CN107385370A - Ti‑44Al‑4Nb‑4V‑0﹒3Mo合金细晶化热处理方法 - Google Patents

Ti‑44Al‑4Nb‑4V‑0﹒3Mo合金细晶化热处理方法 Download PDF

Info

Publication number
CN107385370A
CN107385370A CN201710487448.4A CN201710487448A CN107385370A CN 107385370 A CN107385370 A CN 107385370A CN 201710487448 A CN201710487448 A CN 201710487448A CN 107385370 A CN107385370 A CN 107385370A
Authority
CN
China
Prior art keywords
alloy
alloys
heat treatment
temperature
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710487448.4A
Other languages
English (en)
Other versions
CN107385370B (zh
Inventor
张树志
张长江
侯赵平
赵玉彬
宋志文
韩建超
徐萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Zhonggong Heavy Forging Co Ltd
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201710487448.4A priority Critical patent/CN107385370B/zh
Publication of CN107385370A publication Critical patent/CN107385370A/zh
Application granted granted Critical
Publication of CN107385370B publication Critical patent/CN107385370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)

Abstract

本发明涉及一种钛铝合金的热加工处理工艺,特别是Ti‑44Al‑4Nb‑4V‑0.3Mo合金细晶化热处理工艺。Ti‑44Al‑4Nb‑4V‑0.3Mo合金细晶化热处理方法,将Ti‑44Al‑4Nb‑4V‑0.3Mo合金加热到Ti‑44Al合金的α+β两相区后,对其进行等温高温变形,然后空冷,最后将空冷组织进行热处理,最终获得细小均匀的细晶组织,提高了后续钛铝合金的加工能力。

Description

Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法
技术领域
本发明涉及一种钛铝合金的热加工处理工艺,特别是Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理工艺。
背景技术
钛铝合金具有优良的高温抗氧化和抗蠕变能力,优异的750℃以下的高温强度,是航天器蒙皮和发动机机盘的潜在使用材料。但是钛铝合金铸造组织晶粒粗大,不利于力学性能的提高,当前的热机械处理不能获得细小均匀的组织。
发明内容
本发明所要解决的技术问题是:本发明所要解决的技术问题是如何对Ti-44Al-4Nb-4V-0.3Mo合金铸造件进行热处理,从而使该合金获得均匀的细晶组织。
本发明所采用的技术方案是: Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,按照如下的步骤进行
步骤一、将Ti-44Al-4Nb-4V-0.3Mo合金加热到Ti-44Al合金的α+β两相区后,对其进行等温高温变形,变形量为70%-85%,以获得大的变形存储能;需要严格控制变形量为70%-85%,过大或者过小都不能获得最佳的变形存储能。
步骤二、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相,获得更大的化学不平衡驱动力;
步骤三、将空冷后的Ti-44Al-4Nb-4V-0.3Mo合金950°C -1000°C的温度内进行热处理,保温时间为30min-90min。
作为一种优选方式:步骤一中的Ti-44Al-4Nb-4V-0.3Mo合金的α+β两相区温度为1200℃-1290℃,加热过程的升温速率为10°C-20°C/min,采用该温度和升温速率能够获得最大的变形存储能。
作为一种优选方式:步骤三中在热处理过程中,发生不连续反应,将Ti-44Al-4Nb-4V-0.3Mo合金中的α2+γ片层组织分解成β+γ组织,从而细化晶粒。该不连续反应是基于最佳的变形存储能而进行的,不连续反应是一种分解反应,能够将钛铝合金中的(α2+γ)片层组织分解成β+γ组织,从而细化晶粒。片层越细小,(α2+γ)→β+γ的分解反应越容易。因此,提高冷却速度(空冷),提高α相的过饱和度,并形成细小的(α2+γ)片层,为不连续反应提供化学驱动力;高温变形,降低原始组织晶粒尺寸,获得大量变形存储能,为不连续反应提供额外驱动力。在一定温度下保温后,在两种驱动力作用下,将(α2+γ)片层分解,形成晶粒细小的β+γ组织,获得细晶组织。
本发明的有益效果是:一、充分利用了过饱和的化学不平衡带来的化学驱动力和变形提供的变形存储能,促进不连续反应的进行,提高了反应速度,降低反应温度;二、充分利用了不连续反应,分解片层晶团,细化组织;三、与粉末冶金工艺相比,铸锭冶金工艺更适用工业化,工艺简单,经济高效。
本发明将通过选择特定温度将热加工和相变结合,利用变形存储能和过饱和带来的化学不平衡促进后续热处理过程中不连续反应的进行,并最终获得细小均匀的细晶组织。
附图说明
图1是实施例1的SEM-BSE图;
图2是实施例2的SEM-BSE图。
具体实施方式
实施例1
1、将Ti-44Al-4Nb-4V-0.3Mo合金加热到1250℃,并进行等温锻造,变形量80%;
2、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相;
3、将经过步骤二处理的Ti-44Al-4Nb-4V-0.3Mo合金放于950℃的高温炉内保温30min,随炉冷却,保证不连续反应的进行。获得晶粒尺寸小于5μm的细晶钛铝合金组织。
采用扫描电子显微镜下的背散射成像技术(SEM-BSE)放大4000倍检测本方法制备细晶钛铝合金,如图1所示,通过图1可以看出本方法制备的钛铝合金组织非常细小。
实施例2
1、将Ti-44Al-4Nb-4V-0.3Mo合金加热到1200℃,并进行等温锻造,变形量85%;
2、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相;
3、将经过步骤二处理的Ti-44Al-4Nb-4V-0.3Mo合金放于1000℃的高温炉内保温30min,随炉冷却,保证不连续反应的进行。获得晶粒尺寸小于5μm的细晶钛铝合金组织。
采用扫描电子显微镜下的背散射成像技术(SEM-BSE)放大4000倍检测本方法制备细晶钛铝合金,如图2所示,通过图2可以看出本方法制备的钛铝合金组织非常细小。

Claims (3)

1.Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,其特征在于:按照如下的步骤进行
步骤一、将Ti-44Al-4Nb-4V-0.3Mo合金加热到Ti-44Al合金的α+β两相区后,对其进行等温高温变形,变形量为70%-85%;
步骤二、将变形后的Ti-44Al-4Nb-4V-0.3Mo合金空冷,使Nb、V、Mo固溶到Ti-44Al-4Nb-4V-0.3Mo合金的高温α相中,获得过饱和Ti-44Al-4Nb-4V-0.3Mo合金的α相;
步骤三、将空冷后的Ti-44Al-4Nb-4V-0.3Mo合金950°C -1000°C的温度内进行热处理,保温时间为30min-90min。
2.根据权利要求1所述的Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,其特征在于:步骤一中的Ti-44Al-4Nb-4V-0.3Mo合金的α+β两相区温度为1200℃-1290℃,加热过程的升温速率为10°C-20°C/min。
3.根据权利要求1所述的Ti-44Al-4Nb-4V-0.3Mo合金细晶化热处理方法,其特征在于:步骤三中在热处理过程中,发生不连续反应,将Ti-44Al-4Nb-4V-0.3Mo合金中的α2+γ片层组织分解成β+γ组织,从而细化晶粒。
CN201710487448.4A 2017-06-23 2017-06-23 Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法 Active CN107385370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710487448.4A CN107385370B (zh) 2017-06-23 2017-06-23 Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710487448.4A CN107385370B (zh) 2017-06-23 2017-06-23 Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法

Publications (2)

Publication Number Publication Date
CN107385370A true CN107385370A (zh) 2017-11-24
CN107385370B CN107385370B (zh) 2019-04-05

Family

ID=60332593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710487448.4A Active CN107385370B (zh) 2017-06-23 2017-06-23 Ti-44Al-4Nb-4V-0﹒3Mo合金细晶化热处理方法

Country Status (1)

Country Link
CN (1) CN107385370B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220850A (zh) * 2018-01-17 2018-06-29 陕西科技大学 一种减弱高铌钛铝合金相变织构的方法
CN108385046A (zh) * 2018-04-23 2018-08-10 江苏理工学院 一种TiAl-V合金的热处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219912A1 (en) * 2009-10-24 2011-09-15 Dipl-Ing Matthias Achtermann METHOD FOR THE PRODUCTION OF A Ãβ-y-TiAL BASE ALLOY
CN104588997A (zh) * 2015-01-20 2015-05-06 哈尔滨工业大学 一种近等温模锻制备TiAl合金构件的方法
CN105839039A (zh) * 2016-04-26 2016-08-10 哈尔滨工业大学 一种均匀组织的TiAl合金板材的制备方法
CN106498323A (zh) * 2016-09-27 2017-03-15 北京科技大学 一种短时高效变形TiAl合金热处理方法
US20170081751A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH Method for producing a preform from an alpha+gamma titanium aluminide alloy for producing a component with high load-bearing capacity for piston engines and gas turbines, in particular aircraft engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219912A1 (en) * 2009-10-24 2011-09-15 Dipl-Ing Matthias Achtermann METHOD FOR THE PRODUCTION OF A Ãβ-y-TiAL BASE ALLOY
CN104588997A (zh) * 2015-01-20 2015-05-06 哈尔滨工业大学 一种近等温模锻制备TiAl合金构件的方法
US20170081751A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH Method for producing a preform from an alpha+gamma titanium aluminide alloy for producing a component with high load-bearing capacity for piston engines and gas turbines, in particular aircraft engines
CN105839039A (zh) * 2016-04-26 2016-08-10 哈尔滨工业大学 一种均匀组织的TiAl合金板材的制备方法
CN106498323A (zh) * 2016-09-27 2017-03-15 北京科技大学 一种短时高效变形TiAl合金热处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.Z. ZHANG ET AL.: "《The microstructure, mechanical properties, and oxidation behavior of beta-gamma TiAl alloy with excellent hot workability》", 《MATERIALS SCIENCE&ENGINEERING A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220850A (zh) * 2018-01-17 2018-06-29 陕西科技大学 一种减弱高铌钛铝合金相变织构的方法
CN108385046A (zh) * 2018-04-23 2018-08-10 江苏理工学院 一种TiAl-V合金的热处理方法

Also Published As

Publication number Publication date
CN107385370B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
Niu et al. Microstructure evolution, hot deformation behavior and mechanical properties of Ti-43Al-6Nb-1B alloy
CN103173698B (zh) 弥散析出相强化高Cr高Ni奥氏体不锈钢的热加工方法
CN106435418A (zh) 改善7系铝合金抗晶间与抗应力腐蚀性能的热处理工艺
JP2009299120A (ja) Ni−Cr−Fe三元系合金材の製造方法
Chen et al. Microstructure refinement via martensitic transformation in TiAl alloys
CN106048486A (zh) 一种Ti2AlNb合金(O+B2)两相区时效组织细化方法
CN102719642A (zh) 一种高强高韧性gh2132棒丝材的生产工艺
Shabani et al. Evaluation of microstructure and texture formation during annealing of cold-rolled FeCrCuMnNi multiphase high-entropy alloy
Zhang et al. Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy
Zhang et al. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique
CN104946956A (zh) 一种TiNiCuNb形状记忆合金及其制备方法
CN109312427A (zh) TiAl合金及其制造方法
CN103305781B (zh) 多元微合金化钛合金加工方法
Fu et al. Enhancing mechanical properties of dual-phase Al0. 5CoCrFeNiSi0. 25 high entropy alloy via thermomechanical treatment
CN109112349A (zh) 一种CuAlMn形状记忆合金及其制备方法
Kamyshnykova et al. Grain refinement of cast peritectic TiAl-based alloy by solid-state phase transformations
Jung et al. Achieving fine fully lamellar microstructure of casting TiAl alloy by simple heat treatment
Li et al. Effects of current-assisted heat treatment time on microstructure evolution and superplastic properties of Ti-22Al-24Nb-0.5 Mo alloy
Ostovari Moghaddam et al. Effect of accumulative roll bonding and equal channel angular rolling on microstructural and mechanical properties of Cu–Al–Mn shape memory alloys
CN107385370A (zh) Ti‑44Al‑4Nb‑4V‑0﹒3Mo合金细晶化热处理方法
CN108559935A (zh) 一种提高钛合金力学性能的快速复合热处理工艺
Salvador et al. Experimental and computational investigation of Ti-Nb-Fe-Zr alloys with limited Fe contents for biomedical applications
Paladugu et al. Strengthening of cast Ti–25Nb–3Mo–3Zr–2Sn alloy through precipitation of α in two discrete crystallographic orientations
CN101560592B (zh) 一种微硼无钴马氏体时效钢的循环相变细化晶粒工艺
CN114351069B (zh) 调控近β钛合金变形微织构的间歇式锻造与热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200827

Address after: 035404 Shenshan Xiang Guan Guan Ying Cun, Dingxiang County, Xinzhou City, Shanxi Province

Patentee after: Shanxi Zhonggong Heavy Forging Co., Ltd

Address before: 030024 Yingze, Shanxi Province, Berlin District, West Street, No. 79, No.

Patentee before: Taiyuan University of Technology

TR01 Transfer of patent right