CN107376656A - 一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法 - Google Patents
一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法 Download PDFInfo
- Publication number
- CN107376656A CN107376656A CN201710572103.9A CN201710572103A CN107376656A CN 107376656 A CN107376656 A CN 107376656A CN 201710572103 A CN201710572103 A CN 201710572103A CN 107376656 A CN107376656 A CN 107376656A
- Authority
- CN
- China
- Prior art keywords
- cuttlebone
- reverse osmosis
- osmosis membrane
- modified
- phase solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,具体包括以下步骤:(1)墨鱼骨与磷酸氢二铵发生水热反应,获得改性墨鱼骨纳米颗粒;(2)在聚砜底膜上,涂覆含有多元胺和改性墨鱼骨纳米颗粒的水相溶液;(3)阴干后,再涂覆多元酰氯溶解于Isopar G中的油相溶液;(4)将经过涂覆的膜进行恒温处理,获得墨鱼骨改性的高通量反渗透膜。采用本发明所述方法,在常规条件下将改性墨鱼骨纳米颗粒杂化到反渗透膜的分离层中,实现高水通量反渗透膜的制备,既保持了良好截留率,又大大提升了水通量,重现性较好,制备成本低廉。
Description
技术领域
本发明属于反渗透复合膜技术领域,具体是指一种高通量反渗透膜的制备方法。
技术背景
降低跨膜压差,增大水通量一直是脱盐膜追求高性能的最主要的目标。70年代末J.E.Cadotte聚合制备了第一张复合膜,成为低压高通量脱盐膜发展的里程碑。目前的超低压反渗透或纳滤膜的操作压力小于0.5MPa,而水通量在30~60LMH。研制超低压高通量反渗透复合膜是学者们研究复合膜的一个重要目标。我国反渗透膜材料发展主要依靠自主研发。近年来虽然取得了较大进步,但与国外相比还有较大差距,主要表现在材料品种较少,制膜工艺还有待提高,部分研究成果只能停留在实验室阶段而难以实现工业化等,且目前在提高膜性能方面利用现有膜材料而改进膜组件制备方面研究较多,新的膜材料及材料改性研究开发相对较少,所以目前国内对低压高通量的反渗透复合膜的研制和开发仍有局限。
有研究表明,用无机纳米粒子对复合膜进行改性能够有效的提高复合膜的水通量。目前已有多种无机材料的研究和应用,包括碳纳米管、二氧化硅、石墨、二氧化锆、二氧化钛、氧化铝、沸石等。不同材料的性质和结构不同,对膜性能的影响也有所不同。
申请号为2014107365800的发明专利公开了一种超低压高通量反渗透膜的制备方法。该方法通过在油相中添加脂类及酮的衍生物物质,改变水相及油相间的溶解差异,增大界面聚合的反应界面,增加膜片的水通量。
本发明将经过改性的墨鱼骨纳米材料应用于纳滤膜,以此来提高反渗透膜的水通量。墨鱼骨纳米材料不仅取材容易,制备简单,还具有独特的结构,此前并未有人将墨鱼骨应用于复合膜的制备。墨鱼骨为海洋软体动物墨鱼的脊骨,具有与其漂浮习性相适应的极高孔隙率;它先由甲壳素和蛋白质等有机分子生成的膜状物,然后在膜内沉积文石型晶状碳中酸钙和磷酸钙而成骨。在高温高压条件下,墨鱼骨可以与磷酸氢二铵发生水热反应,最终生成一种新型的墨鱼骨转化羟基磷灰石(HA)。HA材料在宏观上完全保留了墨鱼骨的多孔网状结构,微观上表现为自组织纳米体系,从而形成一种新型的自组织三维纳米羟基磷灰石,在界面聚合反应中加入改性墨鱼骨纳米颗粒可以直接影响复合膜分离层的形成,对聚酰胺层的网络结构、孔径、孔密度和光滑性等有着强烈的影响,能够大幅度地提高水通量。
发明内容
本发明旨在提供一种利用改性墨鱼骨纳米颗粒这种新型的无机纳米粒子来制备高通量反渗透膜制备方法。这种新型高通量反渗透膜的制备过程是先在聚砜底膜上涂覆含有多元胺和改性墨鱼骨纳米颗粒水相溶液,再涂覆多元酰氯溶解于Isopar G(1种异构烷烃溶剂)中的油相溶液,通过界面聚合制备墨鱼骨改性的高通量反渗透膜。通过对涂覆液各组分进行优化选择,对后处理的温度进行调控,制备出了高水通量的墨鱼骨改性反渗透膜。
本发明是通过下述技术方案实现的:
一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,在聚砜底膜上,先涂覆含有多元胺和改性墨鱼骨纳米颗粒水相溶液,阴干后,再涂覆多元酰氯溶解于IsoparG(1种异构烷烃溶剂)中的油相溶液,然后将经过涂覆的膜在一定的温度下进行后处理,最后得到了墨鱼骨改性的高通量反渗透膜。其中涂覆液的水相中含有溶于水的添加剂。本发明中的改性是指通过物理和化学手段改变材料物质形态或性质的方法,此处的改性是指通过水热反应,改变墨鱼骨的相界面,从而提高墨鱼骨复合材料的性能。
作为优选,上述制备方法中水相溶液中含有的高分子有间苯二胺,哌嗪,聚乙烯亚胺中的一种或多种,且水相中的高分子质量百分比为0.1~5.0%。水相溶液可含有的添加剂有甘油,聚乙二醇和聚乙烯吡络烷酮,水相中的添加剂质量百分百为0.1~10%。水相溶液中含有的改性墨鱼骨纳米颗粒的质量百分比为0.1~5.0%。
作为更佳选择,水相溶液的高分子为间苯二胺,且间苯二胺质量百分比为0.1~3%。水相溶液中的添加剂为甘油,甘油的质量百分比为1~5%。水相溶液中的改性墨鱼骨纳米颗粒的质量百分比为0.1~3.0%。
作为优选,上述制备方法中油相溶液中含有的高分子有均苯三甲酰氯,己二酰氯,六亚甲基二异氰酸酯的一种或多种,且油相中的高分子溶质质量百分比为0.1~5.0%。油相溶液中的高分子为均苯三甲酰氯,且均苯三甲酰氯质量百分比为0.1~3%。
作为优选,上述制备方法中纳滤膜的后处理温度为50℃-100℃。
在本发明中,聚砜底膜可以是任何厂家提供的底膜,底膜的性能差异、底膜的种类对本发明的结果并无直接影响,因此可以选择商业聚砜底膜或者自制,这也为本发明的普通适用、进行商业化应用提供了可能。改性墨鱼骨纳米材料制备简单,只需与反应溶液在高温高压下放置一段时间,而且墨鱼骨材料普遍存在,因此也为本发明的普通适用、进行商业化应用提供了可能。反渗透膜的后处理温度可由烘箱进行控制,尤其是在70℃-90℃时,性能较为优越。
有益效果:由于墨鱼骨纳米材料在宏观上完全保留了墨鱼骨的多孔网状结构,微观上表现为自组织纳米体系,从而形成一种新型的自组织三维纳米羟基磷灰石,在界面聚合反应中加入改性墨鱼骨纳米颗粒可以直接影响复合膜分离层的形成,对聚酰胺层的网络结构、孔径、孔密度和光滑性等有着强烈的影响。采用本专利所述方法,不需要改变或增加常规复合分离膜的制备工序,可在常规条件下将改性墨鱼骨纳米颗粒杂化到反渗透膜的分离层中,实现高水通量反渗透膜的制备,而且相对于现有技术本专利既保持了良好截留率,又大大提升了水通量,重现性较好,制备成本低廉。
具体实施方式
下面对本发明的具体实施方式作具体说明:
以下实施例给出一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法。实施例中所用的聚砜底膜为自制底膜。膜生产日期至实验日期小于30天,期间保存于1.5%亚硫酸氢钠水溶液中。在进行界面反应制备复合膜之前,将聚砜底膜提前60min浸泡于纯水中。
实施例中对墨鱼骨改性的高通量反渗透膜的脱盐性能做出评价:氯化钠脱盐率和水通量。性能评价时的测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm。
实施例中,脱盐率定义为浓水与产水的浓度之差除以浓水浓度;水通量定义为在上述测试过程中单位时间透过单位面积复合分离膜的水体积,单位为L/m2·h(LMH)。以上每个数据点由10个试样取平均值得到。
为了更好地表示实施效果,具体实施方式中还设置了对照组。对照组在不断改变水相溶度和油相溶度以及烘箱的后处理温度,但是未在水相添加改性墨鱼骨纳米颗粒的实验条件下,制备了不同的反渗透膜。经过实验测试,所制备的反渗透膜对1000ppm氯化钠水溶液的截留率最高为99.0%,水通量最高为55LMH。性能评价时的测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm。
实施例1
一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,包括以下步骤:首先,将墨鱼骨与磷酸氢二铵发生水热反应,获得改性墨鱼骨纳米颗粒;然后在聚砜底膜上,涂覆含有间苯二胺和改性墨鱼骨纳米颗粒的水相溶液;阴干后,再涂覆多元酰氯溶解于Isopar G(1种异构烷烃溶剂)中的油相溶液;将经过涂覆的膜进行恒温处理,获得墨鱼骨改性的高通量反渗透膜。其中,水热法又称热液法,属液相化学法的范畴,是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。在水热条件下,水可以作为一种化学组分起作用并参加反应,既是溶剂又是矿化剂同时还可作为压力传递介质;通过参加渗析反应和控制物理化学因素等,实现无机化合物的形成和改性.
实施例2
配置2.0%的间苯二胺水水溶液并加入1.0%的改性墨鱼骨纳米颗粒,混合均匀,再配置0.2%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在90℃烘箱中处理2min。其中,水相溶液中可以含有的高分子有间苯二胺,哌嗪,聚乙烯亚胺中的一种或多种,水相中的高分子质量百分比为0.1~5.0%都能取得较为满意的效果。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为98LMH,脱盐率为99.5%。
实施例3
配置1.0%的间苯二胺水溶液并加入0.1%的改性墨鱼骨纳米颗粒,混合均匀,再配置0.1%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在50℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为81LMH,脱盐率为99.0%。
实施例4
配置0.1%的间苯二胺水溶液并加入2.0%的改性墨鱼骨纳米颗粒,混合均匀,再配置0.5%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在70℃烘箱中处理2min。水相溶液中含有添加剂,添加剂为甘油、聚乙二醇或聚乙烯吡络烷酮,水相中的添加剂质量百分百为0.1~10.0%。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为93LMH,脱盐率为99.4%。
实施例5
配置5.0%的间苯二胺水溶液并加入5.0%的改性墨鱼骨纳米颗粒,混合均匀,再配置3.0%的均苯三甲酰氯油相溶液。水相溶液中的添加剂为甘油,甘油的质量百分比为1.0~5.0%。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在90℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为101LMH,脱盐率为99.5%。
实施例6
配置3.0%的间苯二胺水溶液并加入1.0%的改性墨鱼骨纳米颗粒,混合均匀,再配置0.2%的高分子油相溶液,油相溶液中的高分子为均苯三甲酰氯,己二酰氯,六亚甲基二异氰酸酯的一种或多种。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在100℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为102LMH,脱盐率为99.4%。
实施例7
配置2.0%的间苯二胺水溶液并加入0.3%的改性墨鱼骨纳米颗粒,混合均匀,再配置1.0%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在70℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为75LMH,脱盐率为99.1%。
实施例8
配置2.0%的间苯二胺水溶液并加入0.2%的改性墨鱼骨纳米颗粒,混合均匀,再配置1.5%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在90℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为68LMH,脱盐率为99.3%。
实施例9
配置4.0%的间苯二胺水溶液并加入0.1%的改性墨鱼骨纳米颗粒,混合均匀,再配置5.0%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在80℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为94LMH,脱盐率为99.5%。
实施例10
配置0.5%的间苯二胺水溶液并加入1.0%的改性墨鱼骨纳米颗粒,混合均匀,再配置0.5%的均苯三甲酰氯油相溶液。先在聚砜底膜上涂覆水相溶液,20s后倒掉多余的溶液,阴干,再将油相溶液涂覆在阴干的膜上,20s后,倒掉多余的溶液,并在60℃烘箱中处理2min。由此法制备的基于墨鱼骨纳米颗粒改性纳滤膜在测试压力为100psi,浓水流量为1.0L/min,环境温度均为25℃,浓水pH值均为6.5~7.5,浓水为氯化钠水溶液,浓度为1000ppm的实验条件下,测定其水通量为67LMH,脱盐率为94.8%。
Claims (8)
1.一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征是:包括以下步骤:
(1)墨鱼骨与磷酸氢二铵发生水热反应,获得改性墨鱼骨纳米颗粒;
(2)在聚砜底膜上,涂覆含有间苯二胺和改性墨鱼骨纳米颗粒的水相溶液;
(3)阴干后,再涂覆多元酰氯溶解于Isopar G中的油相溶液;
(4)将经过涂覆的膜进行恒温处理,获得墨鱼骨改性的高通量反渗透膜。
2.如权利要求1所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:水相溶液中间苯二胺的质量百分比为0.1~5.0%。
3.如权利要求1所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:水相溶液中含有的改性墨鱼骨纳米颗粒的质量百分比为0.1~5.0%。
4.如权利要求1所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:水相溶液含有添加剂,添加剂为甘油、聚乙二醇或聚乙烯吡络烷酮,水相中的添加剂质量百分百为0.1~10.0%。
5.如权利要求2所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:水相溶液中间苯二胺质量百分比为0.1~3.0%,水相溶液中的添加剂为甘油,甘油的质量百分比为1.0~5.0%。
6.如权利要求1所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:油相溶液中含有的高分子有均苯三甲酰氯,己二酰氯,六亚甲基二异氰酸酯的一种或多种,油相中的高分子溶质质量百分比为0.1~5.0%。
7.如权利要求6所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:油相溶液中的高分子为均苯三甲酰氯,均苯三甲酰氯的质量百分比为0.1~3%。
8.如权利要求1所述的基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法,其特征在于:纳滤膜的恒温处理温度为50℃-100℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710572103.9A CN107376656A (zh) | 2017-07-13 | 2017-07-13 | 一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710572103.9A CN107376656A (zh) | 2017-07-13 | 2017-07-13 | 一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107376656A true CN107376656A (zh) | 2017-11-24 |
Family
ID=60339567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710572103.9A Pending CN107376656A (zh) | 2017-07-13 | 2017-07-13 | 一种基于墨鱼骨纳米粒子改性的高通量反渗透膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107376656A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003055594A2 (fr) * | 2001-12-27 | 2003-07-10 | Eka Chemicals Ab | Materiaux supports optiquement actifs, leur procede de prepartion et leurs utilisations |
CN101791520A (zh) * | 2010-04-06 | 2010-08-04 | 东华大学 | 聚醚砜/羟基磷灰石复合膜、其制备方法和应用 |
CN102974228A (zh) * | 2012-10-25 | 2013-03-20 | 贵阳时代沃顿科技有限公司 | 一种具有纳米杂化脱盐层的纳滤膜 |
-
2017
- 2017-07-13 CN CN201710572103.9A patent/CN107376656A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003055594A2 (fr) * | 2001-12-27 | 2003-07-10 | Eka Chemicals Ab | Materiaux supports optiquement actifs, leur procede de prepartion et leurs utilisations |
CN101791520A (zh) * | 2010-04-06 | 2010-08-04 | 东华大学 | 聚醚砜/羟基磷灰石复合膜、其制备方法和应用 |
CN102974228A (zh) * | 2012-10-25 | 2013-03-20 | 贵阳时代沃顿科技有限公司 | 一种具有纳米杂化脱盐层的纳滤膜 |
Non-Patent Citations (1)
Title |
---|
刘明: "墨鱼骨转化羟基磷灰石的制备及其性能研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation | |
Ma et al. | A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes | |
Xu et al. | Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting | |
Xia et al. | Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal | |
Wang et al. | Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin | |
Chan et al. | Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance | |
Ghanbari et al. | Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination | |
US8940173B2 (en) | Membranes with functionalized carbon nanotube pores for selective transport | |
Li et al. | Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers | |
An et al. | Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers | |
Xiao et al. | Thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration | |
Wang et al. | Designing high-performance nanofiltration membranes for high-salinity separation of sulfate and chloride in the chlor-alkali process | |
Hu et al. | Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization | |
Akbari et al. | Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of Humic acid | |
Farahbakhsh et al. | Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks | |
Salehi et al. | Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis | |
Chen et al. | An interlayer-based positive charge compensation strategy for the preparation of highly selective Mg2+/Li+ separation nanofiltration membranes | |
CN101940883A (zh) | 一种含纳米沸石分子筛反渗透复合膜的制备方法 | |
Shao et al. | Preparation and characterization of sulfated carboxymethyl cellulose nanofiltration membranes with improved water permeability | |
Wang et al. | Novel macrocyclic polyamines regulated nanofiltration membranes: Towards efficient micropollutants removal and molecular separation | |
Wu et al. | Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration | |
CN109603586A (zh) | 一种基于新的缓冲体系的高通量纳滤膜的制备方法 | |
Lan et al. | Fabrication of high performance nanofiltration membrane by construction of Noria based nanoparticles interlayer | |
Tang et al. | A novel positively charged asymmetry membranes from poly (2, 6-dimethyl-1, 4-phenylene oxide) by benzyl bromination and in situ amination: membrane preparation and characterization | |
CN110449045A (zh) | 一种基于新的缓冲体系的高通量纳滤膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171124 |
|
RJ01 | Rejection of invention patent application after publication |