CN107388521A - 空调器及其能效计算方法 - Google Patents

空调器及其能效计算方法 Download PDF

Info

Publication number
CN107388521A
CN107388521A CN201710775734.0A CN201710775734A CN107388521A CN 107388521 A CN107388521 A CN 107388521A CN 201710775734 A CN201710775734 A CN 201710775734A CN 107388521 A CN107388521 A CN 107388521A
Authority
CN
China
Prior art keywords
msub
heat exchanger
temperature
mrow
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710775734.0A
Other languages
English (en)
Inventor
徐振坤
李金波
戚文端
刘燕飞
陈新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Guangdong Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Midea Refrigeration Equipment Co Ltd filed Critical Guangdong Midea Refrigeration Equipment Co Ltd
Priority to CN201710775734.0A priority Critical patent/CN107388521A/zh
Publication of CN107388521A publication Critical patent/CN107388521A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了本发明公开了空调器及其能效计算方法,其中,能效计算方法包括:获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss;分别获取压缩机的排气口、室外换热器第一端、室内换热器第二端、室内换热器中部和室内的温度t2、t4、t5、t6、和t10;分别生成压缩机的回气口温度t1、室内换热器第一端温度t7、补气温度t8;当制冷工况时,根据对应点温度分别生成各个点的制冷剂焓值h1、h7、h2、h4、h8’和h8”;根据压缩机的功率、Qloss和各个焓值生成空调器的制冷量;根据空调器耗电功率和制冷量生成空调器的能效。能够实时准确地检测到空调器的能效。

Description

空调器及其能效计算方法
技术领域
本发明涉及电器制造技术领域,特别涉及一种空调器的能效计算方法和空调器。
背景技术
随着对节能的越来越重视,空调器是否节能舒适越来越受到用户的关注。
目前的空调器在运行时由于无法获知能效的变化情况,因而难以维持在较佳的运行状态,制冷制热效果和节能性能均不够理想。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明实施例提出一种空调器的能效计算方法,能够实时准确地检测到空调器的能效。本发明实施例还提出一种空调器,以及,本发明再一方面实施例还提出一种空调器的能效计算方法和空调器。
为了解决上述问题,本发明第一方面实施例提出的空调器的能效计算方法包括:获取空调器的当前工况、压缩机的功率和空调器耗电功率;获取压缩机的壳体散热量Qloss;获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器第二端的室内换热器第二端温度t5、室内换热器中部的室内换热器中部温度t6、室内温度t10;根据所述室内换热器中部温度t6生成压缩机中回气口的回气口温度t1;根据所述室内换热器中部温度t6和所述室内温度t10生成室内换热器第一端的室内换热器第一端温度t7;根据所述室外换热器第一端温度t4和所述室内换热器第二端温度t5生成压缩机补气入口的补气温度t8;当所述空调器的当前工况为制冷工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,以及,根据所述压缩机补气入口的补气温度t8分别生成补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”;根据所述压缩机的功率、所述压缩机的壳体散热量Qloss、所述回气口的制冷剂焓值h1、所述排气口的制冷剂的焓值h2、所述室外换热器第一端的制冷剂焓值h4、所述室内换热器第一端的制冷剂焓值h7、所述补入压缩机的气态制冷剂焓值h8’和所述闪蒸器的液态制冷剂焓值h8”生成空调器的制冷量;根据所述空调器耗电功率和所述制冷量生成所述空调器的能效。
根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量Qloss、上述各个温度检测点的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
另外,根据本发明上述实施例提出的空调器的能效计算方法还可以具有如下附加的技术特征:
在本方法的一些实施例中,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1具体包括:获取室内换热器中部的室内换热器中部温度t6;根据所述回气口温度t1和室内换热器中部温度t6生成吸气过热度Δt1;根据所述室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值h吸气饱和;根据所述吸气过热度Δt1和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子D1;根据所述回气口制冷剂焓值的修正因子D1、所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h1
进一步地,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和其中,a1-a5为制冷剂对应的饱和区系数。
进一步地,根据以下公式生成所述回气口制冷剂焓值的修正因子D1其中,d1-d6为制冷剂对应的过热区系数。
在本方法的一些实施例中,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括:根据所述室内换热器第一端温度t7和所述室内换热器中部温度t6生成过热度Δt7;根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;根据所述室内换热器第一端制冷剂焓值的修正因子D7和所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h7
在本方法的一些实施例中,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7
其中,d1-d6为制冷剂对应的过热区系数。
在本方法的一些实施例中,所述根据所述压缩机中排气口的排气口温度t2生成所述排气口的制冷剂的焓值h2具体包括:获取室外温度t9;根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3;根据所述室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值h排气饱和;根据所述压缩机中排气口的排气口温度t2和所述室外换热器中部温度t3生成排气过热度Δt2;根据所述排气过热度Δt2和所述室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2;根据所述修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂的焓值h2
在本方法的一些实施例中,根据以下公式生成所述排气口制冷剂焓值的修正因子其中,d1-d6为制冷剂对应的过热区系数。
在本方法的一些实施例中,根据以下公式生成所述室外换热器第一端的制冷剂焓值h4其中,c1-c4为制冷剂对应的过冷区系数。
在本方法的一些实施例中,根据以下公式生成所述空调器的制冷量:
其中,Q制冷量为所述空调器的制冷量,Pcom为压缩机的功率。
为了解决上述问题,本发明另一方面实施例的空调器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现所述的空调器的能效计算方法。
根据本发明实施例的空调器,能够实时准确地对能效进行检测,从而便于根据实时能效对运行状态进行优化,达到节能和提高制冷效果的目的。
在本发明的一些实施例中还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面实施例所述的空调器的能效计算方法。
根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
为了解决上述问题,本发明再一方面实施例提出的空调器的能效计算方法,包括以下步骤:获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss;获取所述压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器中部的室内换热器中部温度t6、室内换热器第二端的室内换热器第二端温度t5、室内温度t10;根据所述室外换热器第一端温度t4生成压缩机中回气口的回气口温度t1;根据所述室内换热器中部温度t6和所述室内温度t10生成室内换热器第一端的室内换热器第一端温度t7;根据所述室外换热器第一端温度t4和所述室内换热器第二端温度t5生成压缩机补气入口的补气温度t8;当所述空调器的当前工况为制热工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,以及,根据所述压缩机补气入口的补气温度t8分别生成补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”;根据所述压缩机的功率、所述压缩机的壳体散热量Qloss、所述回气口的制冷剂焓值h1、所述排气口的制冷剂的焓值h2、所述室内换热器第二端的制冷剂焓值h5、所述室内换热器第一端的制冷剂焓值h7、所述补入压缩机的气态制冷剂焓值h8’和所述闪蒸器的液态制冷剂焓值h8”生成空调器的制热量;根据所述空调器耗电功率和所述制热量生成所述空调器的能效。
根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量Qloss、上述各个温度检测点的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
在本方法的一些实施例中,所述根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1具体包括:获取室外温度t9;根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3;根据所述回气口温度t1和所述室外换热器中部温度t3生成吸气过热度Δt1;根据所述吸气过热度Δt1和所述室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1;根据所述室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气饱和;根据所述回气口制冷剂焓值的修正因子D1、所述吸气温度下饱和制冷剂的焓值h吸气饱和生成所述回气口的制冷剂焓值h1
在本方法的一些实施例中,根据以下公式生成所述吸气温度下饱和制冷剂的焓值其中,a1-a5为制冷剂对应的饱和区系数。
在本方法的一些实施例中,根据以下公式生成所述回气口制冷剂焓值的修正因子D1其中,d1-d6为制冷剂对应的过热区系数。
在本方法的一些实施例中,所述根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2具体包括:根据所述室内换热器中部的室内换热器中部温度t6和所述压缩机中排气口的排气口温度t2生成排气过热度Δt2;根据所述排气过热度Δt2和所述室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2;根据所述室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h排气饱和;根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂焓值h2
在本方法的一些实施例中,根据以下公式生成所述排气口制冷剂焓值的修正因子D2其中,d1-d6为制冷剂对应的过热区系数。
在本方法的一些实施例中,所述根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括:根据所述室内换热器中部的室内换热器中部温度t6和所述室内换热器第一端温度t7生成过热度Δt7;根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;根据所述室内换热器第一端制冷剂焓值的修正因子D7、排气温度下饱和制冷剂的焓值h排气饱和生成所述室内换热器第一端的制冷剂焓值h7
在本方法的一些实施例中,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7
其中,d1-d6为制冷剂对应的过热区系数。
在本方法的一些实施例中,根据以下公式计算所述室内换热器第二端的制冷剂焓值h5其中,c1-c4为制冷剂对应的过冷区系数。
在本方法的一些实施例中,根据如下公式生成所述空调器的制热量:其中,Q制热量为所述空调器的制热量,P压缩机为压缩机的功率。
基于上述再一方面实施例的空调器的能效计算方法,在本发明的一些实施例中提出的空调器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现上述再一方面实施例的空调器的能效计算方法。
根据本发明实施例的空调器,能够实时准确地对能效进行检测,便于根据实时能效优化运行状态,达到节能和提高制热效果的目的。
在本发明的一些实施例中提出的非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述再一方面实施例的空调器的能效计算方法。
根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。
附图说明
图1为根据本发明实施例的空调器的能效计算方法的流程图;
图2是根据本发明实施例的空调系统的制冷剂循环系统示意图;
图3是根据本发明实施例的空调器的能效计算方法的流程图。
附图标记:
压缩机100、四通阀200、室外换热器300、节流阀400和节流阀600、闪蒸器700和室内换热器500。
排气口温度传感器2、室外换热器第一端温度传感器4、室内换热器第二端温度传感器5、室内换热器中部温度传感器6、室内温度传感器10。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例的空调器及其能效计算方法。
图1为根据本发明实施例的空调器的能效计算方法的流程图。
如图1所示,本发明实施例的空调器的能效计算方法,包括以下步骤:
S1,获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss
在本发明的实施例中,空调器可为双级蒸汽压缩式空调器,如图2所示,本发明实施例的空调器可包括压缩机100、四通阀200、室外换热器300、节流元件例如节流阀400和节流阀600、闪蒸器700和室内换热器500。
在本发明的一些实施例中,可通过空调器的电控系统实时监测空调器的当前工况、压缩机的功率Pcom和空调器耗电功率P耗电。例如,图2中所示,可以通过在设置功率检测装置M以检测压缩机的功率。
在本发明的一个实施例中,可通过对流、辐射公式计算压缩机的壳体散热量Qloss,具体可根据以下公式生成压缩机的壳体散热量Qloss
Qloss=5.67×10-8×A压缩机((t2+273.15)4-(t9+273.15)4+(9.4+0.052×(t2-t9))×A压缩机×(t2-t9),
其中,A压缩机为压缩机壳体的表面积,其可通过查取压缩机型号等获得;t9为室外换热器翅片处的温度,即室外环境温度,如图2所示,可通过设置在室外换热器翅片处的室外温度传感器9检测得到,t2为压缩机中排气口的排气口温度。
S2,获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器第二端的室内换热器第二端温度t5、室内换热器中部的室内换热器中部温度t6、室内温度t10
在本发明的一些实施例中,可通过在对应温度检测点分别设置温度传感器以检测该温度检测点的温度。具体地,如图2所示,可通过在压缩机中排气口处设置排气口温度传感器2以检测排气口温度t2、在室外换热器第一端处设置室外换热器第一端温度传感器4以检测室外换热器第一端温度t4、在室内换热器第二端处设置室内换热器第二端温度传感器5以检测室内换热器第二端温度t5、在室内换热器中部设置室内换热器中部温度传感器6以检测室内换热器中部温度t6,以及,在室内换热器的翅片处设置室内温度传感器10以检测室内温度t10
其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。例如,可将温度传感器紧贴铜管设置,并通过保温胶带对铜管进行缠绕密封。由此,能够提高温度检测的可靠性和准确性。
S3,根据室内换热器中部温度t6生成压缩机中回气口的回气口温度t1
在本发明的实施例中,在制冷模式下,回气口温度t1可以根据室内换热器中部温度t6和压缩机的运行频率获得,例如,通过以下公式获得:
t1=m1*t6+n1*f,其中,f为压缩机的运行频率,m1和n1为拟合系数,可以根据大量实验数据获得,并进行保存。
S4,根据室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7
在本发明的实施例中,可以通过以下公式获得室内换热器第一端温度t7
t7=m2*t10+n2*t6+k2*f,其中,f为压缩机的运行频率,m2、n2和k2均为拟合系数,可以根据大量实验数据获得,并进行保存。
S5,根据室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8
补气温度t8介于室外换热器第一端温度t4与室内换热器中部温度t6之间,可以通过高压侧温度例如包括室外换热器中部温度、室外换热器第一端温度t4以及低压侧温度例如包括室内换热器第二端温度t5、室内换热器中部温度t6、室内换热器第一端温度t7以及压缩机运行频率获得,例如,在本发明的一个实施例中,通过以下公式获得补气温度t8
t8=m3*t4+n3*t5+k3*f,其中,f为压缩机的运行频率,m3、n3和k3均为拟合系数,可以根据大量实验数据获得,并进行保存。
以上各点温度获得方法也可以由其他方法、经验获得。例如,一般在制冷模式时,室内换热器第一端温度与室内换热器中部温度接近,而制热模式时室内换热器第一端温度与排气温度较为接近,通过近似相等的方式计算也可获得对应点的温度。
S6,当空调器的当前工况为制冷工况时,根据压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,根据压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,根据室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,以及,根据压缩机补气入口的补气温度t8分别生成补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”
在此需要说明的是,当空调器的当前工况为制冷工况时,室外换热器作冷凝器,室外换热器第一端为冷凝器出口,室内换热器作蒸发器,室内换热器第一端为蒸发器出口,室内换热器中部为蒸发器中部,室内换热器第二端为蒸发器入口。
由于不同温度检测点的制冷剂的状态不同,因此不同温度检测点的制冷剂的焓值不同。在本发明的一个实施例中,可根据经验公式计算得到制冷剂的焓值。
下面分别说明根据经验公式得到回气口的制冷剂焓值h1、排气口的制冷剂焓值h2、室外换热器第一端的制冷剂焓值h4、室内换热器第一端的制冷剂焓值h7、补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”的具体过程。
对于压缩机中回气口的制冷剂焓值h1,当空调器的当前工况为制冷工况时,压缩机的回气口的制冷剂过热,可结合吸气过热度计算回气口的制冷剂焓值h1
具体地,可根据回气口温度t1和室内换热器中部温度t6生成吸气过热度Δt1,并根据吸气过热度Δt1和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子D1,以及根据室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值h吸气饱和。其中,吸气过热度Δt1为回气口温度t1和室内换热器中部温度t6之差,即Δt1=t1-t6
在本发明的一个实施例中,回气口制冷剂焓值的修正因子D1可通过以下公式生成:其中,d1-d6为制冷剂对应的过热区系数,可以根据具体情况进行预设。
在本发明的一个实施例中,可以通过以下公式获得吸气温度下饱和制冷剂的焓值h吸气饱和其中,a1-a5为制冷剂对应的饱和区系数。
在生成回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和后,可进一步根据回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和生成制冷剂焓值h1,h1=D1·h吸气饱和+d7,其中,d7为制冷剂对应的过热区系数。
同样地,对于室内换热器第一端的制冷剂焓值h7,当空调器的当前工况为制冷工况时,室内换热器第一端的制冷剂过热,可结合该位置制冷剂的过热度计算室内换热器第一端的制冷剂焓值h7
具体地,可根据室内换热器第一端温度t7和室内换热器中部温度t6生成过热度Δt7,其中,Δt7=t7-t6,并根据过热度Δt7和室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和制冷剂的焓值h吸气饱和生成制冷剂焓值h7
其中,在本发明的一些实施例中,可以通过以下公式获得修正因子D7进而可以计算室内换热器第一端的制冷剂焓值h7:h7=D7·h吸气饱和+d7,其中,d1-d7为制冷剂对应的过热区系数。
对于压缩机中排气口的制冷剂焓值h2,当空调器的当前工况为制冷工况时,压缩机的排气口的制冷剂过热,可结合排气过热度计算排气口的制冷剂焓值h2
具体地,获取室外温度t9,例如,如图2所示,室外温度t9可通过在室外换热器的翅片处设置的室外温度传感器检测得到。根据室外温度t9和室外换热器第一端温度t4生成室外换热器中部温度t3,在本发明的一个实施例中,通过以下公式生成室外换热器中部温度t3:t3=m4*t9+n4*t4+k4*f,其中,f为压缩机的运行频率,m4、n4和k4均为拟合系数,可以根据大量实验数据获得,并进行保存。
然后,可根据压缩机中排气口的排气口温度t2和室外换热器中部温度t3生成排气过热度Δt2,并根据排气过热度Δt2和室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2,以及根据室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值h排气饱和。其中,排气过热度Δt2为压缩机中排气口的排气口温度t2和室外换热器中部温度t3之差,即Δt2=t2-t3
在本发明的一个实施例中,通过以下公式生成排气口制冷剂焓值的修正因子D2其中,d1-d6为制冷剂对应的过热区系数。在本发明的一个实施例中,排气温度下饱和制冷剂的焓值h排气饱和=a1+a2t3+a3t2 3+a4t3 3+a5,其中,a1-a5为制冷剂对应的饱和区系数。
在生成排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h排气饱和后,可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h排气饱和生成排气口的制冷剂焓值h2,h2=D2·h排气饱和+d7,其中,d7为制冷剂对应的过热区系数。
对于室外换热器第一端的制冷剂焓值h4,当空调器的当前工况为制冷工况时,室外换热器第一端的制冷剂过冷,可直接计算室外换热器第一端的制冷剂焓值h4其中,c1-c4为制冷剂对应的过冷区系数。
表1
上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,如上表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。
由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。
在本发明的一些实施例中,可以通过以下公式计算补入压缩机的气态制冷剂焓值h8’其中,a1、a2、a3、a4和a5分别为制冷剂对应的饱和区系数。
在本发明的一些实施例中,可以通过以下公式计算闪蒸器的液态制冷剂焓值h8”其中,c1、c2、c3和c4分别为制冷剂对应的过冷区系数。
在本发明的其他实施例中,还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。举例而言,当空调器的当前工况为制冷工况时,还可根据空调器中的低压压力、回气口温度t1、室内换热器第一端温度t7分别得到回气口的制冷剂焓值h1和室内换热器第一端的制冷剂焓值h7,并可根据空调器中的高压压力、排气口温度t2、室外换热器第一端温度t4分别得到排气口的制冷剂焓值h2和室外换热器第一端的制冷剂焓值h4,以及根据补气温度或者压力可以获得该状态下饱和气体焓值h8’以及饱和液体焓值h8”
S7,根据压缩机的功率、压缩机的壳体散热量Qloss、回气口的制冷剂焓值h1、排气口的制冷剂的焓值h2、室外换热器第一端的制冷剂焓值h4、室内换热器第一端的制冷剂焓值h7、补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”生成空调器的制冷量。
在本发明的一些实施例中,可以根据以下公式生成空调器的制冷量:其中,Q制冷量为空调器的制冷量,Pcom为压缩机的功率。
S8,根据空调器耗电功率和制冷量生成所述空调器的能效。
由于空调器的当前工况为制冷工况,因而可根据空调器耗电功率和制冷量生成空调器的制冷能效,具体地,空调器的制冷能效为空调器的制冷量与耗电功率之比,即EER=Q制冷量/P耗电
在生成空调器的制冷能效后,还可根据空调器的制冷能效对当前空调器的运行状态进行调整。举例而言,可在空调器的制冷能效较低时提高压缩机的功率,以提高空调器的制冷能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。
根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量Qloss、上述各个温度检测点的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
对应上述实施例,本发明还提出一种空调器。
本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的空调器的能效计算方法。
根据本发明实施例的空调器,能够实时准确地对能效进行检测,从而便于根据实时能效对运行状态进行优化,达到节能和提高制冷效果的目的。
对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。
本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的空调器的能效计算方法。
根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
上述实施例的空调器及其能效计算方法可检测到空调器的制冷能效,为检测空调器的制热能效,本发明还提出另一种空调器的能效计算方法。
如图3所示,本发明实施例的另一种空调器的能效计算方法,包括以下步骤:
S11,获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss
在本发明的实施例中,可通过空调器的电控系统实时监测空调器的当前工况、压缩机的功率Pcom和空调器耗电功率P耗电
在本发明的一个实施例中,可通过对流、辐射公式计算压缩机的壳体散热量Qloss,具体可根据以下公式生成压缩机的壳体散热量Qloss
Qloss=5.67×10-8×A压缩机((t2+273.15)4-(t8+273.15)4+(9.4+0.052×(t2-t8))×A压缩机×(t2-t8),
其中,A压缩机为压缩机壳体的表面积,其可通过查取压缩机型号等获得;t8为压缩机补气入口的补气温度,下面有获得过程的描述,t2为压缩机中排气口的排气口温度。
S12,获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器中部的室内换热器中部温度t6、室内换热器第二端的室内换热器第二端温度t5、室内温度t10
在本发明的一些实施例中,如图2所示,可通过在压缩机中排气口处设置排气口温度传感器以检测排气口温度t2、在室外换热器第一端处设置室外换热器第一端温度传感器以检测室外换热器第一端温度t4、在室内换热器第二端处设置室内换热器第二端温度传感器以检测室内换热器第二端温度t5、在室内换热器中部设置室内换热器中部温度传感器以检测室内换热器中部温度t6,以及,在室内换热器的翅片处设置温度传感器以检测室内温度t10
其中,每个温度传感器均与对应温度检测点的制冷剂管壁有效接触,并对制冷剂管壁,尤其是设置温度传感器的位置采取保温措施。例如,可将温度传感器紧贴铜管设置,并通过保温胶带对铜管进行缠绕密封。由此,能够提高温度检测的可靠性和准确性。
S13,根据室外换热器第一端温度t4生成压缩机中回气口的回气口温度t1
在本发明的实施例中,在制热模式下,回气口温度t1可以根据室外换热器第一端温度t4和压缩机的运行频率获得,例如,可以通过以下公式获得:
t1=m5*t4+n5*f,其中,f为压缩机的运行频率,m5和n5为拟合系数,可以根据大量实验数据获得,并进行保存。
S14,根据室内换热器中部温度t6和室内温度t10生成室内换热器第一端的室内换热器第一端温度t7
在本发明的实施例中,可以通过以下公式获得室内换热器第一端温度t7
t7=m2*t10+n2*t6+k2*f,其中,f为压缩机的运行频率,m2、n2和k2均为拟合系数,可以根据大量实验数据获得,并进行保存。
S15,根据室外换热器第一端温度t4和室内换热器第二端温度t5生成压缩机补气入口的补气温度t8
补气温度t8介于室外换热器第一端温度t4与室内换热器中部温度t6之间,可以通过高压侧温度例如包括室外换热器中部温度、室外换热器第一端温度t4以及低压侧温度例如包括室内换热器第二端温度t5、室内换热器中部温度t6、室内换热器第一端温度t7以及压缩机运行频率获得,例如,在本发明的一个实施例中,通过以下公式获得补气温度t8
t8=m3*t4+n3*t5+k3*f,其中,f为压缩机的运行频率,m3、n3和k3均为拟合系数,可以根据大量实验数据获得,并进行保存。
S16,当空调器的当前工况为制热工况时,根据压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,根据压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,根据室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,根据室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,以及,根据压缩机补气入口的补气温度t8分别生成补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”
在此需要说明的是,当空调器的当前工况为制热工况时,室外换热器作蒸发器,室内换热器作冷凝器,室内换热器第一端为冷凝器入口,室内换热器第二端为冷凝器出口。
由于不同温度检测点的制冷剂的状态不同,因此不同温度检测点的制冷剂的焓值不同。在本发明的一个实施例中,可根据经验公式计算得到制冷剂的焓值。
下面分别说明根据经验公式得到回气口的制冷剂焓值h1、排气口的制冷剂焓值h2、室内换热器第二端的制冷剂焓值h5和室内换热器第一端的制冷剂焓值h7、补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”的具体过程。
对于压缩机中回气口的制冷剂焓值h1,当空调器的当前工况为制热工况时,压缩机的回气口的制冷剂过热,可结合吸气过热度计算回气口的制冷剂焓值h1
具体地,获取室外温度t9,如图2所示,室外温度t9可通过在室外换热器翅片处设置的室外温度传感器检测得到。根据室外温度t9和室外换热器第一端温度t4生成室外换热器中部温度t3,在本发明的一个实施例中,通过以下公式生成室外换热器中部温度t3:t3=m4*t9+n4*t4+k4*f,其中,f为压缩机的运行频率,m4、n4和k4均为拟合系数,可以根据大量实验数据获得,并进行保存。
然后可根据回气口温度t1和室外换热器中部温度t3生成吸气过热度Δt1,并根据吸气过热度Δt1和室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1,以及根据室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气饱和。其中,吸气过热度Δt1为回气口温度t1和室外换热器中部温度t3之差,即Δt1=t1-t3。在本发明的一些实施例中,可以通过以下公式生成回气口制冷剂焓值的修正因子:
其中,d1-d6为制冷剂对应的过热区系数。在本发明的一些实施例中,吸气温度下饱和制冷剂的焓值h吸气饱和=a1+a2t3+a3t2 3+a4t3 3+a5,其中,a1-a5为制冷剂对应的饱和区系数。
在生成回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和后,可进一步根据回气口制冷剂焓值的修正因子D1、饱和制冷剂的焓值h吸气饱和生成制冷剂焓值h1,h1=D1·h吸气饱和+d7,其中,d7为制冷剂对应的过热区系数。
对于压缩机中排气口的制冷剂焓值h2,当空调器的当前工况为制热工况时,压缩机的排气口的制冷剂过热,可结合排气过热度计算排气口的制冷剂焓值h2
具体地,可根据压缩机中排气口的排气口温度t2和室内换热器中部温度t6生成排气过热度Δt2,并根据排气过热度Δt2和室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2,以及根据室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h排气饱和。其中,排气过热度Δt2为压缩机中排气口的排气口温度t2和室内换热器中部温度t6之差,即Δt2=t2-t6。在本发明的一些实施例中,可以通过以下公式生成排气口制冷剂焓值的修正因子:
其中,d1-d6为制冷剂对应的过热区系数。
在本发明的一个实施例中,可以根据以下公式生成排气温度下饱和制冷剂的焓值其中,a1-a5为制冷剂对应的饱和区系数。
在生成排气口制冷剂焓值的修正因子D2后,可进一步根据排气口制冷剂焓值的修正因子D2、排气温度下饱和制冷剂的焓值h排气饱和生成排气口的制冷剂焓值h2,h2=D2·h排气饱和+d7,其中,d7为制冷剂对应的过热区系数。
同样地,对于室内换热器第一端的制冷剂焓值h7,当空调器的当前工况为制热工况时,室内换热器第一端的制冷剂过热,可结合该位置制冷剂的过热度计算室内换热器第一端的制冷剂焓值h7
具体地,可根据室内换热器第一端温度t7和室内换热器中部温度t6生成过热度Δt7,并根据过热度Δt7和室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7,以及根据生成的室内换热器第一端制冷剂焓值的修正因子D7和饱和排气温度饱和制冷剂的焓值h排气饱和生成室内换热器第一端的制冷剂焓值h7。其中,Δt7=t7-t6。在本发明的一些实施例中,可以通过以下公式生成室内换热器第一端制冷剂焓值的修正因子D7
进而计算获得室内换热器第一端的制冷剂焓值h7:h7=D7·h排气饱和+d7,其中,d1-d7为制冷剂对应的过热区系数。
对于室内换热器第二端的制冷剂焓值h5,当空调器的当前工况为制热工况时,室内换热器第二端的制冷剂过冷,可直接计算室内换热器第二端的制冷剂焓值h5其中,c1-c4为制冷剂对应的过冷区系数。
上述的制冷剂对应的饱和区系数、过热区系数和过冷区系数与制冷剂的种类有关,表1中分别示出了R410A制冷剂和R32制冷剂所对应的饱和区系数、过热区系数和过冷区系数。由此,可根据制冷剂的种类和如表1的对应关系得到各系数值,以计算各个温度检测点的制冷剂焓值。
在本发明的一些实施例中,可以通过以下公式计算补入压缩机的气态制冷剂焓值h8’其中,a1、a2、a3、a4和a5分别为制冷剂对应的饱和区系数。
在本发明的一些实施例中,可以通过以下公式计算闪蒸器的液态制冷剂焓值h8”其中,c1、c2、c3和c4分别为制冷剂对应的过冷区系数。
在本发明的其他实施例中,还可直接调用软件的计算结果,或通过其他途径获取各个温度检测点的制冷剂焓值。举例而言,当空调器的当前工况为制冷工况时,还可根据空调器中的低压压力、回气口温度t1、室内换热器第一端温度t7分别得到回气口的制冷剂焓值h1和室内换热器第一端的制冷剂焓值h7,并可根据空调器中的高压压力、排气口温度t2、室外换热器第一端温度t4分别得到排气口的制冷剂焓值h2和室外换热器第一端的制冷剂焓值h4,以及根据补气温度或者压力可以获得该状态下饱和气体焓值h8’以及饱和液体焓值h8”
S17,根据压缩机的功率、压缩机的壳体散热量Qloss、回气口的制冷剂焓值h1、排气口的制冷剂的焓值h2、室内换热器第二端的制冷剂焓值h5、室内换热器第一端的制冷剂焓值h7、补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”生成空调器的制热量。
在本发明的实施例中,可以根据以下公式生成空调器的制热量:
其中,Q制热量为空调器的制热量,Pcom为压缩机的功率。
S18,根据空调器耗电功率和制热量生成所述空调器的能效。
由于空调器的当前工况为制热工况,因而可根据空调器耗电功率和制热量生成空调器的制热能效,具体地,空调器的制热能效为空调器的制热量与耗电功率之比,即COP=Q制热量/P耗电
在生成空调器的制热能效后,还可根据空调器的制热能效对当前空调器的运行状态进行调整。举例而言,可在空调器的制热能效较低时提高压缩机的功率,以提高空调器的制热能力,并相对降低空调器的能耗,从而不仅能够节能,还能够提高用户的舒适性。
根据本发明实施例的空调器的能效计算方法,通过获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss,并获取压缩机中排气口、室外换热器第一端和室内换热器第二端、室内换热器中部和室内的温度,根据相应温度生成回气口温度、室内换热器第一端温度以及压缩机补气入口的补气温度,以及在空调器处于制冷工况时根据上述各个温度检测点的温度生成上述各个温度检测点的制冷剂焓值,然后结合压缩机的功率、压缩机的壳体散热量Qloss、上述各个温度检测点的制冷剂焓值和空调器耗电功率得到空调器的能效,由此,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制冷效果的目的。
对应上述实施例,本发明还提出另一种空调器。
本发明实施例的空调器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。
根据本发明实施例的空调器,能够实时准确地对能效进行检测,便于根据实时能效优化运行状态,达到节能和提高制热效果的目的。
对应上述实施例,本发明还提出一种非临时性计算机可读存储介质。
本发明实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,可实现本发明上述实施例提出的另一种空调器的能效计算方法。
根据本发明实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够实时准确地检测到空调器的能效,从而便于根据空调器的实时能效优化空调器的运行状态,达到节能和提高制热效果的目的。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (24)

1.一种空调器的能效计算方法,其特征在于,包括以下步骤:
获取空调器的当前工况、压缩机的功率和空调器耗电功率;
获取压缩机的壳体散热量Qloss
获取压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器第二端的室内换热器第二端温度t5、室内换热器中部的室内换热器中部温度t6、室内温度t10
根据所述室内换热器中部温度t6生成压缩机中回气口的回气口温度t1
根据所述室内换热器中部温度t6和所述室内温度t10生成室内换热器第一端的室内换热器第一端温度t7
根据所述室外换热器第一端温度t4和所述室内换热器第二端温度t5生成压缩机补气入口的补气温度t8
当所述空调器的当前工况为制冷工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,以及,根据所述压缩机补气入口的补气温度t8分别生成补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”
根据所述压缩机的功率、所述压缩机的壳体散热量Qloss、所述回气口的制冷剂焓值h1、所述排气口的制冷剂的焓值h2、所述室外换热器第一端的制冷剂焓值h4、所述室内换热器第一端的制冷剂焓值h7、所述补入压缩机的气态制冷剂焓值h8’和所述闪蒸器的液态制冷剂焓值h8”生成空调器的制冷量;
根据所述空调器耗电功率和所述制冷量生成所述空调器的能效。
2.如权利要求1所述的空调器的能效计算方法,其特征在于,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1具体包括:
获取室内换热器中部的室内换热器中部温度t6
根据所述回气口温度t1和室内换热器中部温度t6生成吸气过热度Δt1
根据所述室内换热器中部温度t6生成吸气温度下饱和制冷剂的焓值h吸气饱和
根据所述吸气过热度Δt1和室内换热器中部温度t6生成回气口制冷剂焓值的修正因子D1
根据所述回气口制冷剂焓值的修正因子D1、所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h1
3.如权利要求2所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和
其中,a1-a5为制冷剂对应的饱和区系数。
4.如权利要求2所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口制冷剂焓值的修正因子D1
<mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>6</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>,</mo> </mrow> 1
其中,d1-d6为制冷剂对应的过热区系数。
5.如权利要求3所述的空调器的能效计算方法,其特征在于,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括:
根据所述室内换热器第一端温度t7和所述室内换热器中部温度t6生成过热度Δt7
根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7;
根据所述室内换热器第一端制冷剂焓值的修正因子D7和所述饱和制冷剂的焓值h吸气饱和生成所述制冷剂焓值h7
6.如权利要求5所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7
<mrow> <msub> <mi>D</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>6</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>,</mo> </mrow>
其中,d1-d6为制冷剂对应的过热区系数。
7.如权利要求1所述的空调器的能效计算方法,其特征在于,所述根据所述压缩机中排气口的排气口温度t2生成所述排气口的制冷剂的焓值h2具体包括:
获取室外温度t9
根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3
根据所述室外换热器中部温度t3生成排气温度下饱和制冷剂的焓值h排气饱和;
根据所述压缩机中排气口的排气口温度t2和所述室外换热器中部温度t3生成排气过热度Δt2
根据所述排气过热度Δt2和所述室外换热器中部温度t3生成排气口制冷剂焓值的修正因子D2
根据所述修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂的焓值h2
8.如权利要求7所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述排气口制冷剂焓值的修正因子D2
<mrow> <mi>D</mi> <mn>2</mn> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <msup> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mn>2</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>6</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>,</mo> </mrow>
其中,d1-d6为制冷剂对应的过热区系数。
9.如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室外换热器第一端的制冷剂焓值h4
其中,c1-c4为制冷剂对应的过冷区系数。
10.如权利要求1所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述空调器的制冷量:
其中,Q制冷量为所述空调器的制冷量,Pcom为压缩机的功率。
11.一种空调器,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-10中任一所述的方法。
12.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-10中任一所述的方法。
13.一种空调器的能效计算方法,其特征在于,包括以下步骤:
获取空调器的当前工况、压缩机的功率和空调器耗电功率以及压缩机的壳体散热量Qloss
获取所述压缩机中排气口的排气口温度t2、室外换热器第一端的室外换热器第一端温度t4、室内换热器中部的室内换热器中部温度t6、室内换热器第二端的室内换热器第二端温度t5、室内温度t10
根据所述室外换热器第一端温度t4生成压缩机中回气口的回气口温度t1
根据所述室内换热器中部温度t6和所述室内温度t10生成室内换热器第一端的室内换热器第一端温度t7
根据所述室外换热器第一端温度t4和所述室内换热器第二端温度t5生成压缩机补气入口的补气温度t8
当所述空调器的当前工况为制热工况时,根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1,根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2,根据所述室外换热器第一端的室外换热器第一端温度t4生成室外换热器第一端的制冷剂焓值h4,根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7,以及,根据所述压缩机补气入口的补气温度t8分别生成补入压缩机的气态制冷剂焓值h8’和闪蒸器的液态制冷剂焓值h8”
根据所述压缩机的功率、所述压缩机的壳体散热量Qloss、所述回气口的制冷剂焓值h1、所述排气口的制冷剂的焓值h2、所述室内换热器第二端的制冷剂焓值h5、所述室内换热器第一端的制冷剂焓值h7、所述补入压缩机的气态制冷剂焓值h8’和所述闪蒸器的液态制冷剂焓值h8”生成空调器的制热量;
根据所述空调器耗电功率和所述制热量生成所述空调器的能效。
14.如权利要求13所述的空调器的能效计算方法,其特征在于,所述根据所述压缩机中回气口的回气口温度t1生成回气口的制冷剂焓值h1具体包括:
获取室外温度t9
根据所述室外温度t9和所述室外换热器第一端温度t4生成室外换热器中部温度t3
根据所述回气口温度t1和所述室外换热器中部温度t3生成吸气过热度Δt1
根据所述吸气过热度Δt1和所述室外换热器中部温度t3生成回气口制冷剂焓值的修正因子D1
根据所述室外换热器中部温度t3生成吸气温度下饱和制冷剂的焓值h吸气饱和
根据所述回气口制冷剂焓值的修正因子D1、所述吸气温度下饱和制冷剂的焓值h吸气饱和生成所述回气口的制冷剂焓值h1
15.如权利要求14所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述吸气温度下饱和制冷剂的焓值h吸气饱和
其中,a1-a5为制冷剂对应的饱和区系数。
16.如权利要求14所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述回气口制冷剂焓值的修正因子D1
<mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>6</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>,</mo> </mrow>
其中,d1-d6为制冷剂对应的过热区系数。
17.如权利要求14所述的空调器的能效计算方法,其特征在于,所述根据所述压缩机中排气口的排气口温度t2生成排气口的制冷剂的焓值h2具体包括:
根据所述室内换热器中部的室内换热器中部温度t6和所述压缩机中排气口的排气口温度t2生成排气过热度Δt2
根据所述排气过热度Δt2和所述室内换热器中部温度t6生成排气口制冷剂焓值的修正因子D2
根据所述室内换热器中部温度t6生成排气温度下饱和制冷剂的焓值h排气饱和
根据所述排气口制冷剂焓值的修正因子D2、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述排气口的制冷剂焓值h2
18.权利要求17所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述排气口制冷剂焓值的修正因子D2
<mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>6</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>,</mo> </mrow>
其中,d1-d6为制冷剂对应的过热区系数。
19.如权利要求17所述的空调器的能效计算方法,其特征在于,所述根据所述室内换热器第一端的室内换热器第一端温度t7生成室内换热器第一端的制冷剂焓值h7具体包括:
根据所述室内换热器中部的室内换热器中部温度t6和所述室内换热器第一端温度t7生成过热度Δt7
根据所述过热度Δt7和所述室内换热器中部温度t6生成室内换热器第一端制冷剂焓值的修正因子D7
根据所述室内换热器第一端制冷剂焓值的修正因子D7、所述排气温度下饱和制冷剂的焓值h排气饱和生成所述室内换热器第一端的制冷剂焓值h7
20.如权利要求19所述的空调器的能效计算方法,其特征在于,根据以下公式生成所述室内换热器第一端制冷剂焓值的修正因子D7
<mrow> <msub> <mi>D</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>d</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>4</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>t</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mi>d</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>6</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;t</mi> <mn>7</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>t</mi> <mn>6</mn> <mn>2</mn> </msubsup> <mo>,</mo> </mrow>
其中,d1-d6为制冷剂对应的过热区系数。
21.如权利要求13所述的空调器的能效计算方法,其特征在于,根据以下公式计算所述室内换热器第二端的制冷剂焓值h5
其中,c1-c4为制冷剂对应的过冷区系数。
22.如权利要求13所述的空调器的能效计算方法,其特征在于,根据如下公式生成所述空调器的制热量:
其中,Q制热量为所述空调器的制热量,P压缩机为压缩机的功率。
23.一种空调器,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求13-22中任一所述的方法。
24.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求13-22中任一所述的方法。
CN201710775734.0A 2017-08-31 2017-08-31 空调器及其能效计算方法 Pending CN107388521A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710775734.0A CN107388521A (zh) 2017-08-31 2017-08-31 空调器及其能效计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710775734.0A CN107388521A (zh) 2017-08-31 2017-08-31 空调器及其能效计算方法

Publications (1)

Publication Number Publication Date
CN107388521A true CN107388521A (zh) 2017-11-24

Family

ID=60348707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710775734.0A Pending CN107388521A (zh) 2017-08-31 2017-08-31 空调器及其能效计算方法

Country Status (1)

Country Link
CN (1) CN107388521A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100210A2 (en) * 1982-07-26 1984-02-08 Honeywell Inc. Coefficient of performance measuring device
CN103032996A (zh) * 2012-12-12 2013-04-10 宁波奥克斯电气有限公司 防止压缩机频繁启停的并联压缩机选配方法
CN105091439A (zh) * 2014-05-07 2015-11-25 苏州必信空调有限公司 无油制冷系统制冷量和制冷效率的计算方法及制冷系统
CN106524551A (zh) * 2016-11-07 2017-03-22 清华大学 一种制冷系统中制冷剂质量流量测量方法、装置和测量仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100210A2 (en) * 1982-07-26 1984-02-08 Honeywell Inc. Coefficient of performance measuring device
CN103032996A (zh) * 2012-12-12 2013-04-10 宁波奥克斯电气有限公司 防止压缩机频繁启停的并联压缩机选配方法
CN105091439A (zh) * 2014-05-07 2015-11-25 苏州必信空调有限公司 无油制冷系统制冷量和制冷效率的计算方法及制冷系统
CN106524551A (zh) * 2016-11-07 2017-03-22 清华大学 一种制冷系统中制冷剂质量流量测量方法、装置和测量仪

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
(美)辛格(SINGH,R.P.)等著,许学勤译: "《食品工程导论(第三版)》", 31 August 2006, 北京:中国轻工业出版社 *
刘秉钺主编: "《热工基础与造纸节能》", 31 January 2010, 北京:中国轻工业出版社 *
周光辉等: "制冷剂HCFC-124热力性质计算研究", 《低温与超导》 *
石文星等: "《小型空调热泵装置设计》", 31 October 2013 *
苏晶等: "R410A热力性质的拟合计算", 《制冷与空调》 *
郑兆志等编著: "《家用空调维修安装技术》", 30 March 2006, 北京:中国科学技术出版社 *

Similar Documents

Publication Publication Date Title
CN107328038A (zh) 空调器及其能效计算方法
CN107576008A (zh) 空调器及其能效计算方法
CN107388521A (zh) 空调器及其能效计算方法
CN107367036A (zh) 空调器及其能效计算方法
CN107514780A (zh) 空调器及其能效计算方法
CN107314513A (zh) 空调器及其能效计算方法
CN107314517A (zh) 空调器及其能效计算方法
CN107514778A (zh) 空调器及其能效计算方法
CN107388522A (zh) 空调器及其能效计算方法
CN107328041A (zh) 空调器及其能效计算方法
CN107490149A (zh) 空调器及其能效计算方法
CN107328046A (zh) 空调器及其能效计算方法
CN107504650A (zh) 空调器及其能效计算方法
CN107328050A (zh) 空调器及其能效计算方法
CN107388518A (zh) 空调器及其能效计算方法
CN107490144A (zh) 空调器及其能效计算方法
CN107514764A (zh) 空调器及其能效计算方法
CN107328044A (zh) 空调器及其能效计算方法
CN107514777A (zh) 空调器及其能效计算方法
CN107514761A (zh) 空调器及其能效计算方法
CN107328054A (zh) 空调器及其能效计算方法
CN107328045A (zh) 空调器及其能效计算方法
CN107367031A (zh) 空调器及其能效计算方法
CN107388525A (zh) 空调器及其能效计算方法
CN107490140A (zh) 空调器及其能效计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171124