CN107385370A - Ti‑44Al‑4Nb‑4V‑0﹒3Mo合金细晶化热处理方法 - Google Patents
Ti‑44Al‑4Nb‑4V‑0﹒3Mo合金细晶化热处理方法 Download PDFInfo
- Publication number
- CN107385370A CN107385370A CN201710487448.4A CN201710487448A CN107385370A CN 107385370 A CN107385370 A CN 107385370A CN 201710487448 A CN201710487448 A CN 201710487448A CN 107385370 A CN107385370 A CN 107385370A
- Authority
- CN
- China
- Prior art keywords
- alloy
- alloys
- heat treatment
- temperature
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 38
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 title claims abstract description 19
- 238000007670 refining Methods 0.000 title claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 4
- 241000446313 Lamella Species 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 claims 1
- 235000019628 coolness Nutrition 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 12
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 abstract description 12
- 238000003860 storage Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000010275 isothermal forging Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Forging (AREA)
Abstract
本发明涉及一种钛铝合金的热加工处理工艺,特别是Ti‑44Al‑4Nb‑4V‑0.3Mo合金细晶化热处理工艺。Ti‑44Al‑4Nb‑4V‑0.3Mo合金细晶化热处理方法,将Ti‑44Al‑4Nb‑4V‑0.3Mo合金加热到Ti‑44Al合金的α+β两相区后,对其进行等温高温变形,然后空冷,最后将空冷组织进行热处理,最终获得细小均匀的细晶组织,提高了后续钛铝合金的加工能力。
Description
技术领域
本发明涉及一种钛铝合金的热加工处理工艺,特别是Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理工艺。
背景技术
钛铝合金具有优良的高温抗氧化和抗蠕变能力,优异的750℃以下的高温强度,是航天器蒙皮和发动机机盘的潜在使用材料。但是钛铝合金铸造组织晶粒粗大,不利于力学性能的提高,当前的热机械处理不能获得细小均匀的组织。
发明内容
本发明所要解决的技术问题是:本发明所要解决的技术问题是如何对Ti-44Al-4Nb-4V-0.3Mo合金铸造件进行热处理,从而使该合金获得均匀的细晶组织。
本发明所采用的技术方案是: Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,按照如下的步骤进行
步骤一、将Ti-44Al-4Nb-4V-0.3Mo合金加热到Ti-44Al合金的α+β两相区后,对其进行等温高温变形,变形量为70%-85%,以获得大的变形存储能;需要严格控制变形量为70%-85%,过大或者过小都不能获得最佳的变形存储能。
步骤二、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相,获得更大的化学不平衡驱动力;
步骤三、将空冷后的Ti-44Al-4Nb-4V-0.3Mo合金950°C -1000°C的温度内进行热处理,保温时间为30min-90min。
作为一种优选方式:步骤一中的Ti-44Al-4Nb-4V-0.3Mo合金的α+β两相区温度为1200℃-1290℃,加热过程的升温速率为10°C-20°C/min,采用该温度和升温速率能够获得最大的变形存储能。
作为一种优选方式:步骤三中在热处理过程中,发生不连续反应,将Ti-44Al-4Nb-4V-0.3Mo合金中的α2+γ片层组织分解成β+γ组织,从而细化晶粒。该不连续反应是基于最佳的变形存储能而进行的,不连续反应是一种分解反应,能够将钛铝合金中的(α2+γ)片层组织分解成β+γ组织,从而细化晶粒。片层越细小,(α2+γ)→β+γ的分解反应越容易。因此,提高冷却速度(空冷),提高α相的过饱和度,并形成细小的(α2+γ)片层,为不连续反应提供化学驱动力;高温变形,降低原始组织晶粒尺寸,获得大量变形存储能,为不连续反应提供额外驱动力。在一定温度下保温后,在两种驱动力作用下,将(α2+γ)片层分解,形成晶粒细小的β+γ组织,获得细晶组织。
本发明的有益效果是:一、充分利用了过饱和的化学不平衡带来的化学驱动力和变形提供的变形存储能,促进不连续反应的进行,提高了反应速度,降低反应温度;二、充分利用了不连续反应,分解片层晶团,细化组织;三、与粉末冶金工艺相比,铸锭冶金工艺更适用工业化,工艺简单,经济高效。
本发明将通过选择特定温度将热加工和相变结合,利用变形存储能和过饱和带来的化学不平衡促进后续热处理过程中不连续反应的进行,并最终获得细小均匀的细晶组织。
附图说明
图1是实施例1的SEM-BSE图;
图2是实施例2的SEM-BSE图。
具体实施方式
实施例1
1、将Ti-44Al-4Nb-4V-0.3Mo合金加热到1250℃,并进行等温锻造,变形量80%;
2、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相;
3、将经过步骤二处理的Ti-44Al-4Nb-4V-0.3Mo合金放于950℃的高温炉内保温30min,随炉冷却,保证不连续反应的进行。获得晶粒尺寸小于5μm的细晶钛铝合金组织。
采用扫描电子显微镜下的背散射成像技术(SEM-BSE)放大4000倍检测本方法制备细晶钛铝合金,如图1所示,通过图1可以看出本方法制备的钛铝合金组织非常细小。
实施例2
1、将Ti-44Al-4Nb-4V-0.3Mo合金加热到1200℃,并进行等温锻造,变形量85%;
2、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相;
3、将经过步骤二处理的Ti-44Al-4Nb-4V-0.3Mo合金放于1000℃的高温炉内保温30min,随炉冷却,保证不连续反应的进行。获得晶粒尺寸小于5μm的细晶钛铝合金组织。
采用扫描电子显微镜下的背散射成像技术(SEM-BSE)放大4000倍检测本方法制备细晶钛铝合金,如图2所示,通过图2可以看出本方法制备的钛铝合金组织非常细小。
Claims (3)
1.Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,其特征在于:按照如下的步骤进行
步骤一、将Ti-44Al-4Nb-4V-0.3Mo合金加热到Ti-44Al合金的α+β两相区后,对其进行等温高温变形,变形量为70%-85%;
步骤二、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相;
步骤三、将空冷后的Ti-44Al-4Nb-4V-0.3Mo合金950°C -1000°C的温度内进行热处理,保温时间为30min-90min。
2.根据权利要求1所述的Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,其特征在于:步骤一中的Ti-44Al-4Nb-4V-0.3Mo合金的α+β两相区温度为1200℃-1290℃,加热过程的升温速率为10°C-20°C/min。
3.根据权利要求1所述的Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,其特征在于:步骤三中在热处理过程中,发生不连续反应,将Ti-44Al-4Nb-4V-0.3Mo合金中的α2+γ片层组织分解成β+γ组织,从而细化晶粒。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710487448.4A CN107385370B (zh) | 2017-06-23 | 2017-06-23 | Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710487448.4A CN107385370B (zh) | 2017-06-23 | 2017-06-23 | Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107385370A true CN107385370A (zh) | 2017-11-24 |
CN107385370B CN107385370B (zh) | 2019-04-05 |
Family
ID=60332593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710487448.4A Active CN107385370B (zh) | 2017-06-23 | 2017-06-23 | Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107385370B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108220850A (zh) * | 2018-01-17 | 2018-06-29 | 陕西科技大学 | 一种减弱高铌钛铝合金相变织构的方法 |
CN108385046A (zh) * | 2018-04-23 | 2018-08-10 | 江苏理工学院 | 一种TiAl-V合金的热处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110219912A1 (en) * | 2009-10-24 | 2011-09-15 | Dipl-Ing Matthias Achtermann | METHOD FOR THE PRODUCTION OF A Ãβ-y-TiAL BASE ALLOY |
CN104588997A (zh) * | 2015-01-20 | 2015-05-06 | 哈尔滨工业大学 | 一种近等温模锻制备TiAl合金构件的方法 |
CN105839039A (zh) * | 2016-04-26 | 2016-08-10 | 哈尔滨工业大学 | 一种均匀组织的TiAl合金板材的制备方法 |
CN106498323A (zh) * | 2016-09-27 | 2017-03-15 | 北京科技大学 | 一种短时高效变形TiAl合金热处理方法 |
US20170081751A1 (en) * | 2015-09-17 | 2017-03-23 | LEISTRITZ Turbinentechnik GmbH | Method for producing a preform from an alpha+gamma titanium aluminide alloy for producing a component with high load-bearing capacity for piston engines and gas turbines, in particular aircraft engines |
-
2017
- 2017-06-23 CN CN201710487448.4A patent/CN107385370B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110219912A1 (en) * | 2009-10-24 | 2011-09-15 | Dipl-Ing Matthias Achtermann | METHOD FOR THE PRODUCTION OF A Ãβ-y-TiAL BASE ALLOY |
CN104588997A (zh) * | 2015-01-20 | 2015-05-06 | 哈尔滨工业大学 | 一种近等温模锻制备TiAl合金构件的方法 |
US20170081751A1 (en) * | 2015-09-17 | 2017-03-23 | LEISTRITZ Turbinentechnik GmbH | Method for producing a preform from an alpha+gamma titanium aluminide alloy for producing a component with high load-bearing capacity for piston engines and gas turbines, in particular aircraft engines |
CN105839039A (zh) * | 2016-04-26 | 2016-08-10 | 哈尔滨工业大学 | 一种均匀组织的TiAl合金板材的制备方法 |
CN106498323A (zh) * | 2016-09-27 | 2017-03-15 | 北京科技大学 | 一种短时高效变形TiAl合金热处理方法 |
Non-Patent Citations (1)
Title |
---|
S.Z. ZHANG ET AL.: "《The microstructure, mechanical properties, and oxidation behavior of beta-gamma TiAl alloy with excellent hot workability》", 《MATERIALS SCIENCE&ENGINEERING A》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108220850A (zh) * | 2018-01-17 | 2018-06-29 | 陕西科技大学 | 一种减弱高铌钛铝合金相变织构的方法 |
CN108385046A (zh) * | 2018-04-23 | 2018-08-10 | 江苏理工学院 | 一种TiAl-V合金的热处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107385370B (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Niu et al. | Microstructure evolution, hot deformation behavior and mechanical properties of Ti-43Al-6Nb-1B alloy | |
CN103173698B (zh) | 弥散析出相强化高Cr高Ni奥氏体不锈钢的热加工方法 | |
CN106435418A (zh) | 改善7系铝合金抗晶间与抗应力腐蚀性能的热处理工艺 | |
JP2009299120A (ja) | Ni−Cr−Fe三元系合金材の製造方法 | |
Chen et al. | Microstructure refinement via martensitic transformation in TiAl alloys | |
CN106048486A (zh) | 一种Ti2AlNb合金(O+B2)两相区时效组织细化方法 | |
CN102719642A (zh) | 一种高强高韧性gh2132棒丝材的生产工艺 | |
Shabani et al. | Evaluation of microstructure and texture formation during annealing of cold-rolled FeCrCuMnNi multiphase high-entropy alloy | |
Zhang et al. | Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy | |
Zhang et al. | Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique | |
CN104946956A (zh) | 一种TiNiCuNb形状记忆合金及其制备方法 | |
CN109312427A (zh) | TiAl合金及其制造方法 | |
CN103305781B (zh) | 多元微合金化钛合金加工方法 | |
Fu et al. | Enhancing mechanical properties of dual-phase Al0. 5CoCrFeNiSi0. 25 high entropy alloy via thermomechanical treatment | |
CN109112349A (zh) | 一种CuAlMn形状记忆合金及其制备方法 | |
Kamyshnykova et al. | Grain refinement of cast peritectic TiAl-based alloy by solid-state phase transformations | |
Jung et al. | Achieving fine fully lamellar microstructure of casting TiAl alloy by simple heat treatment | |
Li et al. | Effects of current-assisted heat treatment time on microstructure evolution and superplastic properties of Ti-22Al-24Nb-0.5 Mo alloy | |
Ostovari Moghaddam et al. | Effect of accumulative roll bonding and equal channel angular rolling on microstructural and mechanical properties of Cu–Al–Mn shape memory alloys | |
CN107385370A (zh) | Ti‑44Al‑4Nb‑4V‑0﹒3Mo合金细晶化热处理方法 | |
CN108559935A (zh) | 一种提高钛合金力学性能的快速复合热处理工艺 | |
Salvador et al. | Experimental and computational investigation of Ti-Nb-Fe-Zr alloys with limited Fe contents for biomedical applications | |
Paladugu et al. | Strengthening of cast Ti–25Nb–3Mo–3Zr–2Sn alloy through precipitation of α in two discrete crystallographic orientations | |
CN101560592B (zh) | 一种微硼无钴马氏体时效钢的循环相变细化晶粒工艺 | |
CN114351069B (zh) | 调控近β钛合金变形微织构的间歇式锻造与热处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200827 Address after: 035404 Shenshan Xiang Guan Guan Ying Cun, Dingxiang County, Xinzhou City, Shanxi Province Patentee after: Shanxi Zhonggong Heavy Forging Co., Ltd Address before: 030024 Yingze, Shanxi Province, Berlin District, West Street, No. 79, No. Patentee before: Taiyuan University of Technology |
|
TR01 | Transfer of patent right |