CN107376013A - 一种多孔微纳米纤维三维壳聚糖支架及其制备方法 - Google Patents

一种多孔微纳米纤维三维壳聚糖支架及其制备方法 Download PDF

Info

Publication number
CN107376013A
CN107376013A CN201710434315.0A CN201710434315A CN107376013A CN 107376013 A CN107376013 A CN 107376013A CN 201710434315 A CN201710434315 A CN 201710434315A CN 107376013 A CN107376013 A CN 107376013A
Authority
CN
China
Prior art keywords
chitosan
nanometer fiber
micro nanometer
preparation
porous micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710434315.0A
Other languages
English (en)
Other versions
CN107376013B (zh
Inventor
汪学军
楼涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201710434315.0A priority Critical patent/CN107376013B/zh
Publication of CN107376013A publication Critical patent/CN107376013A/zh
Application granted granted Critical
Publication of CN107376013B publication Critical patent/CN107376013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及一种多孔微纳米纤维三维壳聚糖支架及其制备方法,它采用一定比例的乙酸、四氢呋喃和水的三元混合溶剂溶解壳聚糖,将筛分后的氯化钠颗粒平铺在容器中,倒入壳聚糖溶液,使之完全浸没氯化钠颗粒,置于低温冷冻成型,冻干样品再经碱洗、水洗、冷冻成型和冻干后可获得多孔微纳米纤维三维壳聚糖支架。该制备方法工艺简单,与传统的二元溶剂制备的壳聚糖支架相比,其典型特征是微观上呈现可控多孔和微纳米纤维的形态。

Description

一种多孔微纳米纤维三维壳聚糖支架及其制备方法
技术领域
本发明涉及一种多孔微纳米纤维三维壳聚糖支架及其制备方法,属于生物医用材料技术领域。
背景技术
壳聚糖是由一种天然碱性多糖,与人体内硫酸软骨素的结构相似,具有抗菌消炎的特点。壳聚糖制备的组织工程支架具有良好的生物学性能、利于细胞的增殖分化,因此在组织工程材料领域有重要的应用。在制备壳聚糖支架的工艺中,常用的溶剂是乙酸水溶液,由此制备的壳聚糖支架的微观结构为数十到数百微米厚度的片状海绵(Biomaterials,1999; 20: 1133- 1142)。胡巧玲等人制备了三维有序多孔壳聚糖支架(CN101366972),可用于骨组织的修复。壳聚糖支架的缺点是其片状的微观结构不利于细胞的粘附及渗透,这限制了其作为可降解性组织工程支架的应用。研究表明具有纳米和微米纤维的微观结构则可以克服生物相容性和力学性能之间的矛盾。目前静电纺丝法也可制备微纳米纤维,其优点是纤维直径可控制在一定范围,但静电纺丝法只能获得二维的薄膜,且制备时间长。传统的相分离法制备壳聚糖三维组织工程支架通常为片状蜂窝结构,其尺度通常在几十或数百微米。由于壳聚糖分子具有较强的分子间力,其溶解于酸后粘度较大,获得微纳米纤维结构需将壳聚糖的浓度变得很低,但这样制备的支架无力学强度,无法作为组织工程支架。另外,支架需要相互贯通的多孔结构,利于细胞的迁移以及营养物质的传送,单独的相分离法无法有效地控制孔的大小,相分离法结合致孔法则可以达到控制孔大小的目的,使得壳聚糖支架的综合性能更为优良。
发明内容
本发明的主要设想是改变相分离制备方法中传统的水和乙酸组成的二元溶剂体系,加入一种有机溶剂与水和乙酸组成一种新型的三元溶剂,改变壳聚糖的分子间力,促使壳聚糖在冷冻的过程中形成微纳米纤维,另外结合致孔法可得到多孔微纳米纤维三维壳聚糖支架。
本发明中多孔微纳米纤维三维壳聚糖支架的制备具体如下所述。
(1) 配制乙酸、四氢呋喃和水的三元混合溶剂。
(2) 加入壳聚糖,电磁搅拌溶解24小时。
(3) 将筛分后的氯化钠颗粒均匀的平铺在容器中,倒入壳聚糖溶液,完全浸没氯化钠颗粒,置于低温冷冻成型。
(4) 冻干得到干燥样品。
(5) 将干燥样品浸没在稀氢氧化钠溶液中,去除残留的乙酸、四氢呋喃和氯化钠,再用大量蒸馏水洗净。
(6) 样品再经冷冻成型,冻干可得多孔微纳米纤维三维壳聚糖支架。
本发明制得的样品为白色泡沫状,其三维形状可通过在分样过程中采用不同的容器和分样体积调节。微纳米纤维共存的微观结构赋予支架良好的生物相容性和力学强度,可控的孔结构利于细胞的迁移和营养物质的输送。该制备方法工艺简单,成本低廉,支架成型性好。与传统的二元溶剂制备的壳聚糖支架相比,其典型特征是微观上呈现可控多孔和微纳米纤维的形态。
具体实施方式
下面结合具体实施例,对本发明内容作进一步的说明,但本发明的实现方式并不局限于此。
实施例1:分别取乙酸、四氢呋喃和水各1ml,5ml和94ml,混合均匀。称取分子量为10万的壳聚糖0.5g,电磁搅拌溶解24小时。待壳聚糖完全溶解后,将筛分后粒度直径在10-350微米的氯化钠颗粒平铺在容器中,将壳聚糖溶液完全浸没氯化钠颗粒,在-80℃下冷冻12小时以上成型,冻干48小时后得到干燥样品。将干燥样品浸没在0.01mol/L的氢氧化钠溶液中,去除残留的乙酸、四氢呋喃和氯化钠,再用大量蒸馏水洗净。样品再经冷冻成型,冻干48小时后可得多孔微纳米纤维三维壳聚糖支架。
实施例2:分别取乙酸、四氢呋喃和水各10ml,20ml和70ml,混合均匀。称取分子量为40万的壳聚糖3g,电磁搅拌溶解24小时。待壳聚糖完全溶解后,将筛分后粒度直径在10-350微米的氯化钠颗粒平铺在容器中,将壳聚糖溶液完全浸没氯化钠颗粒,在-196℃(液氮中)下冷冻成型,冻干48小时后得到干燥样品。将干燥样品浸没在0.01mol/L的氢氧化钠溶液中,去除残留的乙酸、四氢呋喃和氯化钠,再用大量蒸馏水洗净。样品再经冷冻成型,冻干48小时后可得多孔微纳米纤维三维壳聚糖支架。

Claims (5)

1.一种多孔微纳米纤维三维壳聚糖支架及其制备方法,其特征在于用一定比例的乙酸、四氢呋喃和水的三元混合溶剂溶解壳聚糖,将筛分后的氯化钠颗粒平铺在容器中,倒入壳聚糖溶液,使之完全浸没氯化钠颗粒,置于低温冷冻成型,冻干样品再经碱洗、水洗、冷冻成型和冻干后可获得多孔微纳米纤维三维壳聚糖支架。
2.根据权利要求1所述的多孔微纳米纤维三维壳聚糖支架及其制备方法,其特征在于所使用的壳聚糖分子量在10~40万之间,壳聚糖的质量体积浓度在0.5~3%之间。
3.根据权利要求1所述的多孔微纳米纤维三维壳聚糖支架及其制备方法,其特征在于三元混合溶剂中乙酸的体积比在1~10%之间,四氢呋喃的体积比在5~20%之间,水的体积比在70~94%之间。
4.根据权利要求1所述的多孔微纳米纤维三维壳聚糖支架及其制备方法,其特征在于冷冻成型温度在-80~-196℃之间。
5.根据权利要求1所述的多孔微纳米纤维三维壳聚糖支架及其制备方法,其特征在于氯化钠颗粒的粒径分布在10~350微米之间。
CN201710434315.0A 2017-06-09 2017-06-09 一种多孔微纳米纤维三维壳聚糖支架及其制备方法 Active CN107376013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710434315.0A CN107376013B (zh) 2017-06-09 2017-06-09 一种多孔微纳米纤维三维壳聚糖支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710434315.0A CN107376013B (zh) 2017-06-09 2017-06-09 一种多孔微纳米纤维三维壳聚糖支架及其制备方法

Publications (2)

Publication Number Publication Date
CN107376013A true CN107376013A (zh) 2017-11-24
CN107376013B CN107376013B (zh) 2020-03-31

Family

ID=60332245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710434315.0A Active CN107376013B (zh) 2017-06-09 2017-06-09 一种多孔微纳米纤维三维壳聚糖支架及其制备方法

Country Status (1)

Country Link
CN (1) CN107376013B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321271A (zh) * 2011-09-15 2012-01-18 西安交通大学 一种生物活性壳聚糖基多孔支架的制备方法
WO2016018192A1 (en) * 2014-07-29 2016-02-04 Agency For Science, Technology And Research Method of preparing a porous carbon material
CN105582573A (zh) * 2016-02-27 2016-05-18 青岛大学 一种纳微米多尺度壳聚糖三维支架及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321271A (zh) * 2011-09-15 2012-01-18 西安交通大学 一种生物活性壳聚糖基多孔支架的制备方法
WO2016018192A1 (en) * 2014-07-29 2016-02-04 Agency For Science, Technology And Research Method of preparing a porous carbon material
CN105582573A (zh) * 2016-02-27 2016-05-18 青岛大学 一种纳微米多尺度壳聚糖三维支架及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘强等: "添加聚乙二醇对壳聚糖超滤膜结构和性能的影响", 《膜科学与技术》 *

Also Published As

Publication number Publication date
CN107376013B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Nourmohammadi et al. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications
Hu et al. Facile fabrication of poly (L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates
Choi et al. Chitosan-based inverse opals: three-dimensional scaffolds with uniform pore structures for cell culture
CN101015712B (zh) 聚己内酯-壳聚糖网络/羟基磷灰石复合多孔支架材料的制备方法
US4958014A (en) Multi-cellular cellulose particle and process for preparation thereof
Zhang et al. Aerogel microspheres based on cellulose nanofibrils as potential cell culture scaffolds
Tsai et al. Electrospun chitosan–gelatin–polyvinyl alcohol hybrid nanofibrous mats: Production and characterization
Lee et al. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications
Liu et al. Simple fabrication of inner chitosan‐coated alginate hollow microfiber with higher stability
Ren et al. Bioactive glass sol as a dual function additive for chitosan-alginate hybrid scaffold
JP5384772B2 (ja) 純粋なキトサン繊維を工業的に製造するための紡糸液の製造方法
Yeo et al. Optimal size of cell-laden hydrogel cylindrical struts for enhancing the cellular activities and their application to hybrid scaffolds
Song et al. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications
CN107376013A (zh) 一种多孔微纳米纤维三维壳聚糖支架及其制备方法
CN105664246B (zh) 一种纳微米多尺度组织工程复合三维支架及其制备方法
Kim et al. Fabrication of biomimetic bundled gel fibres using dynamic microfluidic gelation of phase-separated polymer solutions
CN109517225B (zh) 坑-孔复合微纳结构多聚糖微球及制备方法
CN103705974B (zh) 一种交联壳聚糖多孔支架的制备方法
CN103705975B (zh) 硅烷偶联剂交联透明质酸多孔支架的制备方法
CN107185037A (zh) 一种壳聚糖微纳米纤维状三维多孔支架及其制备方法
Steele et al. Encapsulation of protein microfiber networks supporting pancreatic islets
Sanchez-Gonzalez et al. Composite hydrogels of pectin and alginate
Tang et al. Preparation of fiber-microsphere scaffolds for loading bioactive substances in gradient amounts
Zhou et al. Natural silk nanofibers as building blocks for biomimetic aerogel scaffolds
Agarwal et al. Fabrication and morphological analysis of gelatin-alginate scaffolds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant