳米喷射微型推进器根据需要安装在微纳卫星内不同的方位;能实现不同姿态的调整或不同方向的变轨。
上述纳米喷射微型推进器的应用:将两个以上纳米喷射微型推进器进行阵列安装在微纳卫星内,能获得不同的推力范围,提供更大推力,从而改善该推进器的机动性,并且对微纳卫星的姿态控制更加精确。
本发明未提及的技术均为现有技术。
有益效果:本发明纳米喷射微型推进器比冲可控,灵活简单,成本低;电压值可调节,能够在不同的喷射电压下产生不同的推力,以达到不同的运动状态;在微纳卫星上可以进行阵列安装,以提供更大的推力和进行不同方向的调整;玻璃纳米管尺寸小,因此推进器达到的精度高,以实现高精度控制。
附图说明
图1为本发明纳米喷射微型推进器结构示意图;
图2为本发明纳米喷射微型推进器喷射过程离子溶液移动示意图;
图3为本发明纳米喷射微型推进器喷射过程离子溶液移动示意图;
图4为本发明纳米喷射微型推进器喷射离子溶液运动至挡板示意图;
图5为本发明纳米喷射微型推进器进行阵列设计的俯视图。
图中,1为玻璃纳米管、2为离子溶液、3为电压可调式电源、4为连接机构、5为挡板。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
如图1-4所示,一种纳米喷射微型推进器,包括玻璃纳米管1、离子溶液2、电压可调式电源3、连接机构4和挡板5;所述玻璃纳米管1一端设有尖端,离子溶液2设在玻璃纳米管1内,电压可调式电源3一端与纳米玻璃纳米管1的尖端相接,另一端与挡板5相接;挡板5设在纳米玻璃纳米管1的尖端外侧,挡板5通过连接结构与玻璃纳米管1外壁相接;玻璃纳米管1为硅酸盐纳米管;玻璃纳米管1直径为20nm;挡板5为倾斜接地挡板;挡板5为金属基复合材料;离子溶液2为KCL溶液。
一种纳米喷射微型推进器的制备方法:推进器用玻璃纳米管1作喷嘴,玻璃纳米管1采用激光拉制而成,采用激光加热,拉制稳定的纳米尖端,拉制尖端长度为20nm;玻璃纳米管1内注入离子溶液2,采用的离子溶液2为KCL溶液,电压可调式电源3一端与纳米玻璃纳米管1的尖端相接,另一端与挡板5相接;挡板5采用导电性良好的金属基复合材料,作为电源的低电压端,与高压端形成电场。
一种纳米喷射微型推进器的应用:将纳米喷射微型推进器安装在微纳卫星内。
本发明纳米喷射微型推进器用硅酸盐玻璃纳米管1作喷嘴,注入离子溶液2,离子溶液2在压力和毛细作用下运动至玻璃纳米管1末端。在玻璃纳米管1尖端施加电场,离子溶液2在电场的作用下喷出玻璃纳米管1形成射流,并与倾斜挡板(接地板)碰撞产生作用力,使推进器产生推力,推动微纳卫星运动。
本发明离子溶液2先在压力和毛细作用下流动至玻璃纳米管1尖端处,由于尺寸效应,在压力作用下离子溶液2不能喷出纳米管,所以在纳米管底部施加电压,离子溶液2在电压作用下喷出管口,离子溶液2喷射至接地挡板5上产生反作用力,改变微纳卫星的姿态或运动轨迹。纳米管尖端所需电压较小,能量消耗小,这是该推进器的优势之一。
本发明的玻璃纳米管1激光拉制而成,采用激光加热,可拉制稳定的纳米尖端,可拉制尖端长度为20nm。采用的离子溶液2为电解质溶液,挡板5采用导电性良好的金属基复合材料,作为电源的低电压端,以便与高压端形成电场。采用的电源为电压可调式电源3,为离子喷出提供能量。
纳米喷射微型推进器的整个喷射过程如图2-4所示;离子溶液2首先在一定压力和毛细作用的作用下运动至玻璃纳米管1尖端(如图2所示);由于尺寸效应,需要增大压强才能使离子溶液2继续推进,但会使玻璃纳米管1破裂。所以在纳米管端部提供一个电压,以推动离子溶液2继续运动(如图3所示);离子溶液2喷出后,在电源所形成的电场作用下运动至挡板5(如图4所示),离子溶液2和挡板5碰撞后产生反作用力,微纳卫星会在反作用力的作用下运动,从而实现姿态调整或变轨。我们可以根据需要在不同的方位进行安装,以实现不同姿态的调整或不同方向的变轨,也可以进行阵列安装以获得不同的推力范围,从而改善该推进器的机动性。该推进器具有比冲可控,灵活简单,成本低等特点。
实施例2
与实施例1基本相同,所不同的是:玻璃纳米管1直径为100nm;拉制尖端长度为100nm;玻璃纳米管1为石英纳米管。
实施例3
与实施例1基本相同,所不同的是:纳米喷射微型推进器的应用:将纳米喷射微型推进器根据需要安装在微纳卫星内不同的方位。能实现不同姿态的调整或不同方向的变轨。
实施例4
与实施例1基本相同,所不同的是:如图5所示,纳米喷射微型推进器的应用:将两个以上纳米喷射微型推进器进行阵列安装在微纳卫星内。纳米喷射微型推进器在微纳卫星上可以进行阵列安装,以提供更大的推力和进行不同方向的调整。纳米管尺寸小,因此推进器达到的精度高,以实现高精度控制。这些特点对于微纳卫星的控制都是有利的。
以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对各设施位置进行调整,这些调整也应视为本发明的保护范围。

Claims (10)

1.一种纳米喷射微型推进器,其特征在于:包括玻璃纳米管(1)、离子溶液(2)、电压可调式电源(3)、连接机构(4)和挡板(5);所述玻璃纳米管(1)一端设有尖端,离子溶液(2)设在玻璃纳米管(1)内,电压可调式电源(3)一端与纳米玻璃纳米管(1)的尖端相接,另一端与挡板(5)相接;挡板(5)设在纳米玻璃纳米管(1)的尖端外侧,挡板(5)通过连接结构与玻璃纳米管(1)外壁相接。
2.如权利要求1所述的纳米喷射微型推进器,其特征在于:所述玻璃纳米管(1)为硅酸盐纳米管或石英纳米管。
3.如权利要求2所述的纳米喷射微型推进器,其特征在于:所述玻璃纳米管(1)直径为20-100nm。
4.如权利要求1所述的纳米喷射微型推进器,其特征在于:所述挡板(5)为倾斜接地挡板。
5.如权利要求3所述的纳米喷射微型推进器,其特征在于:所述挡板(5)为金属基复合材料。
6.如权利要求1-5任意一项所述的纳米喷射微型推进器,其特征在于:所述离子溶液(2)为电解质溶液。
7.权利要求1-6任意一项所述的纳米喷射微型推进器的制备方法,其特征在于:推进器用玻璃纳米管(1)作喷嘴,玻璃纳米管(1)采用激光拉制而成,采用激光加热,拉制稳定的纳米尖端,拉制尖端长度为20-100nm;玻璃纳米管(1)内注入离子溶液(2),电压可调式电源(3)一端与纳米玻璃纳米管(1)的尖端相接,另一端与挡板(5)相接;挡板(5)采用导电性良好的金属基复合材料,作为电源的低电压端,与高压端形成电场。
8.权利要求1-6任意一项所述的纳米喷射微型推进器的应用,其特征在于:将纳米喷射微型推进器安装在微纳卫星内。
9.如权利要求8所述的纳米喷射微型推进器的应用,其特征在于:将纳米喷射微型推进器根据需要安装在微纳卫星内不同的方位。
10.如权利要求8所述的纳米喷射微型推进器的应用,其特征在于:将两个以上纳米喷射微型推进器进行阵列安装在微纳卫星内。
CN201710190112.1A 2017-03-21 2017-03-21 一种纳米喷射微型推进器、其制备方法及其应用 Active CN107416759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710190112.1A CN107416759B (zh) 2017-03-21 2017-03-21 一种纳米喷射微型推进器、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710190112.1A CN107416759B (zh) 2017-03-21 2017-03-21 一种纳米喷射微型推进器、其制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107416759A true CN107416759A (zh) 2017-12-01
CN107416759B CN107416759B (zh) 2019-03-29

Family

ID=60423650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710190112.1A Active CN107416759B (zh) 2017-03-21 2017-03-21 一种纳米喷射微型推进器、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107416759B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109018443A (zh) * 2018-07-03 2018-12-18 东南大学 气体喷射与电喷射一体化混合驱动装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020023427A1 (en) * 2000-03-27 2002-02-28 Mojarradi Mohammad M. Micro-colloid thruster system
CN1718531A (zh) * 2005-06-09 2006-01-11 江苏大学 利用真空“零点能”实现驱动的量子微型推进器
CN201917552U (zh) * 2010-12-22 2011-08-03 东南大学 一种基于玻璃微管的单纳米孔传感器
CN102320555A (zh) * 2010-12-07 2012-01-18 东南大学 基于玻璃微管的单纳米孔制备及辨识介质的方法
CN102374146A (zh) * 2010-08-09 2012-03-14 中国科学院微电子研究所 脉冲激光等离子体电混合微推进装置及方法
CN103600854A (zh) * 2013-11-25 2014-02-26 北京卫星环境工程研究所 利用空间等离子体和磁场作用的航天器助推系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020023427A1 (en) * 2000-03-27 2002-02-28 Mojarradi Mohammad M. Micro-colloid thruster system
CN1718531A (zh) * 2005-06-09 2006-01-11 江苏大学 利用真空“零点能”实现驱动的量子微型推进器
CN102374146A (zh) * 2010-08-09 2012-03-14 中国科学院微电子研究所 脉冲激光等离子体电混合微推进装置及方法
CN102320555A (zh) * 2010-12-07 2012-01-18 东南大学 基于玻璃微管的单纳米孔制备及辨识介质的方法
CN201917552U (zh) * 2010-12-22 2011-08-03 东南大学 一种基于玻璃微管的单纳米孔传感器
CN103600854A (zh) * 2013-11-25 2014-02-26 北京卫星环境工程研究所 利用空间等离子体和磁场作用的航天器助推系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109018443A (zh) * 2018-07-03 2018-12-18 东南大学 气体喷射与电喷射一体化混合驱动装置

Also Published As

Publication number Publication date
CN107416759B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
US11534833B2 (en) Method for laser-assisted manufacturing
Huang et al. Electrohydrodynamic direct-writing
Jiang et al. All electrospray printed perovskite solar cells
Zou et al. Tip-assisted electrohydrodynamic jet printing for high-resolution microdroplet deposition
CN102923647A (zh) 间距与形貌可调控的金属纳米颗粒有序阵列的制备方法
Seong et al. Spontaneous self-welding of silver nanowire networks
CN107416759B (zh) 一种纳米喷射微型推进器、其制备方法及其应用
CN102653003A (zh) 一种在换热管管壁上形成金属多孔层的方法
WO2010028712A1 (en) Capillarity-assisted, mask-less, nano-/micro-scale spray deposition of particle based functional 0d to 3d micro- and nanostructures on flat or curved substrates with or without added electrocapillarity effect
KR20160052917A (ko) 액체 방울을 이용한 에너지 전환 장치
CN101638015A (zh) 用等离子体提高铝版表面能的方法
CN100413598C (zh) 一种电子浆料雾化沉积直写装置
WO2014179361A1 (en) System and method for high-voltage ac-powered electrospray
WO2015100730A1 (zh) 一种直写式真空蒸发系统及其方法
KR101038187B1 (ko) 온도조절장치가 구비된 고상파우더 진공증착장치 및 고상파우더 진공증착방법
Nguyen et al. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation
CN104538550B (zh) 制造电化学晶体管的方法
CN100515776C (zh) 基于碳纳米管微气泡发生器的喷印阀及其制备方法
CN113650285B (zh) 热熔电流体动力学喷印三维微结构的喷印方法及设备
CN110126258A (zh) 一种多针尖阵列辅助的电流体动力学喷印喷头
CN106270855A (zh) 一种微孔加工装置及加工方法
CN109018443B (zh) 气体喷射与电喷射一体化混合驱动装置
CN108819218B (zh) 一种电流体直写喷嘴和控制方法
CN109899261A (zh) 一种适用于微牛级场发射电推进系统的喷嘴加工工艺
CN206448909U (zh) 铁电微等离子体推进器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant