CN107370164A - Consider that the frequency modulation assisted hatching of performance criteria of the response goes out clear decision-making technique - Google Patents

Consider that the frequency modulation assisted hatching of performance criteria of the response goes out clear decision-making technique Download PDF

Info

Publication number
CN107370164A
CN107370164A CN201710565453.2A CN201710565453A CN107370164A CN 107370164 A CN107370164 A CN 107370164A CN 201710565453 A CN201710565453 A CN 201710565453A CN 107370164 A CN107370164 A CN 107370164A
Authority
CN
China
Prior art keywords
mrow
msubsup
capacity
frequency modulation
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710565453.2A
Other languages
Chinese (zh)
Other versions
CN107370164B (en
Inventor
谢丽荣
喻洁
郭建成
丁恰
高赐威
滕贤亮
夏伟栋
涂孟夫
仇进
董力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Southeast University
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
State Grid Ningxia Electric Power Co Ltd
Nanjing NARI Group Corp
Original Assignee
State Grid Corp of China SGCC
Southeast University
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
State Grid Ningxia Electric Power Co Ltd
Nanjing NARI Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Southeast University, Nari Technology Co Ltd, NARI Nanjing Control System Co Ltd, State Grid Ningxia Electric Power Co Ltd, Nanjing NARI Group Corp filed Critical State Grid Corp of China SGCC
Priority to CN201710565453.2A priority Critical patent/CN107370164B/en
Publication of CN107370164A publication Critical patent/CN107370164A/en
Application granted granted Critical
Publication of CN107370164B publication Critical patent/CN107370164B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention discloses a kind of frequency modulation assisted hatching for considering performance criteria of the response to go out clear decision-making technique, including, according to load variations situation, it is determined that the demand of spare capacity a few days ago;Carry out a few days ago spare capacity go out clearly, foundation it is a few days ago standby go out clear model;In real-time frequency regulation capacity market, using ultra-short term, frequency modulation capacity requirement is modified;To real-time frequency regulation capacity market clearing, establish real-time frequency modulation and go out clear model;Go out to settle accounts fruit by spare capacity a few days ago and real-time frequency regulation capacity goes out to settle accounts fruit and determines the total acceptance of the bid frequency regulation capacity of frequency modulation business, electricity calling is carried out in the range of acceptance of the bid frequency regulation capacity according to the change of real-time frequency.The present invention is going out in clear Optimized model to consider the performance criteria of the response of unit, on the basis of frequency modulation performance is ensured so that total purchase scheduling network minimal;Simultaneously on the basis of spare capacity a few days ago, corrected in real time using ultra-short term, carry out real-time frequency regulation capacity and go out the stability that clearly, ensure that system.

Description

Frequency modulation auxiliary service market clearing decision method considering response performance index
Technical Field
The invention relates to a frequency modulation auxiliary service market clearing decision method considering response performance indexes, and belongs to the field of frequency modulation auxiliary services of power markets.
Background
There are four modes of foreign fm auxiliary services: non-competitive, spot market bidding, and double-sided isotypes. The scheduling is mainly carried out by adopting a priority method, a sequence method and a joint scheduling method. The scheduling constraint mainly comprises electric quantity constraint, namely the limitation of electric energy and rotary standby; hill climbing constraints, i.e., limits on the speed of ascent and descent; and capacity constraints, i.e., response constraints of the system, etc. For example, frequency modulation auxiliary service markets of countries such as the united states PJM, new england, australian frequency modulation market and the like have respective characteristics, and the establishment of a transaction period, a transaction mode, a settlement price, a cost composition and a participating object is established by considering the characteristics of a power grid in the country or a certain region, so that the frequency modulation service is more reliable and economical.
The design of the frequency modulation market operation mechanism currently has the following methods:
document "acquisition and pricing of auxiliary services in power market" (vol 26, No. 7 of power grid technology 2002) analyzes a transaction pattern of a foreign PJM frequency modulation auxiliary service market, a PJM distributes frequency modulation obligations to Load Service Enterprises (LSEs) according to a Load proportion of a real-time market, the LSEs can use own power generation resources or sign contracts to enable other service providers to replace themselves to complete corresponding frequency modulation obligations, and the PJM auxiliary standby market provides services for buying and selling. When the frequency modulation capacity of the frequency modulation service provider exceeds the self frequency modulation obligation, the exceeding part calculates the reward according to the category of the unit in the time period in the settlement process. For users and FM power plants which cannot fulfill self obligations, the average FM price is paid to the PJM, and the PJM purchases FM service for the PJM according to the principle of minimum cost. The frequency modulation service is obtained by market public bidding, and the price of the frequency modulation service is fixed according to the principle that the total payment cost is minimum. The frequency modulation service provider submits bidding information including frequency modulation capability and frequency modulation price to the PJM day ahead. The PJM provides a system for fm service providers that can buy and sell fm auxiliary services in a market mode of operation.
The second international comparison research on the electricity Assisted Services Market (ASM) (2003, 7 th of china power) introduced the frequency modulation assisted services market in california, divided into the up-regulation and down-regulation markets, provided by the unit that is connected to the system and is in operation. In actual operation, the AGC unit and Schedule Coordinator (SC) provide the frequency modulation capacity required by the market, and control the frequency within a certain range. The fm service providers qualify for market participation in a competitive market through the california organization's ancillary service bids. The prices of fm supplementary services are divided into day-ahead market prices and hour-ahead market prices. In the bidding process, the california ISO determines the final pricing of the frequency modulation service according to the volume quote in the bid information and the market clearing price. The settlement is calculated based on the frequency modulation capacity of the service provider and the real-time market clearing price. The penalties are obtained by regulatory performance assessment of the facilitator. The frequency modulation cost is paid by each SC according to the load condition and the power generation amount of the SC according to a certain proportion.
The third document, "the state of the latest development of the australian national power market" (vol.28, 24 of power grid technologies 2004) analyzes the auxiliary service of the australian power market, and the australian fm auxiliary service adopts a spot market bidding type and a bilateral contract mixed mode. The Australian energy market operator AEMO is responsible for dispatching nationwide interconnected power grids and transaction management of the power market, and the electric energy and auxiliary services are jointly dispatched by adopting a coordination optimization method with the minimum total cost. The AEMO calculates the requirements of various frequency control ancillary services in advance and publishes the requirements of regional frequency ancillary services one week ahead of time according to Australian's market rules. And the frequency-adjusted service provider carries out quotation, and the quotation elements are as follows: the quoted price is divided into ten non-zero power sections, the quoted price of the ten sections of power is monotonically increased, the quoted price must be ended one day before the transaction date, and the quoted price also comprises a maximum output limit, a minimum output limit, power-up and power-down and the like. The australian fm market establishes a clearing price for each fm service, respectively, in 5min of a scheduling period.
The fourth document, the development and utilization of the hydropower resources in Norway (No. 20, No. 3 of 2004 in northwest hydroelectric power), analyzes the frequency modulation market in Norway from the perspective of hydropower, and the frequency modulation service in Norway is non-competitive, and the unit is forced to participate in frequency modulation and has fixed price. The Norwegian frequency modulation auxiliary service consists of basic frequency modulation auxiliary service and excess frequency modulation auxiliary service, wherein the basic auxiliary service forcibly requires participation and has no extra reward; the units with margin for adjustment can be rewarded by providing excess auxiliary services. The installed capacity of water in norway is much greater than the demand for load and reserve capacity. When the unit operation is in the best operating point, the system is also in a better safe and stable state. The frequency modulation auxiliary service of Norway promotes the large-scale consumption of hydropower on the basis of ensuring the safety and stability of a power grid system.
The existing clearing decision method does not consider the response performance index of the frequency modulation provider, the unit with good frequency modulation performance is not easy to bid, and the situations that the spare capacity obtained by purchasing in the day is possibly insufficient in actual operation, and individual frequency modulation providers cannot complete the bid amount and the like are not considered.
Disclosure of Invention
In order to solve the technical problem, the invention provides a frequency modulation auxiliary service market clearing decision method considering response performance indexes.
In order to achieve the purpose, the invention adopts the technical scheme that:
the frequency modulation auxiliary service market clearing decision method considering the response performance index comprises the following steps,
determining the demand of the day-ahead reserve capacity according to the load change condition; the demand for day-ahead reserve capacity comprises a demand for day-ahead up-regulation reserve capacity and a demand for day-ahead down-regulation reserve capacity;
carrying out daily spare capacity clearing, and establishing a daily spare clearing model; the day-ahead standby output model comprises a day-ahead upper adjustment standby output model and a day-ahead lower adjustment standby output model;
in a real-time frequency modulation capacity market, correcting the frequency modulation capacity demand by using ultra-short term load prediction;
clearing a real-time frequency modulation capacity market, and establishing a real-time frequency modulation clearing model; the real-time frequency modulation output model comprises a real-time upper frequency modulation output model and a real-time lower frequency modulation output model;
and determining the total winning capacity of the frequency modulation quotient through the daily spare capacity clearing result and the real-time frequency modulation capacity clearing result, and calling the electric quantity within the winning capacity range according to the real-time frequency change.
The specific process of determining the demand for reserve capacity in the future based on load changes is as follows,
determining the output curve of each generator according to the load change trend, and obtaining the trend of the output change of the generator set in the next time period as follows:
TrendLoad(t)=(Load(t+Δt)-Load(t))/Δt
wherein TrendLoad(t)Load (t) is load data at the time t, and delta t represents a certain time period;
the up-down regulation reserve capacity requirement before the day is obtained as follows:
wherein,for adjusting the reserve capacity up and down day before time tVolume demand, α for Load factor, β for New energy factor, Loadday(t) load prediction before day, Pref(i, t) is the output of the ith frequency modulation quotient at the time t, N is the number of frequency modulation quotients, Gtype(i) The type of the ith frequency modulation quotient is 0 in the traditional type, 1 in the new energy source and the load change trend coefficient is gamma.
The spare supernatant model is adjusted in the upper part of the day,
an objective function:
wherein,the unit capacity bid price of reserve capacity is adjusted for the ith fm trader on the day,for the winning up-modulation reserve capacity of the i fm-quotient, sort factor (i) is the fm response coefficient of the ith fm-quotient,
wherein R isFM(i)、e(i)、RT(i) Frequency modulation rate, adjustment accuracy, response time, R, of the ith frequency modulation quotient, respectivelyFM、e、RTRespectively the frequency modulation rate, the adjustment precision and the response time of the frequency modulation quotient, and mean () is an averaging function;
constraint conditions are as follows:
and (3) constraint of an equation:
wherein,up-regulating the reserve capacity for a period of time required by the system;
the inequality constrains:
wherein,adjusting the upper limit of the reserve capacity for the frequency modulation business day ahead;
the standby clear model is adjusted from the lower part of the day,
an objective function:
wherein,the unit capacity bid price for the reserve capacity adjusted for the day ahead of the ith fm dealer,adjusting the reserve capacity for the bid-winning of the i FM quotient;
constraint conditions are as follows:
and (3) constraint of an equation:
wherein,adjusting the reserve capacity for a desired reduction of the system for a period of time;
the inequality constrains:
wherein,the upper limit of the reserve capacity is adjusted for frequency modulation business day ahead.
In the process of correcting the frequency modulation capacity requirement, the prediction error existing in ultra-short-term load prediction and the spare capacity part which is marked in the market before the day and cannot be provided by the real-time market are required to be added into the real-time frequency modulation capacity requirement;
the specific process is as follows:
a) load prediction from Load before dayday(t) and ultra-short term Load prediction value Loadrt(t) determining the prediction error D of bothFM(t);
DFM(t)=Loadrt(t)-Loadday(t)
When D is presentFMWhen (t) is greater than or equal to 0,
when D is presentFMWhen (t) < 0, the reaction mixture,
wherein,adjusting the frequency modulation capacity demand for the time t according to the up-regulation and the down-regulation obtained by the ultra-short-term load prediction; cor、CodThe capacity increase and decrease multiples obtained according to the normal distribution of the prediction error;fixed values for adjusting the frequency modulation capacity for up and down;
b) correcting the frequency modulation capacity according to the ultra-short-term load prediction;
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
in the formula,the amount of correction required to adjust and de-adjust the capacity on the real-time market for time t,the sum of the up-regulation capacity and the down-regulation capacity which can not be provided by the frequency modulation provider winning the day before the time t,the up-regulation capacity and the down-regulation capacity which cannot be provided by the ith FM quotient which is winning before the day of the time t.
The real-time frequency-up-modulation clear model is as follows,
an objective function:
wherein,the bid price per capacity for the upshifted capacity of the ith fm provider,the up-regulation capacity of the winning bid for the i FM quotient is obtained;
constraint conditions are as follows:
and (3) constraint of an equation:
wherein,the correction quantity of the upper frequency modulation capacity required by a system in a certain period of time;
the inequality constrains:
wherein,adjusting the amount of capacity upper limit correction for the frequency modulation quotient in real time;
real-time frequency modulation is carried out to obtain a clear model;
an objective function:
wherein,the bid price per capacity for the adjusted capacity for the ith fm carrier,adjusting the capacity for the lower bid of the i FM quotient;
constraint conditions are as follows:
and (3) constraint of an equation:
wherein,the lower frequency regulation capacity correction quantity required by a system in a certain period;
the inequality constrains:
wherein,adjusting the amount of capacity upper limit correction for the frequency modulation quotient in real time;
wherein,the up-and down-regulation capacity that the fm quotient has in real time, for the up-regulation and down-regulation of the winning bid of the FM quotientCapacity.
The general calculation formula of the medium and frequency modulation capacity of the frequency modulation quotient is as follows,
wherein,for the sum of adjusting the spare capacity in the day-ahead and adjusting the frequency modulation capacity in real time,for adjusting the sum of the spare capacity at day time and the frequency modulation capacity at real time,the capacity is adjusted up and down which the fm provider cannot provide.
The invention achieves the following beneficial effects: response performance indexes of the unit are considered in the clearing optimization model, and the total purchase scheduling cost is lowest on the basis of ensuring the frequency modulation performance; meanwhile, on the basis of the day-ahead spare capacity, real-time correction is carried out by using ultra-short-term load prediction, real-time frequency modulation capacity clearing is carried out, and the stability of the system is ensured.
Drawings
Fig. 1 is a schematic block diagram of the present invention.
Detailed Description
The invention is further described below with reference to the accompanying drawings. The following examples are only for illustrating the technical solutions of the present invention more clearly, and the protection scope of the present invention is not limited thereby.
The frequency modulation auxiliary service market clearing decision method considering the response performance index comprises the following steps:
step 1, determining the demand of the day-ahead reserve capacity according to the load change condition; the demand for day-ahead reserve capacity includes a demand for day-up regulated reserve capacity and a demand for day-down regulated reserve capacity.
The specific process is as follows:
determining the output curve of each generator according to the load change trend, and obtaining the trend of the output change of the generator set in the next time period as follows:
TrendLoad(t)=(Load(t+Δt)-Load(t))/Δt
wherein TrendLoad(t)Load (t) is load data at the time t, and delta t is a certain time period;
the up-down regulation reserve capacity requirement before the day is obtained as follows:
wherein,for day-ahead up-regulation and down-regulation reserve capacity requirements at time t, α is a Load coefficient, β is a new energy coefficient, Loadday(t) load prediction before day, Pref(i, t) is the output of the ith frequency modulation quotient at the time t, N is the number of frequency modulation quotients, Gtype(i) Is the type of the ith frequency modulation quotient, the traditional type is 0, the new energy source is 1, and gamma is the loadA coefficient of variation trend.
And 2, carrying out the daily spare capacity clearing and establishing a daily spare clearing model.
The day-ahead standby output model comprises a day-ahead upper adjustment standby output model and a day-ahead lower adjustment standby output model. The target function of the future backup clearing model considers the unit capacity price of the frequency modulation capacity and the frequency modulation response performance coefficient of the frequency modulation quotient, wherein the frequency modulation response performance coefficient parameters comprise response time, frequency modulation rate and adjustment precision. The market purchase reserve capacity target minimizes the total purchase reserve capacity cost and frequency modulation response performance coefficient; the constraints considered include an equality constraint where the sum of the reserve capacity of the individual fm quotients is equal to the total reserve capacity requirement and an inequality constraint where the reserve capacity of each fm quotient must be below the upper limit of the reserve capacity of the fm quotient.
Frequency modulation response coefficient:
wherein, the sort _ factor (i) is the frequency modulation response performance coefficient of the ith frequency modulation quotient, RFM(i)、e(i)、RT(i) Frequency modulation rate, adjustment accuracy, response time, R, of the ith frequency modulation quotient, respectivelyFM、e、RTRespectively, the frequency modulation rate, the adjustment precision and the response time of the frequency modulation quotient, and mean () is an averaging function.
The up-regulation standby supernatant model before the day is as follows:
an objective function:
wherein,the unit capacity bid price of reserve capacity is adjusted for the ith fm trader on the day,reserve capacity is adjusted up for the winning bid of the i fm quotient.
Constraint conditions are as follows:
and (3) constraint of an equation:
wherein,the reserve capacity is adjusted up for the needs of the system for a certain period of time.
The inequality constrains:
wherein,the upper limit of the reserve capacity is adjusted for frequency modulation business days.
The adjusting standby supernatant model in the day-ahead is as follows:
an objective function:
wherein,the unit capacity bid price for the reserve capacity adjusted for the day ahead of the ith fm dealer,spare capacity is adjusted for the winning bid of i fm quotients.
Constraint conditions are as follows:
and (3) constraint of an equation:
wherein,spare capacity is adjusted for as low a demand as the system for a certain period of time.
The inequality constrains:
wherein,the upper limit of the reserve capacity is adjusted for frequency modulation business day ahead.
And 3, in a real-time frequency modulation capacity market, correcting the frequency modulation capacity demand by using ultra-short term load prediction. In the process of correcting the demand of the frequency modulation capacity, the prediction error of the ultra-short-term load prediction and the spare capacity part which is marked in the market at the day before and cannot be provided by the real-time market are required to be added into the demand of the real-time frequency modulation capacity.
The specific process is as follows:
a) load prediction from Load before dayday(t) and ultra-short term Load prediction value Loadrt(t) determining the prediction error D of bothFM(t);
DFM(t)=Loadrt(t)-Loadday(t)
When D is presentFMWhen (t) is greater than or equal to 0,
when D is presentFMWhen (t) < 0, the reaction mixture,
wherein,adjusting the frequency modulation capacity demand for the time t according to the up-regulation and the down-regulation obtained by the ultra-short-term load prediction; cor、CodThe capacity increase and decrease multiples obtained according to the normal distribution of the prediction error;fixed values for adjusting the frequency modulation capacity for up and down;
b) correcting the frequency modulation capacity according to the ultra-short-term load prediction;
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
in the formula,the amount of correction required to adjust and de-adjust the capacity on the real-time market for time t,the sum of the up-regulation capacity and the down-regulation capacity which can not be provided by the frequency modulation provider winning the day before the time t,the up-regulation capacity and the down-regulation capacity which cannot be provided by the ith FM quotient which is winning before the day of the time t.
And 4, clearing the real-time frequency modulation capacity market and establishing a real-time frequency modulation clearing model.
The real-time frequency modulation output model comprises a real-time upper frequency modulation output model and a real-time lower frequency modulation output model. The target function of the real-time frequency modulation clearing model considers the unit capacity price of the frequency modulation capacity and the frequency modulation comprehensive performance of the frequency modulation unit. The frequency modulation capacity target is purchased in the market, so that the total cost for purchasing the frequency modulation capacity and the comprehensive coefficient of the frequency modulation comprehensive performance are the lowest; the considered constraint conditions comprise equality constraint and inequality constraint, wherein the equality constraint is that the sum of the frequency modulation capacity of each unit is equal to the total frequency modulation requirement, and the inequality constraint is that the frequency modulation capacity of each frequency modulation quotient must be lower than the correction quantity of the frequency modulation capacity upper limit of the real-time frequency modulation quotient of the unit.
Wherein,the up-and down-regulation capacity that the fm quotient has in real time, spare capacity is adjusted for the winning up and down of the fm quotient.
The real-time frequency modulation clear model is as follows:
an objective function:
wherein,the bid price per capacity for the upshifted capacity of the ith fm provider,the capacity is adjusted up for the winning bid of i fm quotients.
Constraint conditions are as follows:
and (3) constraint of an equation:
wherein,the amount of up-modulation capacity correction required by the system for a certain period of time.
The inequality constrains:
wherein,and adjusting the capacity upper limit correction amount for the frequency modulation quotient in real time.
And (3) real-time frequency modulation clear model:
an objective function:
wherein,the bid price per capacity for the adjusted capacity for the ith fm carrier,capacity is adjusted for the medium down of the i fm quotients.
Constraint conditions are as follows:
and (3) constraint of an equation:
wherein,the amount of the lower frequency-regulating capacity correction required by the system in a certain period of time.
The inequality constrains:
wherein,the amount of capacity cap correction is adjusted in real time for the fm quotient.
And 5, determining the total winning capacity of the frequency modulation quotient through the daily spare capacity clearing result and the real-time frequency modulation capacity clearing result, and calling the electric quantity within the winning capacity range according to the real-time frequency change.
The general calculation formula of the medium and frequency modulation capacity of the frequency modulation quotient is as follows:
wherein,for the sum of adjusting the spare capacity in the day-ahead and adjusting the frequency modulation capacity in real time,for adjusting the sum of the spare capacity at day time and the frequency modulation capacity at real time,the capacity is adjusted up and down which the fm provider cannot provide.
Fig. 1 is a schematic block diagram of a frequency modulation auxiliary service market clearing decision mechanism, in which, after clearing of a main energy market is completed, a demand for a day-ahead reserve capacity is determined according to a load change condition, a demand for an up-date adjustment reserve capacity and a demand for a down-date adjustment reserve capacity are calculated, a up-date adjustment reserve clearing model and a down-date adjustment reserve clearing model are established, in a real-time frequency modulation capacity market, a super-short-term load prediction is used to correct a frequency modulation capacity demand, and a prediction error required in the correction process and a reserve capacity portion which is marked in the day-ahead market and cannot be provided by the real-time market are considered; clearing a real-time frequency modulation capacity market, and establishing a real-time frequency modulation clearing model; and D, carrying out electric quantity calling within the range of the winning frequency modulation capacity according to real-time frequency change.
According to the method, the response performance index of the unit is considered in the clearing optimization model, and the total purchase scheduling cost is the lowest on the basis of ensuring the frequency modulation performance; meanwhile, on the basis of the day-ahead spare capacity, real-time correction is carried out by using ultra-short-term load prediction, real-time frequency modulation capacity clearing is carried out, and the stability of the system is ensured.
The above description is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, several modifications and variations can be made without departing from the technical principle of the present invention, and these modifications and variations should also be regarded as the protection scope of the present invention.

Claims (6)

1. The decision-making method for clearing frequency modulation auxiliary service market in consideration of response performance indexes is characterized by comprising the following steps: comprises the steps of (a) preparing a mixture of a plurality of raw materials,
determining the demand of the day-ahead reserve capacity according to the load change condition; the demand for day-ahead reserve capacity comprises a demand for day-ahead up-regulation reserve capacity and a demand for day-ahead down-regulation reserve capacity;
carrying out daily spare capacity clearing, and establishing a daily spare clearing model; the day-ahead standby output model comprises a day-ahead upper adjustment standby output model and a day-ahead lower adjustment standby output model;
in a real-time frequency modulation capacity market, correcting the frequency modulation capacity demand by using ultra-short term load prediction;
clearing a real-time frequency modulation capacity market, and establishing a real-time frequency modulation clearing model; the real-time frequency modulation output model comprises a real-time upper frequency modulation output model and a real-time lower frequency modulation output model;
and determining the total winning capacity of the frequency modulation quotient through the daily spare capacity clearing result and the real-time frequency modulation capacity clearing result, and calling the electric quantity within the winning capacity range according to the real-time frequency change.
2. A frequency modulation assisted service market clearing decision method taking response performance indicators into account as claimed in claim 1, characterized in that: the specific process of determining the demand for reserve capacity in the future based on load changes is as follows,
determining the output curve of each generator according to the load change trend, and obtaining the trend of the output change of the generator set in the next time period as follows:
TrendLoad(t)=(Load(t+Δt)-Load(t))/Δt
wherein TrendLoad(t)Load (t) is load data at the time t, and delta t represents a certain time period;
the up-down regulation reserve capacity requirement before the day is obtained as follows:
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;alpha;</mi> <mo>&amp;times;</mo> <msub> <mi>Load</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> <mo>&amp;times;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>G</mi> <mrow> <mi>t</mi> <mi>y</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;gamma;</mi> <mo>&amp;times;</mo> <msub> <mi>Trend</mi> <mrow> <mi>L</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>Load</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;alpha;</mi> <mo>&amp;times;</mo> <msub> <mi>Load</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> <mo>&amp;times;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>G</mi> <mrow> <mi>t</mi> <mi>y</mi> <mi>p</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;gamma;</mi> <mo>&amp;times;</mo> <msub> <mi>Trend</mi> <mrow> <mi>L</mi> <mi>o</mi> <mi>a</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>Load</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
wherein,for day-ahead up-regulation and down-regulation reserve capacity requirements at time t, α is a Load coefficient, β is a new energy coefficient, Loadday(t) load prediction before day, Pref(i, t) is the output of the ith frequency modulation quotient at the time t, N is the number of frequency modulation quotients, Gtype(i) The type of the ith frequency modulation quotient is 0 in the traditional type, 1 in the new energy source and the load change trend coefficient is gamma.
3. A frequency modulation assisted service market clearing decision method taking response performance indicators into account as claimed in claim 1, characterized in that: the spare supernatant model is adjusted in the upper part of the day,
an objective function:
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>F</mi> <mo>=</mo> <mi>M</mi> <mi>i</mi> <mi>n</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>p</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> <mo>,</mo> <mi>b</mi> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> <mo>,</mo> <mi>R</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>s</mi> <mi>o</mi> <mi>r</mi> <mi>t</mi> <mo>_</mo> <mi>f</mi> <mi>a</mi> <mi>c</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow>
wherein,the unit capacity bid price of reserve capacity is adjusted for the ith fm trader on the day,for the winning up-modulation reserve capacity of the i fm-quotient, sort factor (i) is the fm response coefficient of the ith fm-quotient,
<mrow> <mi>s</mi> <mi>o</mi> <mi>r</mi> <mi>t</mi> <mo>_</mo> <mi>f</mi> <mi>a</mi> <mi>c</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>e</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
wherein R isFM(i)、e(i)、RT(i) Frequency modulation rate, adjustment accuracy, response time, R, of the ith frequency modulation quotient, respectivelyFM、e、RTRespectively the frequency modulation rate, the adjustment precision and the response time of the frequency modulation quotient, and mean () is an averaging function;
constraint conditions are as follows:
and (3) constraint of an equation:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
wherein,up-regulating the reserve capacity for a period of time required by the system;
the inequality constrains:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
wherein,adjusting the upper limit of the reserve capacity for the frequency modulation business day ahead;
the standby clear model is adjusted from the lower part of the day,
an objective function:
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>F</mi> <mo>=</mo> <mi>M</mi> <mi>i</mi> <mi>n</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>p</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> <mo>,</mo> <mi>b</mi> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> <mo>,</mo> <mi>R</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>s</mi> <mi>o</mi> <mi>r</mi> <mi>t</mi> <mo>_</mo> <mi>f</mi> <mi>a</mi> <mi>c</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow>
wherein,the unit capacity bid price for the reserve capacity adjusted for the day ahead of the ith fm dealer,adjusting the reserve capacity for the bid-winning of the i FM quotient;
constraint conditions are as follows:
and (3) constraint of an equation:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
wherein,adjusting the reserve capacity for a desired reduction of the system for a period of time;
the inequality constrains:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
wherein,the upper limit of the reserve capacity is adjusted for frequency modulation business day ahead.
4. A frequency modulation assisted service market clearing decision method taking response performance indicators into account as claimed in claim 1, characterized in that:
in the process of correcting the frequency modulation capacity requirement, the prediction error existing in ultra-short-term load prediction and the spare capacity part which is marked in the market before the day and cannot be provided by the real-time market are required to be added into the real-time frequency modulation capacity requirement;
the specific process is as follows:
a) load prediction from Load before dayday(t) and ultra-short term Load prediction value Loadrt(t) determining the prediction error D of bothFM(t);
DFM(t)=Loadrt(t)-Loadday(t)
When D is presentFMWhen (t) is greater than or equal to 0,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>r</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Co</mi> <mi>r</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>D</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>x</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>r</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Co</mi> <mi>d</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>D</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
when D is presentFMWhen (t) < 0, the reaction mixture,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>r</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Co</mi> <mi>d</mi> </msub> <mo>&amp;times;</mo> <mo>|</mo> <msub> <mi>D</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>x</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>r</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Co</mi> <mi>r</mi> </msub> <mo>&amp;times;</mo> <mo>|</mo> <msub> <mi>D</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
wherein,adjusting the frequency modulation capacity demand for the time t according to the up-regulation and the down-regulation obtained by the ultra-short-term load prediction; cor、CodThe capacity increase and decrease multiples obtained according to the normal distribution of the prediction error;fixed values for adjusting the frequency modulation capacity for up and down;
b) correcting the frequency modulation capacity according to the ultra-short-term load prediction;
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
when in useWhen the temperature of the water is higher than the set temperature,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>r</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
when in useWhen the temperature of the water is higher than the set temperature,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
when in useWhen the temperature of the water is higher than the set temperature,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>r</mi> <mi>t</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
when in useWhen the temperature of the water is higher than the set temperature,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
in the formula,the amount of correction required to adjust and de-adjust the capacity on the real-time market for time t,the sum of the up-regulation capacity and the down-regulation capacity which can not be provided by the frequency modulation provider winning the day before the time t,the up-regulation capacity and the down-regulation capacity which cannot be provided by the ith FM quotient which is winning before the day of the time t.
5. A frequency modulation assisted service market clearing decision method taking response performance indicators into account as claimed in claim 1, characterized in that: the real-time frequency-up-modulation clear model is as follows,
an objective function:
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>F</mi> <mo>=</mo> <mi>M</mi> <mi>i</mi> <mi>n</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>p</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>b</mi> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> <mo>,</mo> <mi>R</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>s</mi> <mi>o</mi> <mi>r</mi> <mi>t</mi> <mo>_</mo> <mi>f</mi> <mi>a</mi> <mi>c</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow>
wherein,the bid price per capacity for the upshifted capacity of the ith fm provider,the up-regulation capacity of the winning bid for the i FM quotient is obtained;
constraint conditions are as follows:
and (3) constraint of an equation:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
wherein,the correction quantity of the upper frequency modulation capacity required by a system in a certain period of time;
the inequality constrains:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
wherein,adjusting the amount of capacity upper limit correction for the frequency modulation quotient in real time;
real-time frequency modulation is carried out to obtain a clear model;
an objective function:
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>F</mi> <mo>=</mo> <mi>M</mi> <mi>i</mi> <mi>n</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>p</mi> <mrow> <mi>F</mi> <mi>M</mi> <mo>,</mo> <mi>b</mi> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> <mo>,</mo> <mi>R</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>s</mi> <mi>o</mi> <mi>r</mi> <mi>t</mi> <mo>_</mo> <mi>f</mi> <mi>a</mi> <mi>c</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow>
wherein,the bid price per capacity for the adjusted capacity for the ith fm carrier,adjusting the capacity for the lower bid of the i FM quotient;
constraint conditions are as follows:
and (3) constraint of an equation:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
wherein,the lower frequency regulation capacity correction quantity required by a system in a certain period;
the inequality constrains:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
wherein,adjusting the amount of capacity upper limit correction for the frequency modulation quotient in real time;
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
wherein,the up-and down-regulation capacity that the fm quotient has in real time, spare capacity is adjusted for the winning up and down of the fm quotient.
6. A frequency modulation assisted service market clearing decision method taking response performance indicators into account as claimed in claim 1, characterized in that: the general calculation formula of the medium and frequency modulation capacity of the frequency modulation quotient is as follows,
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>i</mi> <mi>n</mi> <mi>a</mi> <mi>l</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> </mrow>
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>i</mi> <mi>n</mi> <mi>a</mi> <mi>l</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>d</mi> <mi>a</mi> <mi>y</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow> <mi>F</mi> <mi>M</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> </mrow>
wherein,for the sum of adjusting the spare capacity in the day-ahead and adjusting the frequency modulation capacity in real time,for adjusting the sum of the spare capacity at day time and the frequency modulation capacity at real time,the capacity is adjusted up and down which the fm provider cannot provide.
CN201710565453.2A 2017-07-12 2017-07-12 Frequency modulation auxiliary service market clearing decision method considering response performance index Active CN107370164B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710565453.2A CN107370164B (en) 2017-07-12 2017-07-12 Frequency modulation auxiliary service market clearing decision method considering response performance index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710565453.2A CN107370164B (en) 2017-07-12 2017-07-12 Frequency modulation auxiliary service market clearing decision method considering response performance index

Publications (2)

Publication Number Publication Date
CN107370164A true CN107370164A (en) 2017-11-21
CN107370164B CN107370164B (en) 2020-10-30

Family

ID=60308058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710565453.2A Active CN107370164B (en) 2017-07-12 2017-07-12 Frequency modulation auxiliary service market clearing decision method considering response performance index

Country Status (1)

Country Link
CN (1) CN107370164B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301876A (en) * 2018-09-04 2019-02-01 清华大学 A kind of electric power ahead market of constraint condition elastification goes out clearing method
CN109978329A (en) * 2019-02-18 2019-07-05 东南大学 It is a kind of consider performance criteria of the response frequency modulation assisted hatching go out clear decision-making technique
CN110190635A (en) * 2019-06-28 2019-08-30 中国南方电网有限责任公司 More power dispatching station AGC of frequency modulation assisted hatching are supported to unify frequency modulation control methods, devices and systems
CN110296497A (en) * 2018-03-21 2019-10-01 开利公司 The system and method for connecting the HVAC health monitoring of family
CN110445193A (en) * 2019-07-22 2019-11-12 国网上海市电力公司经济技术研究院 A kind of frequency modulation compensation distribution method based on virtual plant frequency modulation control strategy
CN111291998A (en) * 2020-02-18 2020-06-16 广东电网有限责任公司电力调度控制中心 Operation safety control method, system and equipment of frequency modulation unit
CN111311335A (en) * 2020-03-13 2020-06-19 广东红海湾发电有限公司 Electric power market frequency modulation auxiliary service quotation strategy support system and method
CN111832824A (en) * 2020-07-14 2020-10-27 国网电力科学研究院有限公司 Electric power frequency modulation market trading clearing and settlement method, device and system
CN112821462A (en) * 2021-01-05 2021-05-18 国网浙江省电力有限公司电力科学研究院 Coordination optimization method for multiple adjustment resources of power grid
CN118096224A (en) * 2024-04-24 2024-05-28 国网安徽省电力有限公司经济技术研究院 Electric power market clearing method and system based on optimized operation of virtual power plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103720A (en) * 2011-01-31 2011-06-22 南京航空航天大学 Risk-based micro power grid distributed power generation standby optimized configuration method
CN104933516A (en) * 2015-05-27 2015-09-23 华南理工大学 Multi-time-scale power system robustness scheduling system design method
CN105760998A (en) * 2016-02-16 2016-07-13 国电南瑞科技股份有限公司 Frequency modulation resource calling optimization decision system introducing competition mechanism and method thereof
CN205679743U (en) * 2016-04-15 2016-11-09 中国大唐集团科学技术研究院有限公司西北分公司 A kind of system determining generating set primary frequency regulation response time
CN106374536A (en) * 2016-10-26 2017-02-01 西安交通大学 Low-carbon power supply investment decision-making method of power capacity market under new energy access condition
CN106447539A (en) * 2016-11-23 2017-02-22 国网浙江省电力公司电动汽车服务分公司 Combined biding method for power-to-gas unit and gas unit in power market and natural gas market

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103720A (en) * 2011-01-31 2011-06-22 南京航空航天大学 Risk-based micro power grid distributed power generation standby optimized configuration method
CN104933516A (en) * 2015-05-27 2015-09-23 华南理工大学 Multi-time-scale power system robustness scheduling system design method
CN105760998A (en) * 2016-02-16 2016-07-13 国电南瑞科技股份有限公司 Frequency modulation resource calling optimization decision system introducing competition mechanism and method thereof
CN205679743U (en) * 2016-04-15 2016-11-09 中国大唐集团科学技术研究院有限公司西北分公司 A kind of system determining generating set primary frequency regulation response time
CN106374536A (en) * 2016-10-26 2017-02-01 西安交通大学 Low-carbon power supply investment decision-making method of power capacity market under new energy access condition
CN106447539A (en) * 2016-11-23 2017-02-22 国网浙江省电力公司电动汽车服务分公司 Combined biding method for power-to-gas unit and gas unit in power market and natural gas market

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昌力 等: "引入竞争机制的京津唐电网调频资源辅助决策系统研究与应用", 《中国电力》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296497A (en) * 2018-03-21 2019-10-01 开利公司 The system and method for connecting the HVAC health monitoring of family
CN110296497B (en) * 2018-03-21 2022-10-11 开利公司 System and method for linking home HVAC health monitoring
CN109301876B (en) * 2018-09-04 2021-08-13 清华大学 Constraint condition elasticized electric power day-ahead market clearing method
CN109301876A (en) * 2018-09-04 2019-02-01 清华大学 A kind of electric power ahead market of constraint condition elastification goes out clearing method
CN109978329A (en) * 2019-02-18 2019-07-05 东南大学 It is a kind of consider performance criteria of the response frequency modulation assisted hatching go out clear decision-making technique
CN110190635A (en) * 2019-06-28 2019-08-30 中国南方电网有限责任公司 More power dispatching station AGC of frequency modulation assisted hatching are supported to unify frequency modulation control methods, devices and systems
CN110190635B (en) * 2019-06-28 2020-03-17 中国南方电网有限责任公司 Multi-power dispatching mechanism AGC unified frequency modulation control method, device and system supporting frequency modulation auxiliary service market
CN110445193A (en) * 2019-07-22 2019-11-12 国网上海市电力公司经济技术研究院 A kind of frequency modulation compensation distribution method based on virtual plant frequency modulation control strategy
CN111291998A (en) * 2020-02-18 2020-06-16 广东电网有限责任公司电力调度控制中心 Operation safety control method, system and equipment of frequency modulation unit
CN111291998B (en) * 2020-02-18 2023-08-04 广东电网有限责任公司电力调度控制中心 Operation safety control method, system and equipment of frequency modulation unit
CN111311335A (en) * 2020-03-13 2020-06-19 广东红海湾发电有限公司 Electric power market frequency modulation auxiliary service quotation strategy support system and method
CN111311335B (en) * 2020-03-13 2023-08-18 广东红海湾发电有限公司 Power market frequency modulation auxiliary service quotation strategy support system and method
CN111832824A (en) * 2020-07-14 2020-10-27 国网电力科学研究院有限公司 Electric power frequency modulation market trading clearing and settlement method, device and system
CN111832824B (en) * 2020-07-14 2022-09-06 国网电力科学研究院有限公司 Electric power frequency modulation market trading clearing and settlement method, device and system
CN112821462A (en) * 2021-01-05 2021-05-18 国网浙江省电力有限公司电力科学研究院 Coordination optimization method for multiple adjustment resources of power grid
CN118096224A (en) * 2024-04-24 2024-05-28 国网安徽省电力有限公司经济技术研究院 Electric power market clearing method and system based on optimized operation of virtual power plant

Also Published As

Publication number Publication date
CN107370164B (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN107370164B (en) Frequency modulation auxiliary service market clearing decision method considering response performance index
CN107392432B (en) Frequency modulation standby market realization method considering medium and long term electric quantity contract decomposition
CN109978329A (en) It is a kind of consider performance criteria of the response frequency modulation assisted hatching go out clear decision-making technique
CN108388968B (en) Power generation plan rolling adjustment method based on pre-bidding deviation electric quantity balance mechanism
CN106845807B (en) Settlement method and device based on peak regulation auxiliary service
CN112488744A (en) Transaction-driven virtual power plant customization construction method
CN101794424A (en) Self-adaptive unified power market transaction method
CN107563586A (en) A kind of ahead market based on step power station coupled relation goes out clear mechanism system
CN107798430B (en) Bidding optimization method considering renewable energy cross-region consumption
CN108520437A (en) The VPP market mechanisms of wind electricity digestion are improved based on customer charge curve
Bigerna et al. Optimal price design in the wholesale electricity market
CN107742223B (en) Provincial power grid power transmission and distribution pricing method considering power grid characteristics
CN116402223A (en) Cooperative scheduling method, system and equipment for power distribution network
CN117081169B (en) Operation method of distributed photovoltaic energy sources in polymerization park
CN110047018A (en) A method of reducing wind-powered electricity generation quotient cost in power balance market
CN110556821A (en) Multi-microgrid double-layer optimization scheduling method considering interactive power control and bilateral bidding transaction
CN112926811A (en) Load aggregation commercial power purchasing method considering renewable energy consumption responsibility weight
Sun et al. Development status, policy, and market mechanisms for battery energy storage in the US, China, Australia, and the UK
CN104992287A (en) Multi-time scale generation right transaction method for promoting wind power consumption
Niu et al. Power Generation Scheduling for Long Distance Consumption of Wind-Solar-Thermal Power Based on Game-Theory
Liu et al. Research on Generation Capacity Cost Recovery Mechanism of the New Power System
CN111105254A (en) Decentralized scheduling correction model for micro-grid energy router
CN109472409A (en) A kind of micro-capacitance sensor group energy amount method of commerce based on the hungry factor and priority factors
Liu et al. China Trading Power: Improving Environmental and Economic Efficiency of Yunnan’s Electricity Market
Zhu et al. Two Stage Optimal Dispatching of Distribution Network With User Side Energy Storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant