CN107413345B - 一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用 - Google Patents

一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用 Download PDF

Info

Publication number
CN107413345B
CN107413345B CN201710386395.7A CN201710386395A CN107413345B CN 107413345 B CN107413345 B CN 107413345B CN 201710386395 A CN201710386395 A CN 201710386395A CN 107413345 B CN107413345 B CN 107413345B
Authority
CN
China
Prior art keywords
graphene oxide
foamed nickel
dimensional
nickel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710386395.7A
Other languages
English (en)
Other versions
CN107413345A (zh
Inventor
孟祖超
李成希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201710386395.7A priority Critical patent/CN107413345B/zh
Publication of CN107413345A publication Critical patent/CN107413345A/zh
Application granted granted Critical
Publication of CN107413345B publication Critical patent/CN107413345B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用,包括以下步骤:制备氧化石墨烯,超声得到氧化石墨烯分散体系;将三维泡沫镍经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗,将超声水洗后的三维泡沫镍浸泡在步骤1)得到的氧化石墨烯分散体系中4~6min后,取出并在空气中晾干,得到氧化石墨烯@泡沫镍复合材料;以氧化石墨烯@泡沫镍复合材料作为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1M的CH3COONa和0.02M的CuSO4的混合溶液为支持电解质,进行恒电位沉积得到三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂,本发明具备工艺简单,反应条件温和、反应时间短且能回收利用的特点。

Description

一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方 法和应用
技术领域
本发明属于光催化剂技术领域,具体涉及一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用。
背景技术
随着石化能源需求量的大幅增加,聚合物驱油在三次采油中得到了广泛的应用。聚合物驱的广泛应用不仅创造了巨大的经济收益,同时也引发了严重的环境危机。聚合物驱采油废水中不仅含油量高,而且含有大量的聚合物。聚合物的存在不仅增加了污水处理的难度,同时也会在管道器械内引起磨损甚至造成水源中毒。目前,HPAM的降解方式主要有光催化降解、机械降解、热降解、生物降解等,但大多数工艺对HPAM降解能力较差,还要消耗大量能源,也有可能引起二次污染。多相光催化氧化法,是一种理想的降解HPAM的环境污染治理技术。性能优良的光催化剂更是光催化领域研究的热点。虽然Cu2O的光电性能不易控制,但其在可见光区有宽吸收带<600nm),且具有无毒、较高的光电理论转化效率(可高达18%),以及制备成本低廉的优点,使其成为一种理想的可见光催化材料。氧化石墨烯是一种新型的二维碳材料,其带隙几乎为零,具有导电性高,比表面积大等优点,其巨大的比表面积既能提高对反应物的吸附量,又能为催化反应提供更多反应位。石墨烯作为光催化剂的载体,其二维平面结构有利于提高催化剂的分散程度。将Cu2O与石墨烯复合,能有效俘获光生电子,提高了光生电子-空穴对的分离效率,可以使得光催化剂的量子效率得到提高,是一种性能优良的可见光光催化剂。目前已有许多研究致力于将Cu2O与石墨烯复合来提高Cu2O光催化效率。An等人(Cu2O/Reduced Graphene Oxide Composites for thePhotocatalytic Conversion of CO2,ChemSusChem 2014,7,1086-1093)采用微波法制备了Cu2O/rGO复合光催化剂,但微波反应时间较长3h),反应温度(150℃)较高。Tran等人(Phong D.Tran,Sudip K.Batabyal,Stevin S.Pramana,James Barber,Lydia H.Wong,SayChye Joachim Loo,A cuprous oxide–reduced graphene oxide(Cu2O-rGO)compositephotocatalyst for hydrogen generation:employing rGO as an electron acceptorto enhance the photocatalytic activity and stability of Cu2O,Nanoscale,2012,4,3875-3878)、Tu等人(Kai Tu,Qiyang Wang,Ang Lu,Lina Zhang,Portable Visible-Light Photocatalysts Constructed from Cu2O Nanoparticles and Graphene Oxidein Cellulose Matrix,J.Phys.Chem.C 2014,118,7202-7210)和Gao等人(Zhiyong Gao,Junli Liu,Fang Xu,Dapeng Wu,Zhuangli Wu,Kai Jiang,One-pot synthesis ofgrapheneecuprous oxide composite with enhanced photocatalytic activity,SolidState Sciences 2012,14,276-280)先在碱液中制备Cu(OH)2,再分别以葡萄糖、水合肼和抗坏血酸为还原剂,通过化学还原,制备了Cu2O/rGO复合光催化剂。这种方法制备的Cu2O/rGO复合材料能提高了光生电子空穴的分离效率,展现出了良好的光催化性能,但制备程序复杂,反应时间长。这些可见光催化剂均为粉状固体,虽然对废水中的有机污染物有较高的降解率,但在降解过程中因漂浮无法沉降,很难回收再利用,带来了二次污染,增加了催化剂和废水的分离成本,限制了其在工业化应用。
发明内容
针对现有技术中的以上问题,本发明的目的是提供一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用,具备工艺简单,反应条件温和、反应时间短且能回收利用的特点。
为实现以上目的,本发明制作步骤如下:一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法,包括以下步骤:
步骤1),制备氧化石墨烯,超声得到氧化石墨烯分散体系;
步骤2),将三维泡沫镍NF经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗,将超声水洗后的三维泡沫镍浸泡在步骤1)得到的氧化石墨烯分散体系中4~6min后,取出并在空气中晾干,得到氧化石墨烯@泡沫镍GO@NF复合材料;
步骤3),以步骤2)中得到的氧化石墨烯@泡沫镍GO@NF复合材料作为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1M的CH3COONa和0.02M的CuSO4的混合溶液为支持电解质,进行恒电位沉积得到三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂。
步骤1)中的氧化石墨烯采用Hummer法制备。
步骤1)中得到的氧化石墨烯分散体系的浓度为2mg/mL~4mg/mL。
步骤3)中恒电位电压为-0.2V~-0.3V。
步骤3)中恒电位沉积时间为1h~2h。
步骤3)中支持电解质的pH值为6~7。
步骤2)中超声水洗后的三维泡沫镍尺寸为1×5cm。
一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法制得的三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂结合H2O2在油气田废水中降解聚丙烯酰胺的应用。
H2O2的加量为15~25mmol/L。
与现有技术相比,本发明至少具有以下有益效果,本发明实现了以三维泡沫镍(NF)负载Cu2O/GO为催化剂降解油气田废水中聚丙烯酰胺的目的,三维泡沫镍NF为载体,Cu2O/GO作为光催化剂,可见光作为激发,通过与污染物分子的界面相互作用实现特殊的催化或转化效应,使周围的氧气及水分子激发成极具氧化力的自由负离子,从而达到降解环境中有害有机物质的目的,该方法不会造成资源浪费与附加污染的形成,且操作简便,而且,因为泡沫镍本身就是片层材料,不是粉末,所以很好回收利用,从而能够重复利用,是一种绿色环保的高效水处理技术。
附图说明
图1a是三维泡沫镍NF的扫描电镜图;
图1b是氧化石墨烯@泡沫镍GO@NF的扫描电镜图;
图1c是20000倍数的三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂Cu2O/GO@NF扫描电镜图;
图1d是5000倍数的Cu2O/GO@NF扫描电镜图;
图2是Cu2O/GO@NF的EDS图;横坐标表示X射线能量;纵坐标X射线计数,即强度值与元素含量有关,Counts,计数量;单位是cps每秒计数量)。
图3a是NF的XRD图;XRD中横坐标是x射线的入射角度的两倍,纵坐标就是衍射后的强度;
图3b是GO@NF的XRD图;XRD中横坐标是x射线的入射角度的两倍,纵坐标就是衍射后的强度;
图3c是Cu2O/GO@NF的XRD图;XRD中横坐标是x射线的入射角度的两倍,纵坐标就是衍射后的强度;
图4是本发明的催化剂光催化降解油田污水中HPAM的效果图。
具体实施方式
下面结合具体实施实例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
本发明的制备方法包括以下步骤:
1)采用Hummer法制备氧化石墨烯,超声得到2mg/mL~4mg/mL的氧化石墨烯分散体系;
2)将三维泡沫镍(NF)经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗,将预处理过的三维泡沫镍(1×5cm)浸泡在2~4mg/mL氧化石墨烯分散体系中5min后,取出并在空气中晾干,得到GO@NF复合材料;
3)以氧化石墨烯@泡沫镍(GO@NF)为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1M CH3COONa和0.02M CuSO4混合溶液为支持电解质,其pH=6.0~7.0,进行恒电位沉积1h~2h后得到三维立体的NF负载Cu2O/GO复合光催化剂,其中恒电位电压为-0.2V~-0.3V。
一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法制得的三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂结合H2O2在油气田废水中降解聚丙烯酰胺的应用,H2O2的加量为15~25mmol/L。
实施例1
(1)采用Hummer法制备氧化石墨烯,超声得到4mg/mL的氧化石墨烯分散体系。
(2)将泡沫镍经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗。将预处理过的NF尺寸(1×5cm)浸泡在4mg/mL氧化石墨烯分散体系中5min后,取出并在空气中晾干,得到GO@NF复合材料。
(3)以GO@NF为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1MCH3COONa和0.02M CuSO4混合溶液为支持电解质,pH=6.0,在-0.2V下进行恒电位沉积1h后得到三维立体的NF负载Cu2O/GO复合光催化剂。
将制备的Cu2O/GO@NF复合材料尺寸(1×5cm),置于含92mg/L HPAM的油田污水中,加入20mmol/L H2O2,磁子搅拌,可见光光源照射2h后,HPAM的降解率为94%。
实施例2
(1)采用Hummer法制备氧化石墨烯,超声得到2mg/mL的氧化石墨烯分散体系。
(2)将泡沫镍经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗。将预处理过的NF(1×5cm)浸泡在2mg/mL氧化石墨烯分散体系中5min后,取出并在空气中晾干,得到GO@NF复合材料。
(3)以GO@NF为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1MCH3COONa和0.02M CuSO4混合溶液为支持电解质,pH=6.5,在-0.25V下进行恒电位沉积2h后得到三维立体的NF负载Cu2O/GO复合光催化剂。
(4)将制备的Cu2O/GO@NF复合材料尺寸(1×5cm),置于含94mg/L HPAM的油田污水中,加入15mmol/L H2O2,磁子搅拌,可见光光源照射2h后,HPAM的降解率为92%。
实施例3
(1)采用Hummer法制备氧化石墨烯,超声得到3mg/mL的氧化石墨烯分散体系。
(2)将泡沫镍经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗。将预处理过的NF1×5cm)浸泡在3mg/mL氧化石墨烯分散体系中5min后,取出并在空气中晾干,得到GO@NF复合材料。
(3)以GO@NF为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1MCH3COONa和0.02M CuSO4混合溶液为支持电解质,pH=7.0,在-0.3V下进行恒电位沉积1.5h后得到三维立体的NF负载Cu2O/GO复合光催化剂。
(4)将制备的Cu2O/GO@NF复合材料尺寸(1×5cm),置于含95mg/L HPAM的油田污水中,加入25mmol/L H2O2,磁子搅拌,可见光光源照射2h后,HPAM的降解率为92%。
图1a是NF的扫描电镜图,从图中可以看出泡沫镍拥有三维立体结构,可作为光催化剂的良好载体;图1b是GO@NF的扫描电镜图,从图中可看到石墨烯的片层修饰在了泡沫镍表面。石墨烯负载在泡沫镍上不仅增加了催化剂支撑材料的导电性能,同时大的比表面积有利于活性物质与电解质的充分接触;图1c和图1d是不同放大倍数的Cu2O/GO@NF扫描电镜图。由图可见,Cu2O在GO@NF上均匀覆盖,呈现微米级的立方块状结构。
图2是Cu2O/GO@NF的EDS图,从图中可见复合材料的主要元素有Cu、Ni、C、O,表明Cu2O/GO@NF已成功制备。
图3a是NF的XRD图,2θ=44.4°和51.8°对应的是镍晶面(111)和(200)的两个衍射峰;图3b是GO@NF的XRD图,2θ=44.4°和51.8°对应的是镍晶面(111)和(200)的两个衍射峰,2θ=10.0°出现微弱的氧化石墨烯的特征峰,表明GO已负载在NF上;图3c是Cu2O/GO@NF的XRD图,2θ=44.4°和51.8°对应的是镍晶面(111)和(200)的两个衍射峰;2θ=36.5°和42.4°出现较弱特征峰,分别对应的是Cu2O的(111)和(200)晶面。
图4是Cu2O/GO@NF光催化降解油田污水中HPAM的效果图,取长庆油田某采油厂含HPAM污水进行试验,光降解伊始测得HPAM含量为92.3mg/L,在模拟光源下,在加入18mmol/LH2O2条件下进行HPAM的光催化降解,所得结果如图4所示。从图4可见,HPAM降解率可达94%。

Claims (1)

1.一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的应用,其特征在于,包括以下步骤:
步骤1),制备氧化石墨烯,超声得到氧化石墨烯分散体系;
步骤2),将三维泡沫镍经丙酮浸泡1h,再用1mol/L盐酸处理10min,然后再超声水洗,将超声水洗后的三维泡沫镍浸泡在步骤1)得到的氧化石墨烯分散体系中4~6min后,取出并在空气中晾干,得到氧化石墨烯@泡沫镍复合材料;
步骤3),以步骤2)中得到的氧化石墨烯@泡沫镍复合材料作为工作电极,铂电极为辅助电极,甘汞电极为参比电极,以0.1M的CH3COONa和0.02M的CuSO4的混合溶液为支持电解质,进行恒电位沉积得到三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂;
所述步骤3)中恒电位电压为-0.2V~-0.3V;
所述步骤3)中恒电位沉积时间为1h~2h;
步骤3)中支持电解质的pH值为6~7;
步骤1)中的氧化石墨烯采用Hummer法制备;
步骤1)中得到的氧化石墨烯分散体系的浓度为2mg/mL~4mg/mL;
中超声水洗后的三维泡沫镍尺寸为1×5cm;
三维泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂结合H2O2在油气田废水中降解聚丙烯酰胺的应用;
H2O2的加量为15~25mmol/L;
可见光光源照射2h降解聚丙烯酰胺。
CN201710386395.7A 2017-05-26 2017-05-26 一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用 Expired - Fee Related CN107413345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710386395.7A CN107413345B (zh) 2017-05-26 2017-05-26 一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710386395.7A CN107413345B (zh) 2017-05-26 2017-05-26 一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN107413345A CN107413345A (zh) 2017-12-01
CN107413345B true CN107413345B (zh) 2020-07-24

Family

ID=60428331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710386395.7A Expired - Fee Related CN107413345B (zh) 2017-05-26 2017-05-26 一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN107413345B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968602B (zh) * 2021-10-25 2023-11-24 中国科学院合肥物质科学研究院 一种电催化去除水中硝化氮的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944709A (zh) * 2016-06-03 2016-09-21 济南大学 一种三维石墨烯-纳米二氧化钛复合光催化剂及其制备方法
CN106111136A (zh) * 2016-06-21 2016-11-16 上海交通大学 一种石墨烯复合八面体氧化亚铜材料的制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553034B (zh) * 2013-11-12 2015-04-15 哈尔滨工业大学 一种三维孔状石墨烯骨架的制备方法
CN104043463B (zh) * 2014-06-27 2016-05-25 江苏大学 一种可见光响应的降解聚丙烯酰胺的光催化剂的制备方法及其应用
CN106334562A (zh) * 2016-09-21 2017-01-18 郑州峰泰纳米材料有限公司 石墨烯‑泡沫镍负载纳米TiO2的光催化材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944709A (zh) * 2016-06-03 2016-09-21 济南大学 一种三维石墨烯-纳米二氧化钛复合光催化剂及其制备方法
CN106111136A (zh) * 2016-06-21 2016-11-16 上海交通大学 一种石墨烯复合八面体氧化亚铜材料的制备方法及其应用

Also Published As

Publication number Publication date
CN107413345A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN108033522B (zh) 一种电催化耦合高级氧化体系
CN107952464B (zh) 一种新型光催化材料及双光催化电极自偏压污染控制系统
CN112774696B (zh) 一种利用太阳能分解水产氢的异质结构催化剂及制备方法
Wang et al. Photocatalytic removal of MB and hydrogen evolution in water by (Sr0. 6Bi0. 305) 2Bi2O7/TiO2 heterostructures under visible-light irradiation
CN111495367A (zh) 一种磁性聚苯胺-多孔碳-Fe3O4光芬顿催化剂的制备方法及其应用
Dessie et al. Nanocomposites as efficient anode modifier catalyst for microbial fuel cell performance improvement
CN110681404A (zh) 一种用于电解水阴极析氢反应的片状碳化钼催化剂及其制备方法和应用
Zheng et al. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2
CN114797818A (zh) 一种TiO2/Ti3C2-BiOBr光催化剂及其制备方法与应用
Zhang et al. TaCxOy: a photocatalytic promoter on g-C3N4 for visible-light Cr6+ reduction
CN106076312B (zh) 一种Nb(OH)5纳米线/还原氧化石墨烯复合光催化剂及其制备方法与应用
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
Chen et al. Rational designing of dual-functional photocatalysts for simultaneous hydrogen generation and organic pollutants degradation over Cd0. 5Mn0. 5S/CoP
CN111203258A (zh) 一种光催化剂s-c3n4的制备方法及应用
CN107413345B (zh) 一种泡沫镍负载氧化亚铜复合氧化石墨烯光催化剂的制备方法和应用
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN110639488A (zh) 生物质基碳材料在二氧化碳电化学还原的应用
CN116174009B (zh) 一种氮硫掺杂多孔碳催化剂及其应用
CN109675545B (zh) 一种具有多层结构的SnOx催化剂、其制备方法和应用
CN109759116B (zh) 光电耦合促进全氟化合物分解净化的方法
CN113502497B (zh) 一种低温等离子体调控性能的电催化剂及其制备方法与应用
Zhang et al. Sewage Sludge-Derived catalyst for extremely efficient electrocatalytic elimination of organic pollutants in water
CN114534746A (zh) 一种基于异质结光催化剂和甲醛水溶液的光催化制氢体系
Jan et al. Exploration of waste-generated nanocomposites as energy-driven systems for various methods of hydrogen production; A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200724

CF01 Termination of patent right due to non-payment of annual fee