CN107409800A - 利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法 - Google Patents

利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法 Download PDF

Info

Publication number
CN107409800A
CN107409800A CN201710474247.0A CN201710474247A CN107409800A CN 107409800 A CN107409800 A CN 107409800A CN 201710474247 A CN201710474247 A CN 201710474247A CN 107409800 A CN107409800 A CN 107409800A
Authority
CN
China
Prior art keywords
lettuce
concentration
romaine lettuce
stress
salicylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710474247.0A
Other languages
English (en)
Inventor
谭华强
李焕秀
刘继
孙国超
唐懿
谢永东
陈晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Agricultural University
Original Assignee
Sichuan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Agricultural University filed Critical Sichuan Agricultural University
Priority to CN201710474247.0A priority Critical patent/CN107409800A/zh
Publication of CN107409800A publication Critical patent/CN107409800A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种利用水杨酸显著降低叶用莴苣镉含量的方法,其包括如下步骤:当叶用莴苣幼苗成熟后,用浓度为25~200μmol/L的水杨酸水溶液进行叶面喷施,喷施量以叶面滴水为度,每隔2天喷施1次,共喷施3次。本发明不仅能缓解Cd胁迫对生菜生长和光合的抑制,而且显著降低了生菜硝酸盐和地上部Cd含量,显著提高了生菜品质;还降低了Cd胁迫下生菜MDA含量和电导率,缓解Cd胁迫对细胞膜的损伤。

Description

利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法
技术领域
本发明属于蔬菜种植技术领域,具体涉及利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法。
背景技术
据我国地质调查局发布的《中国耕地地球化学调查报告(2015)》显示,我国有232万hm2重金属中重度污染或超标耕地,占总耕地的16.1%。2014年4月17日环境保护部和国土资源部联合公布了全国土壤污染调查公报,指出我国土壤环境状况令人堪忧,Cd等重金属污染问题相对比较突出,从污染分布情况看,南方土壤污染较重,北方土壤污染相对较轻,西南、中南地区土壤重金属超标范围较大。
Cd含量分布呈现出从东北到西南、从西北到东南方向逐渐升高的态势,Cd点位超标率为7.0%,在污染土壤中占比最大,其中,轻微污染、轻度污染、中度污染、重度污染的比例分别为5.2%,0.8%,0.5%,0.5%。污染土壤的Cd含量为2.5~23.0mg/kg,重污染区表层土壤的Cd含量高出底层土壤几十倍甚至更高。
根据农业部环境监测系统检测数据显示,与国家标准相比,蔬菜中Cd含量超标率高达23.5%。通过对成都地区的9种蔬菜152个样品的可食部分中重金属元素分析,发现Cd是成都地区蔬菜中的主要污染元素之一,在检测样品中,Cd的超标率为29.4%,最高超标5.6倍。
由此可见,目前我国Cd污染现状不容乐观,己威胁到食品安全和人体健康,须引起高度重视。
不同植物对不同重金属的吸收有一定规律,一般而言,蔬菜可食部分吸收重金属的比率大于粮食作物,同种蔬菜对重金属Cd的富集大于其他重金属元素。但蔬菜对Cd的吸收因蔬菜种类、品种以及器官不同而不同。
植物对矿质营养的吸收具有基因型差异,同样蔬菜对Cd的吸收、累积也具有基因型差异,这种差异是引起不同蔬菜Cd含量差异的重要原因之一。
李博文等研究发现:茄子、丝瓜、番茄、辣椒等为Cd低积累型蔬菜;白萝卜、菜花、莴苣、大葱等为中度积累型;芹菜、茴香、香菜、蓬蒿为重度积累型;白菜、油菜属极重度积累型。马往校等研究几种蔬菜中Cd的污染状况,结果表明,不同的蔬菜中Cd的积累规律为芹菜>韭菜>莴笋>小白菜>花菜>西葫芦、黄瓜、青椒,芹菜和莴笋对Cd具有较强的吸收能力,超标最严重。
同种蔬菜的不同品种对重金属的吸收也存在较大差异。以胡萝卜为例,Nairobi对Cd的吸收量为1.215mg/kg,而Amsterdam的吸收量则为2.521mg/kg,其它5种蔬菜的不同品种对镉离子也存在差异性吸收。王松良等研究发现13种不同基因型的小白菜茎叶中Cd含量差别很大。相同Cd浓度下,不同小白菜品种间Cd含量相差最高达4.3倍,且外界Cd浓度越高,品种间差异越大。
目前,对于重金属胁迫下的植物生长的研究,主要是通过研究植物内调节其生长的物质来进行。目前已知的植物生长调节因子是人们在提高植物抗逆性时考虑的主要因素。不过,现有已知植物生长调节因子在调节植物抗逆性时,专一性较差,难以形成对于多种胁迫情况统一的处理办法,甚至不同胁迫情况的处理办法还会大相径庭。对于重金属胁迫而言,由于该胁迫区别于高温、高盐等一般胁迫,在处理重金属胁迫时,不仅要提高蔬菜的抗氧化活性和植物生长性能,更为重要的是需要降低重金属在蔬菜中的积累,才能达到蔬菜种植的目的。
目前,对于解决生菜的重金属胁迫(特别是镉胁迫)的研究还相对较少,原因在于目前对于重金属对于生菜的影响的机理尚未研究透彻,相应的处理办法仍在摸索当中。
《外源一氧化氮对镉胁迫下花生与生菜生长的缓解效应及其机理研究》通过对生菜施用外源一氧化碳显著降低了生产在镉胁迫下的镉含量。
《水杨酸对镉胁迫下莴苣幼苗生长和氧化胁迫的缓解效应》研究了对于茎用莴苣施用水杨酸对于镉胁迫的缓解效应。不过该报道在对于镉积累方面的探究中,提到水杨酸对于Cd从根系向上部的运输具有促进作用。在其研究基础上,施用外源水杨酸有可能对降低镉含量是无益的。另外,该报道对于如何提高镉胁迫下生菜品质方面,没有进行研究。
因此,如何降低在镉胁迫下生菜中的镉含量并提高生菜的品质,对于生菜种植技术领域而言,是亟待研究的技术问题。
发明内容
针对现有技术的难题,本发明的目的在于提供一种利用水杨酸显著降低叶用莴苣镉含量的方法,其包括如下步骤:当叶用莴苣幼苗成熟后,用浓度为25~200μmol/L的水杨酸水溶液进行叶面喷施,喷施量以叶面滴水为度,每隔2天喷施1次,共喷施3次。
优选的,所述水杨酸水溶液的浓度为50~100μmol/L。
更优选的,所述水杨酸水溶液的浓度为50μmol/L。
优选的,在利用水杨酸水溶液进行叶面喷施时,喷施时间为清晨。
优选的,第1次喷施水杨酸水溶液的时间为叶用莴苣幼苗成熟后的第3天。
所用叶用莴苣为玻璃生菜。
本发明的有益效果:
1、本发明不仅能缓解Cd胁迫对生菜生长和光合的抑制,而且显著降低了生菜硝酸盐和地上部Cd含量,显著提高了生菜品质;
2、降低了Cd胁迫下生菜MDA含量和电导率,缓解Cd胁迫对细胞膜的损伤。
具体实施方式
下面通过实施例对本发明进行具体描述,有必要在此指出的是以下实施例只是用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述发明内容所做出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
选择大小一致,籽粒饱满的生菜种子(购买自广东科农蔬菜种业有限公司,品种为四川地区常见的玻璃生菜),在10%(m/m)过氧化氢溶液中消毒10min,随后用超纯水洗净,均匀放置于垫有滤纸的培养皿中,保持充足水分,于20℃人工培养箱中进行催芽。种子露白0.5cm后,播于装有干净河沙的搪瓷托盘里进行沙基培养。根据生长状况,每天适时适量向沙基中喷淋1/2Hoagland营养液,培养箱设置为23℃/18℃(昼/夜),光照14h。待幼苗4片真叶完全展开时,选择长势一致的壮苗移栽至装有干净河沙(起固定作用)的10cm×10cm(底×高)塑料花盆中(花盆底部垫有纱布,防止河沙漏出),每盆2株,并将花盆置于高8cm的塑料盘中,盘中装满含有Cd的Hoagland全营养液,Cd浓度为10mg/L(以CdCl2·2.5H2O2加入),每2d更换一次营养液。待移栽的生菜幼苗完全成活(2d)后,用不同浓度的ABA(脱落酸,下同)溶液于9:00喷布生菜叶片,以叶片滴水为度,每隔2d一次,共喷3次。以不添加Cd全营养液栽培,喷施清水的生菜为对照(CK),含10mg/L Cd全营养液栽培,喷施清水的生菜为对照1(CK1)。设置4个浓度梯度(1μmol/L、5μmol/L、10μmol/L、20μmol/L),每个处理重复3次。
在喷施ABA 30d后,生菜成熟期采样。整株测定生长及形态指标后,按地上部(可食部)、根部分别保存鲜样和干样。鲜样用液氮采样后,于超低温冰箱中-80℃保存以备生理指标和品质指标的测定;干样用烘箱105℃杀青15min后以75℃烘干至恒重,粉碎后用于Cd含量的测定。
生长指标及生物量:
株高、根长采用毫米刻度尺测量,茎粗用游标卡尺测量。
生物量:用自来水将植物样品整株洗净后,再用去离子水反复冲洗,拭干。将生菜分为地上部和根部,用电子天平称取鲜重。随后将地上部与根系分装,用烘箱105℃杀青15min,75℃烘干至恒重,称取干重。
光合色素及光合参数:
光合色素含量采用丙酮乙醇混合液浸提法[84]测定。
选取生菜的第2-3片功能叶,用LI-6400XT(LI-COR,美国)便携式光合仪测定Pn、Gs、Tr、Ci和Ls,测定时设定内源光强为1000μmol·m-2·s-1,CO2浓度为400μl·L-1,温度为25℃。
细胞膜透性、渗透调节物质及根系活力:
MDA含量采用硫代巴比妥酸法测定;脯氨酸含量采用磺基水杨酸法;根系活力采用氯化三苯基四氮唑(TTC)法测定。
细胞膜透性采用电导法测定:称取0.2g生菜样品放入20mL去离子水中,常温振荡30min,测定溶液电导率(A);然后将生菜样品与去离子水一起于100℃下煮沸20min,使用去离子水调整至加热前体积,测定溶液电导率(B)。细胞膜透性(%)=电导率(A)/电导率(B)×100%
抗氧化酶活性:
SOD活性采用氮蓝四唑(NBT)法;POD活性采用愈创木酚法;CAT活性采用紫外吸收法。
品质指标:
可溶性蛋白含量采用考马斯亮蓝G-250染色法;可溶性糖含量采用蒽酮比色法;
硝态氮含量采用水杨酸比色法。
Cd含量:
将生菜干样用HNO3-HClO4消化,用ICP-8000电感耦合等离子体发射光谱仪(PerkinElmer,美国)测定。
数据处理:
所有数据采用Excel 2010软件进行整理;SPSS 20.0进行方差分析及相关性分析,Duncan新复极差法进行多重比较。根冠比=根系干重/地上部干重,Ls=1-Ci/Ca,转运系数=地上部Cd含量/根系Cd含量。
外源SA对Cd胁迫下生菜生长的影响
总体来看,Cd胁迫下,生菜叶片喷施SA能显著提高其株高和茎粗,分别在SA浓度为50μmol/L和100μmol/L时达到最大值,这与喷施Mel处理的结果趋势一致。喷施SA浓度为50μmol/L时,生菜株高不仅显著高于CK1,而且显著高于CK,分别比这两个处理高12.58%和4.83%。SA浓度为100μmol/L时,生菜株高比50μmol/L的处理稍低,但两处理间无显著差异。就茎粗而言,喷施SA浓度为50μmol/L、100μmol/L和200μmol/L的处理,生菜茎粗无显著差异,均显著高于CK1和喷施SA浓度为25μmol/L的处理。由表38可知,喷施SA不能使Cd胁迫下的生菜茎粗和根长恢复到正常水平。Cd污染下,生菜茎粗和根长的最大值均出现在SA浓度为100μmol/L时,分别比CK1高22.87%(P<0.05)和29.85%(P<0.05)。
表1SA对Cd胁迫下生菜生长的影响
外源SA对Cd胁迫下生菜生物量的影响
由表2可知,Cd胁迫导致生菜生物量降低,不喷施SA时(CK1),生菜地上部鲜重、地上部干重和根系干重均显著低于CK,分别降低了51.71%、59.37%和68.17%。Cd胁迫下,生菜根冠比大幅降低,CK1与CK相比,降低了21.79%。喷施SA后生菜地上部鲜重、干重和根系干重虽显著低于未受Cd胁迫的处理,但均高于CK1。随SA浓度升高,生菜生物量先增加后缓慢降低,当SA浓度为100μmol/L时,Cd胁迫下生菜地上部鲜重、干重和根系干重最大,与CK1相比,分别增加了15.01%(P<0.05)、12.28%(P<0.05)和15.38%(P<0.05)。喷施25μmol/L的SA后,生菜地上部鲜重、干重和根系干重虽比CK1大,但与之差异不显著。喷施SA后,生菜根冠比虽大幅升高,但与CK相比仍相差很大。Cd胁迫下,当SA浓度为100μmol/L时,生菜根冠比最大为0.251,与未受Cd污染的生菜相比(CK),降低了19.55%。
表2SA对Cd胁迫下生菜生物量的影响
外源SA对Cd胁迫下生菜光合色素含量的影响
Cd胁迫下,喷施50~100μmol/L的SA均提高了生菜叶绿素a,叶绿素b和类胡萝卜素含量。喷施25μmol/L和200μmol/L SA叶绿素a含量与CK1差异不显著。喷施50μmol/L和100μmol/L的SA后,生菜叶绿素a含量和CK无显著差异。生菜叶绿素b含量随SA浓度的升高而先升高后降低,50μmol/L、100μmol/L和200μmol/L SA处理的生菜,显著高于CK1,分别高出24.59%、28.42%和13.11%。喷施SA浓度为25μmol/L时,叶绿素b含量最低,与CK1差异不显著。喷施50~200μmol/L SA增加了Cd胁迫下生菜叶绿素总量,在SA浓度为100μmol/L时最高,与CK差异不显著,但显著高于CK1。就类胡萝卜素而言,喷施SA的各处理间无显著差异。
表3SA对Cd胁迫下生菜光合色素含量的影响
外源SA对Cd胁迫下生菜光合作用的影响
Cd胁迫导致生菜Pn降低,与CK相比,CK1降低了19.51%。喷施SA后,随着SA浓度的升高,Cd胁迫下生菜Pn也显著升高,但增幅减缓,喷施SA浓度为25μmol/L、50μmol/L、100μmol/L和200μmol/L时,与CK1相比,分别提高了7.52%、18.46%、22.13%和24.85%。喷施SA显著降低了Cd胁迫下生菜Gs,在SA浓度为25μmol/L时最低,与CK1相比降低了24.56%(P<0.05)。生菜Ci随SA浓度升高而降低,当SA浓度为50μmol/L、100μmol/L和200μmol/L时,各处理间Ci差异不显著,与CK1相比分别降低了13.55%(P<0.05)、14.11%(P<0.05)和14.41%(P<0.05)。生菜Ls随SA浓度升高而升高,当SA浓度为50μmol/L、100μmol/L和200μmol/L时,与CK无显著差异。
表4SA对Cd胁迫下生菜光合作用的影响
外源SA对Cd胁迫下生菜渗透调节物质及根系活力的影响
从表5可以看出,与CK相比,Cd胁迫下生菜MDA含量和电导率显著增高,CK1分别提高了60.76%(P<0.05)和48.68%(P<0.05),喷施SA后,虽与CK1相比有显著的降低,但仍显著高于CK。当SA浓度为25μmol/L、50μmol/L、100μmol/L和200μmol/L时,生菜MDA含量之间无显著差异。就电导率而言,喷施SA浓度为25μmol/L、50μmol/L、100μmol/L和200μmol/L时,分别比CK1降低了7.92%(P<0.05)、12.72%(P<0.05)、15.75%(P<0.05)和8.55%(P<0.05)。当SA浓度为25~100μmol/L时,生菜脯氨酸含量随SA浓度的升高而升高,在SA浓度为100μmol/L时达到最大值,比CK1高33.68%(P<0.05)。Cd胁迫下,生菜根系活力变化趋势与脯氨酸变化趋势一致,随SA浓度升高而先升高后略有降低,仍在SA浓度为100μmol/L时最高,比CK1高88.16%(P<0.05)。
表5SA对Cd胁迫下生菜渗透调节物质及根系活力的影响
外源SA对Cd胁迫下生菜抗氧化酶活性的影响
由表6可知,喷施SA能显著降低Cd胁迫下生菜POD和SOD活性,均在SA浓度为100μmol/L时最低,与CK1相比,分别降低了26.31%(P<0.05)和44.03%(P<0.05),但与CK相比,分别增加了32.53%(P<0.05)和64.78%(P<0.05)。当SA浓度为200μmol/L时,生菜POD活性与喷施SA浓度为25μmol/L和喷施SA浓度为50μmol/L的处理差异不显著。喷施SA后,生菜CAT活性变化趋势与喷施Mel的处理变化趋势相似,喷施SA均显著提高了Cd胁迫下生菜CAT活性,且在SA浓度为50μmol/L时最高,与CK1相比,提高了19.08%(P<0.05)。喷施SA浓度为25μmol/L、50μmol/L和200μmol/L时,各处理间CAT活性物显著差异。
表6SA对Cd胁迫下生菜抗氧化酶活性的影响
外源SA对Cd胁迫下生菜品质的影响
Cd胁迫下,生菜可溶性糖含量显著降低。喷施较高浓度(50~200μmol/L)的SA能提高Cd胁迫下生菜可溶性糖含量。由表44可以看出,当SA浓度为25μmol/L时,生菜可溶性糖含量虽比CK1高,但与CK1无显著差异。喷施100μmol/L的SA时,显著的提高了Cd胁迫下生菜可溶性含量,虽仍比CK降低了88.04%(P<0.05),但与CK1相比,提高了73.18%(P<0.05)。Cd胁迫下,硝酸盐含量最低值出现在喷施SA浓度为50μmol/L的处理,与CK1相比降低了101.39%(P<0.05),之后,随着SA浓度的升高而升高,在SA浓度为200μmol/L时,显著高于除CK1外的其他处理。生菜可溶性蛋白含量在SA浓度为50μmol/L时达到最大值,与CK和CK1相比提高了55.58%(P<0.05)和15.54%(P<0.05)。当SA浓度≥50μmol/L时,各处理间可溶性蛋白含量无显著差异(P<0.05)。
表7SA对Cd胁迫下生菜品质的影响
外源SA对Cd胁迫下生菜Cd含量及Cd转运系数的影响
Cd胁迫下,喷施SA生菜地上部Cd含量与喷施IAA和Mel处理的变化趋势一致,均随外源物质浓度的升高而先降低后升高,但均显著低于CK1。当SA浓度为50μmol/L时,生菜地上部Cd含量显著低于SA其他浓度的处理,比CK1低28.79%。就生菜根系Cd含量而言,喷施SA降低了根系Cd含量。喷施SA浓度为25μmol/L、50μmol/L、100μmol/L时,根系Cd含量分别比CK1低3.15%、4.21%和1.74%,但均与CK1差异不显著。当SA浓度为200μmol/L时,生菜根系Cd含量显著低于CK1,但与喷施其他SA浓度的处理差异不显著。喷施SA的各处理中,生菜Cd转运系数在喷施SA浓度为50μmol/L时最低,为0.344,与CK1相比,降低了25.70%。
表8SA对Cd胁迫下生菜Cd含量及Cd转运系数的影响
处理生菜生长、生理指标及Cd含量之间的相关性分析
Cd胁迫下,喷施SA后,生菜地上部Cd含量与硝酸盐含量、MDA含量和SOD活性呈正相关,且相关性显著。与喷施IAA、ABA、GA、Mel相似,喷施SA后,生菜地上部Cd含量与地上部鲜重呈极显著负相关。喷施SA后,生菜地上部Cd含量与POD极显著正相关,与CAT极显著负相关。生菜地上部鲜重与硝酸盐含量和POD显著负相关,与CAT活性极显著正相关。
表9生菜生长、生理指标及Cd含量之间的相关性分析
土壤Cd污染会直接损伤植物根系细胞,抑制根系对养分的吸收,导致植物生长缓慢,叶片变黄坏死、植株矮小、产量下降。研究不同浓度Cd对油菜幼苗生长的影响,发现随着Cd浓度的增加,油菜幼苗生长受到抑制,生物量减少。也有研究表明随着Cd浓度的增加,芥菜生长缓慢、地上部分生物量及相对含水量减少]。本试验研究结果发现,Cd胁迫下导致生菜株高,茎粗和生物量显著降低。同时,Cd胁迫显著降低了生菜根长和根系活力。Cd胁迫下,生菜硝酸盐含量和可溶性蛋白含量显著升高,且硝酸盐含量与地上部Cd含量呈显著正相关,说明土壤中Cd浓度超标易导致蔬菜硝酸盐的积累。
植物在正常生理状况下,体内活性氧代谢水平处于相对稳定的状态。当受到Cd胁迫时,细胞膜受到破坏,导致活性氧堆积,电解质大量外渗。研究表明Cd还引起植物细胞的氧化应激反应,因为Cd能有效触发活性氧簇的合成与积累,导致细胞损伤和膜脂过氧化,抑制或促进抗氧化系统中抗氧化酶的活性。高家合等认为Cd胁迫在一定程度内能提高烤烟叶片SOD和POD的活性,但并不能避免细胞膜脂过氧化的发生。本试验结果表明,Cd胁迫导致生菜SOD和POD活性升高,但CAT活性降低。表明生菜SOD和POD对Cd的耐受力更强,在高浓度Cd胁迫下,这两种酶活性仍然显著升高,而CAT活性则被显著抑制。Cd胁迫下,生菜电导率、脯氨酸含量和MDA含量显著升高,表明高Cd胁迫生菜细胞膜受到破坏导致膜脂过氧化,电解质外渗。
Cd是光合作用的一种有效抑制剂。Cd能通过降低叶绿素的含量、抑制卡尔文循环的反应步骤和酶的活性来降低Pn、Gs,改变叶绿体的超微结构,通过干扰原叶绿酸酯的生成来抑制叶绿素的形成、抑制电子传递链和光合碳代谢相关的酶活性等途径影响光合作用。本试验中,Cd胁迫导致生菜叶绿素含量显著降低,Pn显著下降,而Ci升高,表明生菜光合速率降低是由非气孔因素导致的,Cd胁迫使得光合相关酶活性降低及光合器官损伤。
本发明喷施SA缓解了Cd胁迫对生菜生长的抑制,生菜株高、茎粗、根长和生物量均显著增高。本发明还发现,喷施SA提高了Cd胁迫下生菜可溶性糖和可溶性蛋白含量,降低了生菜硝酸盐含量,表明适宜浓度的SA不但能缓解Cd对植物的毒害,而且提高了蔬菜的品质。
Cd胁迫对植物生长和光合均有显著的抑制作用。本试验得出,喷施50和100μmol/LSA后,Cd胁迫下生菜叶绿素a和叶绿素b含量均显著升高,同时生菜光合速率也升高,表明外源SA对Cd胁迫下生菜叶绿素合成具有促进作用,进而提高了生菜的光合作用,促进生菜生长,表明SA在诱导作物抗逆性上的积极作用。
喷施SA后,生菜地上部和根系Cd含量均降低,随着SA浓度升高,地上部Cd含量和转运系数呈先升高后降低的趋势。
对比实施例1
除了将脱落酸换为CKT,且浓度为1~200μmol/L之外,其余与实施例1一致。
经检测发现,在上述浓度范围内,玻璃生菜地上部分的镉含量,相对于CK1而言,最高仅下降1.2%。
对比实施例2
除了将脱落酸换为JA,且浓度为1~200μmol/L之外,其余与实施例1一致。
经检测发现,在上述浓度范围内,玻璃生菜地上部分的镉含量,相对于CK1而言,最高仅下降1.6%。
对比实施例3
除了将脱落酸换为EBR,且浓度为1~200μmol/L之外,其余与实施例1一致。
经检测发现,在上述浓度范围内,玻璃生菜地上部分的镉含量,相对于CK1而言,最高仅下降2.3%。
对比实施例4
除了将脱落酸换为脯氨酸,且浓度为1~200μmol/L之外,其余与实施例1一致。
经检测发现,在上述浓度范围内,玻璃生菜地上部分的镉含量,相对于CK1而言,最高仅下降1.4%。
对比实施例5
除了将脱落酸换为脱落酸(ABA),且浓度为1~20μmol/L之外,其余与实施例1一致。
如表10,施用脱落酸,不能缓解镉对生菜的生长抑制。
表10ABA对Cd胁迫下生菜生长的影响

Claims (6)

1.利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法,其特征在于,所述方法包括如下步骤:
当叶用莴苣幼苗成熟后,用浓度为25~200μmol/L的水杨酸水溶液进行叶面喷施,喷施量以叶面滴水为度,每隔2天喷施1次,共喷施3次。
2.根据权利要求1所述的方法,其特征在于,所述水杨酸水溶液的浓度为50~100μmol/L。
3.根据权利要求1或2所述的方法,其特征在于,所述水杨酸水溶液的浓度为50μmol/L。
4.根据权利要求1所述的方法,其特征在于,在利用水杨酸水溶液进行叶面喷施时,喷施时间为清晨。
5.根据权利要求1所述的方法,其特征在于,第1次喷施水杨酸水溶液的时间为叶用莴苣幼苗成熟后的第3天。
6.根据权利要求1所述的方法,其特征在于,所用叶用莴苣为玻璃生菜。
CN201710474247.0A 2017-06-21 2017-06-21 利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法 Pending CN107409800A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710474247.0A CN107409800A (zh) 2017-06-21 2017-06-21 利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710474247.0A CN107409800A (zh) 2017-06-21 2017-06-21 利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法

Publications (1)

Publication Number Publication Date
CN107409800A true CN107409800A (zh) 2017-12-01

Family

ID=60426517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710474247.0A Pending CN107409800A (zh) 2017-06-21 2017-06-21 利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法

Country Status (1)

Country Link
CN (1) CN107409800A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401872A (zh) * 2018-03-30 2018-08-17 陕西科技大学 一种利用水杨酸缓解镉对番茄毒害作用的水培方法及水杨酸的应用
CN110338024A (zh) * 2019-07-09 2019-10-18 天津大学 油菜素内酯和水杨酸的组合物缓解镉对烟草氧化胁迫的应用
CN110651688A (zh) * 2019-11-07 2020-01-07 湖南省农业环境生态研究所 培育低镉含量伴矿景天的育苗基质及其育苗方法
CN115532808A (zh) * 2022-08-19 2022-12-30 四川农业大学 水杨酸在促进种植在镉污染土壤中的苦荞生长上的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392401A (zh) * 2013-06-18 2013-11-20 中国计量学院 水杨酸在减少稻米重金属镉积累中的应用
CN103918467A (zh) * 2014-05-08 2014-07-16 四川农业大学 外源水杨酸提高甜叶菊产量、ra苷和总糖苷含量的方法
CN104221796A (zh) * 2014-09-29 2014-12-24 中国计量学院 应用水杨酸控制稻米重金属汞积累的方法
JP2017066118A (ja) * 2015-10-02 2017-04-06 国立大学法人鳥取大学 ラン科植物の発芽と共生を促進する技術
CN106675569A (zh) * 2016-12-15 2017-05-17 佛山慧创正元新材料科技有限公司 一种新型污染农田重金属修复剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392401A (zh) * 2013-06-18 2013-11-20 中国计量学院 水杨酸在减少稻米重金属镉积累中的应用
CN103918467A (zh) * 2014-05-08 2014-07-16 四川农业大学 外源水杨酸提高甜叶菊产量、ra苷和总糖苷含量的方法
CN104221796A (zh) * 2014-09-29 2014-12-24 中国计量学院 应用水杨酸控制稻米重金属汞积累的方法
JP2017066118A (ja) * 2015-10-02 2017-04-06 国立大学法人鳥取大学 ラン科植物の発芽と共生を促進する技術
CN106675569A (zh) * 2016-12-15 2017-05-17 佛山慧创正元新材料科技有限公司 一种新型污染农田重金属修复剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
任艳芳: "外源水杨酸对镉胁迫下莴苣幼苗光合性能的影响", 《江苏农业科学》 *
何俊瑜: "外源水杨酸对NaCl胁迫下生菜幼苗生长和光合性能的影响", 《湖南农业大学学报(自然科学版)》 *
何俊瑜: "水杨酸对盐胁迫下叶用莴苣幼苗生长抑制的缓解效应", 《中国蔬菜》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401872A (zh) * 2018-03-30 2018-08-17 陕西科技大学 一种利用水杨酸缓解镉对番茄毒害作用的水培方法及水杨酸的应用
CN110338024A (zh) * 2019-07-09 2019-10-18 天津大学 油菜素内酯和水杨酸的组合物缓解镉对烟草氧化胁迫的应用
CN110651688A (zh) * 2019-11-07 2020-01-07 湖南省农业环境生态研究所 培育低镉含量伴矿景天的育苗基质及其育苗方法
CN110651688B (zh) * 2019-11-07 2022-04-08 湖南省农业环境生态研究所 培育低镉含量伴矿景天的育苗基质及其育苗方法
CN115532808A (zh) * 2022-08-19 2022-12-30 四川农业大学 水杨酸在促进种植在镉污染土壤中的苦荞生长上的应用

Similar Documents

Publication Publication Date Title
Qing et al. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves
Maghsoudi et al. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance
Ling et al. Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply
Zhao et al. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench
CN107409800A (zh) 利用水杨酸显著降低叶用莴苣镉含量并提高其品质的方法
Yang et al. Effect of electrostatic field on seed germination and seedling growth of Sorbus pohuashanesis
Zeng et al. Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols
CN108401872A (zh) 一种利用水杨酸缓解镉对番茄毒害作用的水培方法及水杨酸的应用
Weng et al. Mechanism of iodine uptake by cabbage: effects of iodine species and where it is stored
Liu et al. Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China
CN107251770A (zh) 一种显著降低叶用莴苣镉含量的方法
Liao et al. Antioxidant enzyme activity and growth responses of Huangguogan citrus cultivar to nitrogen supplementation
ZHANG et al. Comprehensive evaluation of tolerance to alkali stress by 17 genotypes of apple rootstocks
Bhoyar et al. Effects of various dormancy breaking treatments on the germination of wild caper (Capparis spinosa) seeds from the cold arid desert of trans-Himalayas
Wang et al. Evaluation of salt tolerance mechanism and study on salt tolerance relationship of different salt-tolerant wheat varieties
CN109197459A (zh) 一种缓解番薯干旱胁迫的方法
Ghadakchi asl et al. Iron nanoparticles and potassium silicate interaction effect on salt-stressed grape cuttings under in vitro conditions: a morphophysiological and biochemical evaluation
Meng et al. Cold hardiness estimation of Pinus densiflora var. zhangwuensis based on changes in ionic leakage, chlorophyll fluorescence and other physiological activities under cold stress
CN107409799A (zh) 利用Mel缓解叶用莴苣镉胁迫生长抑制并降低镉含量的方法
CN107079707A (zh) 一种利用ga3显著降低叶用莴苣镉含量的方法
Šabanović et al. Effect of salicylic acid seed priming on resistance to high levels of cadmium in lettuce (Lactuca sativa L.)
CN107258356A (zh) 利用 iaa缓解叶用莴苣镉胁迫生长抑制并降低镉含量的方法
Saputro et al. The tolerance improvement of local soybean in waterlogging condition through the combination of irradiation and in vivo selection
Khalil The interrelation between growth and development of wheat as influenced by temperature, light and nitrogen
CN107363081B (zh) 显著促进镉富集植物修复镉污染土壤能力的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171201

RJ01 Rejection of invention patent application after publication