CN107393607A - 反应堆堆芯熔融物与混凝土反应试验系统及方法 - Google Patents

反应堆堆芯熔融物与混凝土反应试验系统及方法 Download PDF

Info

Publication number
CN107393607A
CN107393607A CN201710553103.4A CN201710553103A CN107393607A CN 107393607 A CN107393607 A CN 107393607A CN 201710553103 A CN201710553103 A CN 201710553103A CN 107393607 A CN107393607 A CN 107393607A
Authority
CN
China
Prior art keywords
smelting furnace
concrete
cooling
fused mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710553103.4A
Other languages
English (en)
Other versions
CN107393607B (zh
Inventor
苏光辉
张亚培
田文喜
余红星
秋穗正
陈荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710553103.4A priority Critical patent/CN107393607B/zh
Publication of CN107393607A publication Critical patent/CN107393607A/zh
Application granted granted Critical
Publication of CN107393607B publication Critical patent/CN107393607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

反应堆堆芯熔融物与混凝土反应试验系统及方法,该系统包括内置混凝土试验件的实验部件,提供熔炼炉电源的中频电源柜,提供高温熔融物的熔炼炉,与熔炼炉连接的远程操控倾倒装置、熔融物石墨导流槽和冷却水回路;试验系统还包括配套的配电设备、仪控设备和数据测量采集设备;冷却水回路中,离心水泵驱动冷却水箱中的水依次流经中频电源柜和熔炼炉的冷却通道防止中频电源柜和熔炼炉中的感应线圈过温烧毁,被加热的冷却水经板式换热器和冷却塔恢复到初始水温后再返回冷却水箱;本发明还提供了试验方法;本发明通过开展核反应堆堆芯熔融物与混凝土的反应试验,获得反应堆严重事故条件下的熔融物与混凝土反应的烧蚀特性数据,可用于反应堆的安全设计。

Description

反应堆堆芯熔融物与混凝土反应试验系统及方法
技术领域
本发明涉及核反应堆严重事故条件下的堆芯熔融物与基座混凝土的反应特性研究技术领域,具体涉及核反应堆堆芯熔融物与混凝土反应的模拟试验系统及方法。
背景技术
在核反应堆发生严重事故,得不到足够冷却时,堆芯熔化形成熔融池,可能会将压力容器烧穿。熔融物烧穿压力容器后在重力的作用下掉落在混凝土基座上,发生熔融物与混凝土反应,即MCCI(Molten Corium Concrete Interaction)。MCCI反应会产生大量不凝结气体,使得安全壳超压,或者不断烧蚀混凝土基座,当基座被烧穿后会引起放射性物质的泄露。同时,混凝土墙壁的烧蚀会破坏压力容器的支撑结构,严重威胁到安全壳的完整性,也会引起放射性物质的大量外泄。
MCCI反应过程十分复杂,如高温下混凝土的分解,多组分熔融物熔化凝固时复杂的物理化学现象,该熔融物还由于熔融混凝土的混入而不断改变组分,金属的氧化,熔融物的局部凝固以及熔融物或界面处硬壳行为等。这些特点直接影响着堆芯熔融物与混凝土的反应强度与结果,且在很大程度上决定了混凝土基座是否会被堆芯熔融物烧穿造成放射性物质外泄。因此,通过开展堆芯熔融物与混凝土反应模拟试验研究,可以确定熔融物与混凝土反应的烧蚀特性,对反应堆混凝土基座的设计安全性分析具有重要意义。
针对熔融物与混凝土的反应实验,混凝土的烧蚀深度和烧蚀形状是重点关注的物理参数,而实验的关键是熔融物和混凝土材料以及实验维度的选择,它们决定能否准确模拟核反应堆中真实的熔融物与混凝土的反应现象以及过程。
例如,文献(Thompson D H,Farmer M T,Fink J K,et al.Compilation,analysisand interaction of ACE Phase C and MACE experimental data[J].Argonne NationalLaboratory,Chicago,IL,Report ACEX TR-C-14,1997.)和(Tuomo Sevón,ChristopheJourneau,Lionel Ferry.VULCANO VB-U7 experiment on interaction between oxidiccorium and hematite-containing concrete[J].Annals of Nuclear Energy,2014,59:224-229.)公开的堆芯熔融物与混凝土反应装置,试验采用二氧化铀、二氧化锆等原型氧化物模拟堆芯熔融物,但由于直接采用这种原型材料开展熔融物与混凝土的反应试验成本很高,同时氧化物的熔化温度较高,试验设计也要复杂得多。
又例如,文献(Shin K Y,Kim S B,Kim J H,et al.Thermo-physical propertiesand transient heat transfer of concrete at elevated temperatures[J].NuclearEngineering and Design,2002,212(1):233-241.)公开的堆芯熔融物与混凝土反应装置,采用铝-铝热剂来模拟堆芯熔融物,该装置可以模拟较高温度的熔融物,但缺点是该装置只是一维的,只能得到烧蚀深度,不易获得烧蚀截面的形状。
发明内容
为了克服上述现有技术存在的问题,本发明的目的在于提供反应堆堆芯熔融物与混凝土反应试验系统及方法,开展熔融物与混凝土的反应试验,获得反应堆严重事故条件下的熔融物与混凝土反应的烧蚀特性数据。
为了达到上述目的,本发明采用如下技术方案:
反应堆堆芯熔融物与混凝土反应试验系统,包括实验部件1,实验部件1外层为圆柱形石坩埚,石坩埚用圆柱铁皮外壳包围,石坩埚中部放置一块铝制分隔板,石坩埚中填充混凝土,多点热电偶固定在混凝土试验件中;石墨导流槽2固定在实验部件1与熔炼炉3之间,用于熔炼炉3倾倒时,熔炼炉3中的熔融铁流至实验部件1的混凝土试验件中;熔炼炉3用于熔化铁,熔化铁作为熔融物模拟材料;熔炼炉3内部布置有冷却通道,用于防止熔炼炉3的感应线圈在熔化铁时出现过温烧毁,以及在熔融铁倾倒完毕后对熔炼炉3的继续冷却;远程操控倾倒装置4的转动轴与熔炼炉3的箱体通过法兰连接,它能通过远程操控,控制熔炼炉3的旋转角度和旋转角速度,并使其中的熔融铁能按照一定的速度倾倒至导流槽2中;远程操控倾倒装置4固定在混凝土石基5上;中频电源柜7用于向熔炼炉3供电,中频电源柜7内部含有冷却通道,用于带走中频电源柜7在调频供电时感应线圈产生的热量;该冷却通道通过混凝土隔离墙6与熔炼炉3的冷却通道相连;混凝土隔离墙6用于实验过程中倾倒熔融铁时的隔离屏蔽;
冷却水回路中,冷却水箱9依次通过第一球阀101、第一过滤器501、第一离心泵8和相应的管道与中频电源柜7的冷却通道相连;冷却水箱9上安装第四温度表404,用于监测冷却水箱9内水温变化;第一离心泵8的下游管道上有一个三通,三通的垂直分支通过管道与第二球阀102联通到冷却水箱9构成一个旁通回路,用于辅助调节冷却水的流量;在三通的下游管道依次安装第一压力表301、第一电磁流量计201和第一热电偶401分别获得管道压力、冷却水流量和中频电源柜7冷却通道入口温度;该冷却通道穿过混凝土隔离墙6与熔炼炉3的冷却通道相连;
被熔炼炉3加热的冷却水晶锅板式换热器10和冷却塔11的冷却恢复到初始水温后再回到冷却水箱9;在板式换热器10的一次侧进水口,通过管道和第五球阀105与熔炼炉3冷却通道的出口相连,在管道上安装第二热电偶402获得熔炼炉3冷却通道出口温度;在板式换热器10的一次侧出水口,通过管道和第三球阀103与冷却水箱9相连,形成一次侧封闭回路,与冷却水箱9相连的管道上安装有第三热电偶403,用于获得板式换热器10一次侧的出口水温;板式换热器10的二次侧水流方向与一次侧流向相反,形成逆流,二次侧出水口依次通过第六球阀106和第二电磁流量计202连接到冷却塔11的进水口;冷却塔11的出水口依次通过第二过滤器502、第二离心泵12、第七球阀107和相应管道与板式换热器10相连,形成二次侧闭合回路;在二回路管道上安装第五热电偶405、第二电磁流量计202和第二压力表302分别获得板式换热器10二次侧的出口冷却水温度、二回路的流量和管道压力;第二压力表302下游和板式换热器10二次侧上游之间布置有第六热电偶406,用于测量板式换热器10的进口冷却水温度;此外,在板式换热器一次侧,在第五球阀105的下游管道上有一个三通,三通的垂直分支通过管道与第四球阀104连接,第四球阀104的下游管道通过三通与板式换热器10一次侧的出口管道以及第三球阀103的上游管道相连,从而构成一个旁通回路,用于协助调解冷却水的流量;
该试验系统还包括配套的配电设备15、仪控设备16以及数据测量与采集设备17。
所述的熔炼炉3采用电磁感应方式加热,将铁加热熔化至1500℃熔融态,熔融铁的温度通过安装在熔炼炉上方顶棚处的红外线测温仪13来测量;高温熔融铁在远程操控倾倒装置4的作用下通过导流槽流至实验部件1的混凝土试验件中,通过安装的录像仪14,可方便观察倾倒过程以及高温熔融铁与混凝土试验件的反应过程。
所述冷却水回路中设计了多处的阀门和旁通管线,方便进行水流量调节,保证中频电源柜7以及熔炼炉3中感应线圈能得到足够的冷却,防止感应线圈应过热而损坏,同时又能使得熔炼炉产生足够的热量保证实验铁的熔化。
远程操控倾倒装置4通过旋转熔炼炉3来倾倒熔融铁,避免近距离地操作熔炼炉3倾倒所造成的危险;同时,熔炼炉3一侧设计有石墨导流槽2,将熔融铁导流到实验部件1中,防止熔融铁在倾倒过程中的不稳定性造成危险。
实验部件1中部设计有一块铝制分隔板,实验结束后通过取出铝制分隔板后方便将混凝土试验件分离,从而能直观地观察混凝土试验件的烧蚀情况以及烧蚀剖面形状。
所述实验部件1有四组,其中一组实验部件1中的混凝土试验件上部无覆盖件,另外三组实验部件1中的混凝土试验件上部分别设计有混凝土、铁皮和沙子的覆盖件,这样用于对比研究不同材料对缓解混凝土在高温熔融物的热冲击下皲裂的效果差异。
在实验部件1的混凝土试验件中,多点热电偶的测点沿混凝土试验件的高度方向不均匀布置,靠近混凝土试验件的上表面多点热电偶的测点密集,而靠近混凝土试验件下表面的测点则相对稀疏;在实验过程中,当数据采集系统无法采集某点处布置的热导偶传递的信号时,表明该处的热电偶因过温损坏,混凝土已被熔融铁烧蚀,由此推断出混凝土的烧蚀深度以及烧蚀速度。
所述配电设备15主要包括依次连接的配电柜、输电线和用电设备,供电源容量满足试验系统的全部用电需求;所述仪控设备16主要包括试验系统中的显示仪表、熔炼炉的启动控制平台、离心泵启动控制平台、远程操控倾倒装置控制平台;所述数据测量与采集设备17主要包括热电偶、流量计和压力传感器、接线盒、数据采集卡、测量模块、信号调理器、计算机的驱动软件和数据采集软件。
上述所述的反应堆堆芯熔融物与混凝土反应试验系统的试验方法,试验开始前,将准备好的实验部件1放置在导流槽2出口的下方,然后依次打开数据测量与采集设备17,开启冷却水回路中的第二离心泵12以及第一离心泵8,当冷却水回路的流量与温度稳定后,向熔炼炉3中加入实验要求作为熔融物材料的圆柱形铁棒,然后分别启动红外线测温仪13,录像仪14和中频电源柜7;熔炼炉3开始加热,在加热过程中根据冷却回路内温度调节冷却水流量,使得冷却回路内温度保持稳定;当红外线测温仪13测得的熔融铁温度达到1500℃时,关闭中频电源柜7;通过远程操控倾倒装置4的远程操控手柄将熔炼炉3中的熔融铁倾倒至导流槽2中;实验共有4组,在做完第一组实验后,待实验部件1冷却后,更换新的一组实验部件1,然后重新向熔炼炉3中加入作为熔融物材料的圆柱形铁棒,将其加热至1500℃,然后关闭中频电源柜7,通过远程操控倾倒装置4的远程操控手柄将熔炼炉3中的熔融铁倾倒至导流槽2中;之后的每组实验都重复以上操作;实验结束后,冷却水回路的第一离心泵8和第二离心泵12保持继续运转,待熔炼炉的温度降至常温后才能关闭。
和现有技术相比较,本发明具有如下优点:
1、本发明所述的反应堆堆芯熔融物与混凝土反应试验系统及方法,是针对压水堆核电厂反应堆严重事故条件下,压力容器下封头被熔融物熔穿后,熔融物与混凝土基座发生相互作用的特点而发明的试验系统,本发明的试验系统采用高温熔融铁作为熔融物模拟物来开展试验,由于熔融铁与原型熔融氧化物相比,其温度相对较低,这样可降低对熔炼炉的功率要求,同时冷却水回路的冷却能力要求也相对较低。
2、本发明所述的反应堆堆芯熔融物与混凝土反应试验系统及方法,实验部件中的混凝土试验件中间设计有铝制隔板,实验后容易将混凝土试验件分离,方便观察混凝土试验件的烧蚀形状。
3、本发明所述的反应堆堆芯熔融物与混凝土反应试验系统及方法,共设计有四组实验部件,其中一组实验部件中的混凝土试验件上方没有覆盖层,另外三组实验部件中的混凝土试验件上方分别设计有混凝土、铁皮和沙子的覆盖件,用于对比研究不同材料对缓解混凝土在高温熔融物的热冲击下皲裂的效果差异。
本发明所述的反应堆堆芯熔融物与混凝土反应试验系统及方法,冷却水系统可以通过冷却水箱、板式换热器和冷却塔带走中频电源柜和熔炼炉中感应线圈的发热量,保证中频电源柜和熔炼炉的感应线圈不会过温烧毁。同时,冷却水箱和板式换热器均设置有旁通管线,方便进行流量调节。
附图说明
图1为本发明反应堆堆芯熔融物与混凝土反应试验系统示意图。
图2为本发明反应堆堆芯熔融物与混凝土反应试验系统模块结构图。
图3为本发明反应堆堆芯熔融物与混凝土反应试验系统配电设备示意图。
图4为本发明反应堆堆芯熔融物与混凝土反应试验系统仪控设备示意图。
图5为本发明反应堆堆芯熔融物与混凝土反应试验系统数据测量与采集设备示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作详细的说明:
如图1和图2所示,本发明是反应堆堆芯熔融物与混凝土反应试验系统及方法,所述试验系统包括核反应堆堆芯熔融物与混凝土反应的模拟实验部件1,提供高温熔融物的熔炼炉2,与熔炼炉连接的中频电源柜7,远程操控倾倒装置4以及冷却水系统;第一离心泵8驱动冷却水箱9里的水依次通过中频电源柜7和熔炼炉3中的冷却通道带走感应线圈发出的热量,被加热的冷却水经过板式换热器10和冷却塔11的冷却恢复到初始水温后再回到冷却水箱9;熔炼炉3中的熔融铁温度通过安装在顶棚的红外线测温仪13测量,同时在顶棚安装的录像仪14可用于观察和记录熔融铁的倾倒过程以及与实验部件1中混凝土试验件的反应过程;试验系统还包括配套的配电设备15、仪控设备16和数据测量采集设备17。
所述核反应堆堆芯熔融物与混凝土反应模拟试验系统的实验部件1包括圆柱形石坩埚,石坩埚用圆柱铁皮外壳包围,石坩埚中部放置一块铝制分隔板,多点热电偶预先固定在石坩埚空腔内,然后向石坩埚空腔内填充混凝土。实验部件1共有四组,其中一组不带覆盖件,另外三组中,实验部件1中的混凝土试验件上方分别带有一层混凝土、铁皮和沙子的覆盖件,用于对比研究不同材料对缓解混凝土在高温熔融物的热冲击下皲裂的效果差异。
所述用于制备高温熔融铁的熔炼炉3由中频电源柜7供电,炉壁外侧通过法兰与远程操控倾倒装置4连接,远程操控倾倒装置4通过三脚架固定在混凝土石基5上。操控远程操控倾倒装置4,可将熔炼炉3中的高温熔融铁倾倒至石墨导流槽2中。熔融铁经石墨导流槽2流至实验部件1的混凝土试验件中。安装在熔炼炉上方的顶棚的红外线测温仪13用来监测熔炼炉3中熔融铁的温度,而录像仪14则用来观察和监控熔融铁的倾倒过程以及熔融铁与混凝土试验件的反应过程。熔炼炉3有冷却通道,其入口与中频电源柜7的冷却通道出口相连,其出口与冷却水回路相连,该冷却通道用于冷却熔炼炉3的感应线圈,防止其过温烧毁。
冷却水回路中,冷却水箱9依次通过第一球阀101、第一过滤器501、第一离心泵8和相应管道与中频电源柜7冷却通道的入口相连,水箱上安装第四热电偶404用于监测水箱内水温变化。第一离心泵8的下游管道上有一个三通,三通的垂直分支通过管道与第二球阀102连通到冷却水箱9构成一个旁通回路,用于协助调节冷却水的流量;在三通的下游管道上依次安装第一压力表301、第一电磁流量计201和第一热电偶401分别获得管道压力、冷却水流量和中频电源柜7冷却通道的入口温度。被中频电源柜7和熔炼炉3加热的冷却水经过板式换热器10和冷却塔11的冷却恢复到初始水温后再回到冷却水箱9。在板式换热器10的一次侧进水口,通过管道和第五球阀105与熔炼炉3的冷却通道出口相连,在管道上安装第二热电偶402获得熔炼炉3冷却通道出口的冷却水温度;在板式换热器10的一次侧出水口,通过管道和第三球阀103与冷却水箱9相连,形成一次侧闭合回路。板式换热器10的二次侧水流方向与一次侧流向为逆流,二次侧出水口依次通过第六球阀106和第二电磁流量计202连接到冷却塔11的进水口;冷却塔11的出水口依次通过第二过滤器502、第二离心泵12、第七球阀107和相应管道与板式换热器10二次侧进水口相连,形成二次侧闭合回路。在二回路管道上安装第五热电偶405、第二电磁流量计202和第二压力表302分别获得二回路冷却水温度、流量和管道压力。此外,在板式换热器一次侧,在第五球阀105的下游管道上有一个三通,三通的垂直分支通过管道与第四球阀104连接,第四球阀104的下游管道通过三通与板式换热器10一次侧的出口管道以及第三球阀103的上游管道相连,从而构成一个旁通回路,用于协助调解冷却水的流量。
作为本发明的优选实施方式,所述冷却水系统设计了多处的阀门和旁通管线,方便进行水流量调节,保证中频电源柜7和熔炼炉3的感应线圈不会因过热而烧坏,同时又能使得熔炼炉3产生足够的热量保证实验铁的熔化。
如图3所示,作为本发明的优选实施方式,所述配电设备15主要包括依次连接的配电柜、输电线和用电设备。配电设备15的供电源容量满足试验系统需求,为试验系统提供熔炼炉3的加热电源、第一离心泵8和第二离心泵12的动力电源、远程操控倾倒装置4的动力电源,仪控设备16和数据测量与采集设备17的工作电源、红外线测温仪13和录像仪14等监控设备的工作电源等。
如图4所示,作为本发明的优选实施方式,所述仪控设备16主要包括试验回路各个部位的显示仪表、熔炼炉启动控制平台、离心泵启动控制平台和远程操控倾倒装置控制平台,具体部件包括中频电源柜、阀门控制器、压力表、温度计包括热电偶和红外线测温仪、流量计和录像仪以及远程操控手柄。通过中频电源柜调节熔炼炉的功率,通过阀门控制器调节阀门开度,通过温度计和压力表显示冷却水和熔融铁的状态,通过流量计显示冷却水的流量,通过录像仪监控熔融铁倾倒过程以及与混凝土试验件的反应过程,远程操控手柄用来远程操控熔炼炉的倾倒。
如图5所示,所述数据测量与采集设备17主要包括热电偶、流量计和压力传感器、接线盒、采集卡、测量模块、信号调理器、计算机的驱动软件和数据采集软件,红外线测温仪和录像仪。热电偶、流量计和压力传感器将物理参数转化为电信号,经过接线盒,传输到信号调理器进行过滤整定,由测量模块和数据采集卡将电信号转化成数字信号,提供给计算机的驱动软件和数据采集软件,然后由LabView编译的程序对所有传感器的信号进行处理和显示。红外线测温仪直接测量得到的熔融铁温度以及录像仪的监控视频直接传输到计算机中显示和保存。
本发明核反应堆堆芯熔融物与混凝土反应试验方法,具体的试验操作流程如下:试验开始前,将准备好的实验部件1放置在导流槽2出口的下方,然后依次打开数据测量与采集设备17开启冷却水回路中的第二离心泵12以及第一离心泵8,当冷却水回路的流量与温度稳定后,向熔炼炉3中加入实验要求作为熔融物材料的圆柱形铁棒,然后分别启动红外线测温仪13,录像仪14和中频电源柜7;熔炼炉3开始加热,在加热过程中根据冷却回路内温度调节冷却水流量,使得冷却回路内温度保持稳定;当红外线测温仪13测得的熔融铁温度达到1500℃时,关闭中频电源柜7;通过远程操控倾倒装置4的远程操控手柄将熔炼炉3中的熔融铁倾倒至导流槽2中。实验共有4组,在做完第一组实验后,待实验部件1冷却,更换新的一组实验部件1,然后重新向熔炼炉3中加入作为熔融物材料的圆柱形铁棒,将其加热至1500℃,然后关闭中频电源柜7,通过远程操控倾倒装置4的远程操控手柄将熔炼炉3中的熔融铁倾倒至导流槽2中;之后的每组实验都重复以上操作;实验结束后,冷却水回路的第一离心泵8和第二离心泵12保持继续运转,待熔炼炉的温度降至常温后才能关闭。

Claims (9)

1.反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:包括实验部件(1),实验部件(1)外层为圆柱形石坩埚,石坩埚用圆柱铁皮外壳包围,石坩埚中部放置一块铝制分隔板,石坩埚中填充混凝土,多点热电偶固定在混凝土试验件中;石墨导流槽(2)固定在实验部件(1)与熔炼炉(3)之间,用于熔炼炉(3)倾倒时,熔炼炉(3)中的熔融铁流至实验部件(1)的混凝土试验件中;熔炼炉(3)用于熔化铁,熔化铁作为熔融物模拟材料;熔炼炉(3)内部布置有冷却通道,用于防止熔炼炉(3)的感应线圈在熔化铁时出现过温烧毁,以及在熔融铁倾倒完毕后对熔炼炉(3)的继续冷却;远程操控倾倒装置(4)的转动轴与熔炼炉(3)的箱体通过法兰连接,它能通过远程操控,控制熔炼炉(3)的旋转角度和旋转角速度,并使其中的熔融铁按照一定的速度倾倒至导流槽(2)中;远程操控倾倒装置(4)固定在混凝土石基(5)上;中频电源柜(7)用于向熔炼炉(3)供电,中频电源柜(7)内部含有冷却通道,用于带走中频电源柜(7)在调频供电时感应线圈产生的热量;该冷却通道通过混凝土隔离墙(6)与熔炼炉(3)的冷却通道相连;混凝土隔离墙(6)用于实验过程中倾倒熔融铁时的隔离屏蔽;
冷却水回路中,冷却水箱(9)依次通过第一球阀(101)、第一过滤器(501)、第一离心泵(8)和相应的管道与中频电源柜(7)的冷却通道相连;冷却水箱(9)上安装第四温度表(404),用于监测冷却水箱(9)内水温变化;第一离心泵(8)的下游管道上有一个三通,三通的垂直分支通过管道与第二球阀(102)联通到冷却水箱(9)构成一个旁通回路,用于辅助调节冷却水的流量;在三通的下游管道依次安装第一压力表(301)、第一电磁流量计(201)和第一热电偶(401)分别获得管道压力、冷却水流量和中频电源柜(7)冷却通道入口温度;该冷却通道穿过混凝土隔离墙(6)与熔炼炉(3)的冷却通道相连;
被熔炼炉(3)加热的冷却水经过板式换热器(10)和冷却塔(11)的冷却恢复到初始水温后再回到冷却水箱(9);在板式换热器(10)的一次侧进水口,通过管道和第五球阀(105)与熔炼炉(3)冷却通道的出口相连,在管道上安装第二热电偶(402)获得熔炼炉(3)冷却通道出口温度;在板式换热器(10)的一次侧出水口,通过管道和第三球阀(103)与冷却水箱(9)相连,形成一次侧封闭回路,与冷却水箱(9)相连的管道上安装有第三热电偶(403),用于获得板式换热器(10)一次侧的出口水温;板式换热器(10)的二次侧水流方向与一次侧流向相反,形成逆流,二次侧出水口依次通过第六球阀(106)和第二电磁流量计(202)连接到冷却塔(11)的进水口;冷却塔(11)的出水口依次通过第二过滤器(502)、第二离心泵(12)、第七球阀(107)和相应管道与板式换热器(10)相连,形成二次侧闭合回路;在二回路管道上安装第五热电偶(405)、第二电磁流量计(202)和第二压力表(302)分别获得板式换热器(10)二次侧的出口冷却水温度、二回路的流量和管道压力;第二压力表(302)下游和板式换热器(10)二次侧上游之间布置有第六热电偶(406),用于测量板式换热器(10)的进口冷却水温度;此外,在板式换热器一次侧,在第五球阀(105)的下游管道上有一个三通,三通的垂直分支通过管道与第四球阀(104)连接,第四球阀(104)的下游管道通过三通与板式换热器(10)一次侧的出口管道以及第三球阀(103)的上游管道相连,从而构成一个旁通回路,用于协助调节冷却水的流量;
该试验系统还包括用于配套的配电设备(15)、仪控设备(16)以及数据测量与采集设备(17)。
2.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:所述的熔炼炉(3)采用电磁感应方式加热,将铁加热熔化至1500℃熔融态,熔炼炉(3)的上部为实验室顶棚,顶棚上安装有红外线测温仪(13)以及录像仪(14),可分别用来监测熔炼炉(3)中的熔融铁温度和观察熔融铁的倾倒以及实验部件(1)中混凝土试验件的烧蚀过程。
3.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:所述的冷却水回路中设计了多处的阀门和旁通管线,方便对水流量进行调节,保证中频电源柜(7)和熔炼炉(3)的感应线圈不会因过热而烧坏,同时又能使得熔炼炉产生足够的热量保证实验铁的熔化。
4.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:远程操控倾倒装置(4)通过旋转熔炼炉(3)来倾倒熔融铁,避免近距离地操作熔炼炉(3)倾倒所造成的危险;同时,熔炼炉(3)一侧设计有石墨导流槽(2),将熔融铁导流到实验部件(1)中,防止熔融铁在倾倒过程中的不稳定性造成危险。
5.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:实验部件(1)中部设计有一块铝制分隔板,实验结束后通过取出铝制分隔板后方便将混凝土试验件分离,从而能直观地观察混凝土试验件的烧蚀情况以及烧蚀剖面形状。
6.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:所述实验部件(1)有四组,其中一组实验部件(1)中的混凝土试验件上部无覆盖件,另外三组实验部件(1)中的混凝土试验件上部分别设计有混凝土、铁皮和沙子的覆盖件,这样用于对比研究不同材料对缓解混凝土在高温熔融物的热冲击下皲裂的效果差异。
7.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:在实验部件(1)的混凝土试验件中,多点热电偶的测点沿混凝土试验件的高度方向不均匀布置,靠近混凝土试验件的上表面多点热电偶的测点密集,而靠近混凝土试验件下表面的测点则相对稀疏;在实验过程中,当数据采集系统无法采集某点处布置的热导偶传递的信号时,表明该处的热电偶因过温损坏,混凝土已被熔融铁烧蚀,由此推断出混凝土的烧蚀深度以及烧蚀速度。
8.根据权利要求1所述的反应堆堆芯熔融物与混凝土反应试验系统,其特征在于:所述配电设备(15)主要包括依次连接的配电柜、输电线和用电设备,供电容量满足试验系统所需的全部用电要求;所述仪控设备(16)主要包括试验系统中的显示仪表、熔炼炉的启动控制平台、离心泵启动控制平台、远程操控倾倒装置控制平台;所述数据测量与采集设备(17)主要包括热电偶、流量计和压力传感器、接线盒、数据采集卡、测量模块、信号调理器、计算机的驱动软件和数据采集软件。
9.权利要求1至8任一项所述的反应堆堆芯熔融物与混凝土反应试验系统的试验方法,其特征在于:试验开始前,将准备好的实验部件(1)放置在导流槽(2)出口的下方,然后依次打开数据测量与采集设备(17),开启冷却水回路中的第二离心泵(12)以及第一离心泵(8),当冷却水回路的流量与温度稳定后,向熔炼炉(3)中加入实验要求作为熔融物材料的圆柱形铁棒,然后分别启动红外线测温仪(13),录像仪(14)和中频电源柜(7);熔炼炉(3)开始加热,在加热过程中根据冷却回路内温度调节冷却水流量,使得冷却回路内温度保持稳定;当红外线测温仪(13)测得的熔融铁温度达到1500℃时,关闭中频电源柜(7);通过远程操控倾倒装置(4)的远程操控手柄将熔炼炉(3)中的熔融铁倾倒至导流槽(2)中;
实验共有4组,在做完第一组实验后,待实验部件(1)冷却后,更换新的一组实验部件(1),然后重新向熔炼炉(3)中加入作为熔融物材料的圆柱形铁棒,将其加热至1500℃,然后关闭中频电源柜(7),通过远程操控倾倒装置(4)的远程操控手柄将熔炼炉(3)中的熔融铁倾倒至导流槽(2)中;之后的每组实验都重复以上操作;实验结束后,冷却水回路的第一离心泵(8)和第二离心泵(12)保持继续运转,待熔炼炉的温度降至常温后才能关闭。
CN201710553103.4A 2017-07-07 2017-07-07 反应堆堆芯熔融物与混凝土反应试验系统及方法 Active CN107393607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710553103.4A CN107393607B (zh) 2017-07-07 2017-07-07 反应堆堆芯熔融物与混凝土反应试验系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710553103.4A CN107393607B (zh) 2017-07-07 2017-07-07 反应堆堆芯熔融物与混凝土反应试验系统及方法

Publications (2)

Publication Number Publication Date
CN107393607A true CN107393607A (zh) 2017-11-24
CN107393607B CN107393607B (zh) 2018-08-21

Family

ID=60334453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710553103.4A Active CN107393607B (zh) 2017-07-07 2017-07-07 反应堆堆芯熔融物与混凝土反应试验系统及方法

Country Status (1)

Country Link
CN (1) CN107393607B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447573A (zh) * 2018-04-16 2018-08-24 西安交通大学 一种核反应堆燃料棒熔化可视化实验装置及方法
CN109473187A (zh) * 2018-10-31 2019-03-15 西安交通大学 海洋条件下两层流体搅浑过程及传热特性可视化实验系统及方法
CN110160363A (zh) * 2018-01-26 2019-08-23 山东金马工业集团股份有限公司 一种用于中频加热炉的冷却水循环系统
CN110321641A (zh) * 2019-07-08 2019-10-11 西安交通大学 基于粒子法的熔融物与混凝土相互作用分析方法
CN114720625A (zh) * 2022-04-21 2022-07-08 中国科学技术大学 模拟初起火源作用下木质板材烧穿全过程动态分析系统
CN115862908A (zh) * 2023-01-30 2023-03-28 上海核工程研究设计院股份有限公司 一种严重事故下堆内滞留篮实验装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108772A (ja) * 2011-11-17 2013-06-06 Mitsubishi Heavy Ind Ltd 溶融物の捕集装置
CN104568724A (zh) * 2015-02-10 2015-04-29 东南大学 一种牺牲混凝土熔蚀速率测量方法
CN105283563A (zh) * 2013-04-26 2016-01-27 原子能与替代能源委员会 电磁感应炉和所述炉用于熔化金属和氧化物的混合物的用途,所述混合物代表堆芯熔融物
CN105911087A (zh) * 2016-06-01 2016-08-31 西安交通大学 一种大型核反应堆熔融池自然对流换热试验系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108772A (ja) * 2011-11-17 2013-06-06 Mitsubishi Heavy Ind Ltd 溶融物の捕集装置
CN105283563A (zh) * 2013-04-26 2016-01-27 原子能与替代能源委员会 电磁感应炉和所述炉用于熔化金属和氧化物的混合物的用途,所述混合物代表堆芯熔融物
CN104568724A (zh) * 2015-02-10 2015-04-29 东南大学 一种牺牲混凝土熔蚀速率测量方法
CN105911087A (zh) * 2016-06-01 2016-08-31 西安交通大学 一种大型核反应堆熔融池自然对流换热试验系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KI-YEOL SHIN,ET AL: "Thermo-physical properties and transient heat transfer of concrete at elevated temperatures", 《NUCLEAR ENGINEERING AND DESIGN》 *
于英俊: "核电牺牲混凝土与堆芯熔融物相互作用研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160363A (zh) * 2018-01-26 2019-08-23 山东金马工业集团股份有限公司 一种用于中频加热炉的冷却水循环系统
CN108447573A (zh) * 2018-04-16 2018-08-24 西安交通大学 一种核反应堆燃料棒熔化可视化实验装置及方法
CN108447573B (zh) * 2018-04-16 2019-10-11 西安交通大学 一种核反应堆燃料棒熔化可视化实验装置及方法
CN109473187A (zh) * 2018-10-31 2019-03-15 西安交通大学 海洋条件下两层流体搅浑过程及传热特性可视化实验系统及方法
CN110321641A (zh) * 2019-07-08 2019-10-11 西安交通大学 基于粒子法的熔融物与混凝土相互作用分析方法
CN114720625A (zh) * 2022-04-21 2022-07-08 中国科学技术大学 模拟初起火源作用下木质板材烧穿全过程动态分析系统
CN114720625B (zh) * 2022-04-21 2023-06-16 中国科学技术大学 模拟初起火源作用下木质板材烧穿全过程动态分析系统
CN115862908A (zh) * 2023-01-30 2023-03-28 上海核工程研究设计院股份有限公司 一种严重事故下堆内滞留篮实验装置
CN115862908B (zh) * 2023-01-30 2024-01-12 上海核工程研究设计院股份有限公司 一种严重事故下堆内滞留篮实验装置

Also Published As

Publication number Publication date
CN107393607B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN107393607B (zh) 反应堆堆芯熔融物与混凝土反应试验系统及方法
CN105911087B (zh) 一种大型核反应堆熔融池自然对流换热试验系统及方法
CN109473187B (zh) 海洋条件下两层流体搅浑过程及传热特性可视化实验系统及方法
CN107564593B (zh) 一种压力容器外部冷却试验系统和方法
CN107421983A (zh) 熔融物与冷却剂相互作用相关热工水力实验系统
CN108492897A (zh) 一种研究核反应堆燃料棒熔化特性的可视化实验装置
CN106952669B (zh) 一种熔融物堆内滞留压力容器外部冷却试验台架
CN103969292A (zh) 一种连铸结晶器保护渣综合传热热流测试装置及方法
CN102643958B (zh) 盘形件梯度热处理装置
CN206725184U (zh) 一种高温换热风洞测试系统
CN102879130A (zh) 一种连铸保护渣综合传热热流测试方法
CN106251919A (zh) 严重事故工况下反应堆压力容器安全性测试系统
CN102221469B (zh) 一种车辆加温器综合试验台
CN109211438A (zh) 一种原位观察连铸保护渣相变过程热流密度的装置及方法
CN207096150U (zh) 地热复合保温管道水下保温性能试验装置
CN208902638U (zh) 自然对流换热试验设备
CN207402971U (zh) 一种混凝土构件跟踪养护装置
CN110296924A (zh) 一种光热发电储热系统泄漏熔盐在地基中渗流情况的测试系统及方法
CN206281808U (zh) 相变材料使用寿命测试系统
CN109211969B (zh) 一种三维椭球形熔融池换热特性测量实验装置
CN107037074A (zh) 相变材料使用寿命测试系统
CN208283223U (zh) 一种超临界视窗实验系统
CN207572074U (zh) 乏燃料贮存容器铅体屏蔽层浇注缺陷的修补系统
CN105300825B (zh) 一种测试高炉渣冷却强度的测试方法
CN203164047U (zh) 一种模拟核电站管道热疲劳现象的试验台架

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant