CN107367788A - A kind of large mode field improved multilayer groove optical fiber - Google Patents
A kind of large mode field improved multilayer groove optical fiber Download PDFInfo
- Publication number
- CN107367788A CN107367788A CN201710857152.7A CN201710857152A CN107367788A CN 107367788 A CN107367788 A CN 107367788A CN 201710857152 A CN201710857152 A CN 201710857152A CN 107367788 A CN107367788 A CN 107367788A
- Authority
- CN
- China
- Prior art keywords
- low
- optical fiber
- refractive
- refractive index
- index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 48
- 239000000835 fiber Substances 0.000 claims abstract description 50
- 238000009826 distribution Methods 0.000 claims description 5
- 230000001010 compromised effect Effects 0.000 claims 1
- 238000012946 outsourcing Methods 0.000 claims 1
- 230000011218 segmentation Effects 0.000 claims 1
- 238000005253 cladding Methods 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 5
- 238000005553 drilling Methods 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 53
- 230000006378 damage Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- KWMNWMQPPKKDII-UHFFFAOYSA-N erbium ytterbium Chemical compound [Er].[Yb] KWMNWMQPPKKDII-UHFFFAOYSA-N 0.000 description 2
- 239000004038 photonic crystal Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02004—Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
- G02B6/02009—Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
一种具有大模场面积的改进型多层沟槽光纤,属于大功率光纤放大器、激光器、特种光纤领域。该光纤在传统多层沟槽光纤的基础上,通过在低折射率沟槽上的增加泄露通道,有效提高光纤的单模传输特性,增加了模场面积。该光纤中心为高折射率纤芯(1),由内到外依次为低折射率沟槽和高折射率环交替环绕,低折射率沟槽层数为N(1≤N≤6),低折射率沟槽被M个泄露通道分割(1≤M≤4)。低折射率沟槽从内向外分割为(11,21,31,41)……(16,26,36,46),最外面是外包层(3)。本发明可以利用MCVD法结合钻孔与填充玻璃棒的方法制得,光纤预制棒低折射率沟槽上的泄漏通道,可以通过激光钻孔或机械钻孔的方法实现。
An improved multilayer grooved optical fiber with a large mode field area belongs to the fields of high-power optical fiber amplifiers, lasers, and special optical fibers. On the basis of the traditional multi-layer grooved fiber, the optical fiber can effectively improve the single-mode transmission characteristics of the optical fiber and increase the mode field area by adding leakage channels on the low-refractive index groove. The center of the optical fiber is a high-refractive-index core (1), which is alternately surrounded by low-refractive-index grooves and high-refractive-index rings from the inside to the outside. The number of low-refractive-index groove layers is N (1≤N≤6), low The refractive index trench is divided by M leakage channels (1≤M≤4). The low refractive index trench is divided into (11, 21, 31, 41)...(16, 26, 36, 46) from the inside to the outside, and the outermost layer is the outer cladding (3). The invention can be manufactured by combining drilling and filling glass rods with the MCVD method, and the leakage channel on the low-refractive index groove of the optical fiber preform can be realized by laser drilling or mechanical drilling.
Description
技术领域technical field
本发明涉及一种具有大模场面积的改进型多层沟槽光纤,属于大功率光纤放大器、激光器、特种光纤领域。The invention relates to an improved multilayer grooved optical fiber with a large mode field area, which belongs to the field of high-power optical fiber amplifiers, lasers and special optical fibers.
背景技术Background technique
随着激光技术在材料加工、空间通信、激光雷达、光电对抗、激光武器等的广泛应用,为了得到大功率、高质量的激光,要求单模输出功率达到MW甚至GW量级。从而具有转换效率高、激光阈值低、光束质量好等优点的光纤激光器越来得到重视。1988年,Snitzer等人提出双包层光纤以来[Snitzer,E.,et al.Double clad,offset core Nd fiberlaser.Optical Fiber Sensors 1988.],基于这种包层泵浦激光器和放大器获得了快速发展。近年来,随着半导体泵浦激光器功率的提高和泵浦方式的改进,单根光纤激光器的输出功率可达到千瓦量级。但由于单模有源纤芯芯径只有几微米,受到非线性、结构元素、衍射极限、光学损伤及热损伤等物理机制方面的限制,无法承受更高的光功率密度。大模场面积的光纤可以很好的抑制非线性和光学损伤等效应。因此解决入纤功率提升面临的非线性效应及光纤损伤等限制问题的一种最直接有效的途径就是大模场光纤。2010年已经报道了10kW功率的连续激光器[Richardson D.J.,et al.High power fiber lasers:currentstatus and future perspectives[J].J Opt Soc Am B,2010,27(11):B63-B92.]。2011年,Tino Eidam等人发现模式不稳现象是损害大功率光束质量的主要因素[Eidam T.,etal.Experimental observations of the threshold-like onset of modeinstabilities in high power fiber amplifiers[J].Opt Express,2011,19(14):13218-24.]。导致模式不稳的因素包括横向烧孔、发热引起的光纤折射率变化等,这些使得高阶模式获得更高的增益。因此,抑制高阶模式,保持单模运行,是提高大功率光纤激光器和放大器性能的重要方式之一。With the wide application of laser technology in material processing, space communication, laser radar, photoelectric countermeasures, laser weapons, etc., in order to obtain high-power and high-quality lasers, the single-mode output power is required to reach the MW or even GW level. Therefore, fiber lasers with advantages such as high conversion efficiency, low laser threshold, and good beam quality have been paid more and more attention. In 1988, since Snitzer et al. proposed double clad fiber [Snitzer, E., et al. Double clad, offset core Nd fiberlaser. Optical Fiber Sensors 1988.], based on this cladding pump laser and amplifier have achieved rapid development . In recent years, with the increase in the power of semiconductor pump lasers and the improvement of pumping methods, the output power of a single fiber laser can reach the kilowatt level. However, since the core diameter of the single-mode active fiber is only a few microns, it cannot withstand higher optical power density due to the limitations of physical mechanisms such as nonlinearity, structural elements, diffraction limit, optical damage, and thermal damage. Optical fibers with large mode area can well suppress effects such as nonlinearity and optical damage. Therefore, one of the most direct and effective ways to solve the limitation problems of nonlinear effects and fiber damage faced by the fiber input power increase is the large mode field fiber. In 2010, a 10kW continuous laser has been reported [Richardson D.J., et al. High power fiber lasers: current status and future perspectives [J]. J Opt Soc Am B, 2010, 27(11): B63-B92.]. In 2011, Tino Eidam and others found that mode instability is the main factor that damages the quality of high-power beams[Eidam T., et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J].Opt Express, 2011,19(14):13218-24.]. Factors that lead to mode instability include lateral hole burning, changes in the refractive index of the fiber caused by heat, etc., which allow higher-order modes to obtain higher gains. Therefore, suppressing high-order modes and maintaining single-mode operation is one of the important ways to improve the performance of high-power fiber lasers and amplifiers.
这些年来,许多新型的强激光光纤已经被设计和制造。但是大部分的强激光光纤都有一定的缺陷,比如结构复杂、制造难度大、弯曲特性差等。由于现有的制造技术限制,利用传统光纤制造方法很难实现数值孔径低于0.05的阶跃型光纤[Li M.-J.,Chen X.,LiuA.,et al.Limit of Effective Area for Single-Mode Operation in Step-IndexLarge Mode Area Laser Fibers[J].J Lightwave Technol,2009,27(15):3010-6.]。而仅仅采用单模有源纤芯的双包层掺稀土光纤激光器,由于单模有源纤芯芯径小于等于10微米,受到非线性、结构元素和衍射极限的限制,承受的光功率有限,单模有源光纤纤芯连续波损坏阈值约1W/m2[J.Nilsson,J.K.Sahu,Y.Jeong,W.A.Clarkson,R.Selvas,A.B.Grudinin,and S.U.Alam,“High Power Fiber Lasers:New Developments”,Proceedings of SPIEVol.4974,50-59(2003)],其光学损坏危险成为实现大功率单模光纤激光器的一大挑战.除了光学损坏外,由于大功率光产生的热也会损坏光纤,甚至会最终融化纤芯。有文献报道,铒镱共掺光纤激光器每米可产生100W热[J.Nilsson,et al.“High-power and tunable operation of erbium-ytterbium co-doped cladding-pumpedfiber laser”,IEEE J.Quantum Electron.39,987-994(2003)]。光子晶体光纤可以实现超大模场面积[Michaille,L.;Bennett,C.R.;Taylor,D.M.;Shepherd,T.J.“MulticorePhotonic Crystal Fiber Lasers for High Power/Energy Applications”,IEEE Journalof Selected Topics in Quantum Electronics,15(2),328-336(2009)],不过其受到弯曲损耗的困扰,制造难度大、成本高。多芯光纤激光器实现单模输出,有效模场面积可达到465μm2[Vogel,Moritz M,Abdou-Ahmed,Marwan,Voss,Andreas,Graf,Thomas,“Very-large-mode-area,single-mode multicore fiber”,Opt.Lett.34(18),2876-2878(2009)]。然而这种单模激光器采用的多芯光纤,对光纤纤芯的芯径以及相邻纤芯之间的距离需要精确的设计,对光纤纤芯之间的距离的容许误差小,批量生产成品率低。瓣状光纤通过选取特定的光纤参数,能够实现单模工作[A.Yeung,K.S.Chiang,V.Rastogi,P.L.Chu,and G.D.Peng,″Experimental demonstration of single-mode operation of large-core segmented cladding fiber,″in Optical Fiber Communication Conference,Technical Digest(CD)(Optical Society of America,2004),paper ThI4.]。这种光纤,其特定的结构是增加基模以外的损耗,实现了在芯层直径在50微米的光纤中实现单模工作,然而其功率的提高受限于芯层半径。多沟槽光纤是一种新型光纤,通过多层纤芯环绕,实现单模工作[Jain D.,Baskiotis C.,Sahu J.K.Mode area scaling with multi-trench rod-type fibers[J].Opt Express,2013,21(2):1448-55.]。Over the years, many new types of powerful laser fibers have been designed and fabricated. However, most powerful laser fibers have certain defects, such as complex structure, difficult manufacturing, and poor bending characteristics. Due to the limitation of existing manufacturing technology, it is difficult to realize step-type optical fiber with numerical aperture lower than 0.05 by using traditional optical fiber manufacturing methods [Li M.-J., Chen X., LiuA., et al. Limit of Effective Area for Single -Mode Operation in Step-IndexLarge Mode Area Laser Fibers[J].J Lightwave Technol,2009,27(15):3010-6.]. However, the double-clad rare-earth-doped fiber laser that only uses a single-mode active core has a limited optical power due to the limitations of nonlinearity, structural elements and diffraction limits because the core diameter of the single-mode active core is less than or equal to 10 microns. Single-mode active fiber core CW damage threshold of about 1W/m 2 [J.Nilsson, JKSahu, Y.Jeong, WAClarkson, R.Selvas, ABGrudinin, and SUALam, "High Power Fiber Lasers: New Developments", Proceedings of SPIEVol.4974, 50-59(2003)], the risk of optical damage has become a major challenge for the realization of high-power single-mode fiber lasers. In addition to optical damage, the heat generated by high-power light will also damage the fiber, and even eventually melt Chemical fiber core. It has been reported in the literature that an erbium-ytterbium co-doped cladding-pumped fiber laser can generate 100W of heat per meter [J.Nilsson, et al. "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser", IEEE J.Quantum Electron. 39, 987-994 (2003)]. Photonic crystal fiber can achieve ultra-large mode field area [Michaille, L.; Bennett, CR; Taylor, DM; Shepherd, TJ "MulticorePhotonic Crystal Fiber Lasers for High Power/Energy Applications", IEEE Journal of Selected Topics in Quantum Electronics, 15(2 ), 328-336(2009)], but it is plagued by bending loss, making it difficult and expensive to manufacture. Multicore fiber laser achieves single-mode output, and the effective mode field area can reach 465 μm 2 [Vogel, Moritz M, Abdou-Ahmed, Marwan, Voss, Andreas, Graf, Thomas, "Very-large-mode-area, single-mode multicore fiber", Opt. Lett. 34(18), 2876-2878(2009)]. However, the multi-core fiber used in this single-mode laser requires precise design of the core diameter of the fiber core and the distance between adjacent fiber cores. The allowable error of the distance between the fiber cores is small, and the mass production yield Low. By selecting specific fiber parameters, the petal fiber can achieve single-mode operation [A.Yeung, KS Chiang, V.Rastogi, PLChu, and GDPeng, "Experimental demonstration of single-mode operation of large-core segmented cladding fiber," in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper ThI4.]. This kind of fiber, whose specific structure is to increase the loss outside the fundamental mode, realizes single-mode operation in the fiber with a core diameter of 50 microns, but its power increase is limited by the radius of the core layer. Multi-trench fiber is a new type of fiber that is surrounded by multiple layers of fiber core to achieve single-mode operation [Jain D.,Baskiotis C.,Sahu JKMode area scaling with multi-trench rod-type fibers[J].Opt Express,2013 , 21(2):1448-55.].
发明内容Contents of the invention
为克服现有传统光纤数值孔径受限、单芯多掺稀土离子区双包层光纤承受光功率有限、光子晶体光纤空气孔制作难度大、大模场单模多芯光纤批量生产成品率低、瓣状光纤芯层直径有限等缺陷,本发明提出了一种具有大模场面积的改进型多层沟槽光纤,能有效提高多层沟槽光纤单模特性以及增大光纤的模场面积。In order to overcome the limitation of the numerical aperture of the existing traditional optical fiber, the limited optical power of the single-core multi-doped rare earth ion region double-clad optical fiber, the difficulty of making the air hole of the photonic crystal fiber, and the low mass production yield of the single-mode multi-core optical fiber with large mode field, Due to defects such as limited diameter of the core layer of the petal-shaped optical fiber, the present invention proposes an improved multilayer grooved optical fiber with a large mode field area, which can effectively improve the single-mode characteristics of the multilayer grooved optical fiber and increase the mode field area of the optical fiber.
根据本发明的一个示例实施例,具有大模场面积的改进型多层沟槽光纤,中心为高折射率纤芯,由内到外依次为低折射率沟槽和高折射率环交替环绕,低折射率沟槽层数为N,每一层低折射率沟槽被M个泄露通道分割,最外层是外包层。本发明可以利用传统的MCVD法和钻孔与填充玻璃棒的方法制得。According to an exemplary embodiment of the present invention, an improved multilayer grooved fiber with a large mode field area has a high-refractive-index core in the center, and alternately surrounds low-refractive-index grooves and high-refractive-index rings from the inside to the outside, The number of layers of low-refractive-index grooves is N, and each layer of low-refractive-index grooves is divided by M leakage channels, and the outermost layer is an outer cladding layer. The invention can be made by using the traditional MCVD method and the method of drilling and filling glass rods.
本发明的有益效果具体如下:一种具有大模场面积的改进型多层沟槽光纤,能实现大功率的激光输出,通过增加泄漏通道,能够调节光纤的单模输出特性,能够实现光纤大的有效模场面积,能实现大功率单模激光输出。由于泄露通道的存在,从而有利于实现纤芯热扩散,有效地提高了光纤的抗热能力和单模特性。The beneficial effects of the present invention are as follows: an improved multi-layer grooved fiber with a large mode field area can realize high-power laser output, and can adjust the single-mode output characteristics of the fiber by increasing the leakage channel, and can realize a large The effective mode field area can realize high-power single-mode laser output. Due to the existence of the leakage channel, it is beneficial to realize the heat diffusion of the fiber core, and effectively improve the heat resistance and single-mode characteristic of the fiber.
附图说明Description of drawings
现在将参考所附的图,这些不一定是按比例绘制的,并且其中:Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and in which:
图1为1层沟槽1泄漏通道多层沟槽光纤的截面图。Fig. 1 is a cross-sectional view of a multilayer grooved optical fiber with 1 layer groove and 1 leakage channel.
图2为1层沟槽4泄漏通道多层沟槽光纤的截面图。Fig. 2 is a cross-sectional view of a multilayer grooved optical fiber with 1 layer of grooves and 4 leakage channels.
图3为3层沟槽4泄漏通道多层沟槽光纤的截面图。Fig. 3 is a cross-sectional view of a multilayer grooved optical fiber with 3 layers of grooves and 4 leakage channels.
图4为6层沟槽1泄漏通道多层沟槽光纤的截面图。Fig. 4 is a cross-sectional view of a multilayer grooved optical fiber with 6 layers of grooves and 1 leakage channel.
图5为6层沟槽2泄漏通道多层沟槽光纤的截面图。Fig. 5 is a cross-sectional view of a multilayer grooved optical fiber with 6 layers of grooves and 2 leakage channels.
图6为6层沟槽3泄漏通道多层沟槽光纤的截面图。Fig. 6 is a cross-sectional view of a multilayer grooved optical fiber with 6 layers of grooves and 3 leakage channels.
图7为6层沟槽4泄漏通道多层沟槽光纤的截面图。Fig. 7 is a cross-sectional view of a multilayer grooved optical fiber with 6 layers of grooves and 4 leakage channels.
图8为6层沟槽4泄漏通道多层沟槽光纤的基模模场分布图。Fig. 8 is a distribution diagram of the fundamental mode field of a multilayer grooved optical fiber with 6 layers of grooves and 4 leakage channels.
图9为6层沟槽4泄漏通道多层沟槽光纤的高阶模模场分布图。Fig. 9 is a high-order mode field distribution diagram of a multilayer grooved optical fiber with 6 layers of grooves and 4 leakage channels.
具体实施方式detailed description
下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
实施例一Embodiment one
大模场面积改进型1层沟槽1泄露通道光纤,参见图1。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11),外包层(3),本实例中M=1,N=1。Large mode area improved 1-layer trench 1-leakage channel optical fiber, see Figure 1. The center of the optical fiber is a high-refractive-index core region (1), and a first layer of low-refractive-index grooves (11) and an outer cladding (3) are distributed from inside to outside. In this example, M=1, N=1.
低折射率沟槽(11)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11)的折射率。The refractive index of the low refractive index groove (11) is lower than that of the high refractive index core region (1); the refractive index of the outer cladding layer (3) is smaller than that of the low refractive index groove (11).
高折射率芯区(1)的直径为40微米,低折射率沟槽的厚度为2微米,泄露通道的宽度为6微米。The diameter of the high-refractive index core region (1) is 40 microns, the thickness of the low-refractive index groove is 2 microns, and the width of the leakage channel is 6 microns.
实施例二Embodiment two
大模场面积改进型1层沟槽4泄露通道光纤,参见图2。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11、21、31、41),外包层(3),本实例中M=4,N=1。Large mode area improved 1-layer grooved 4-leakage channel optical fiber, see Figure 2. The center of the optical fiber is a high-refractive-index core region (1), the first layer of low-refractive index grooves (11, 21, 31, 41) are distributed from the inside to the outside, and the outer cladding (3), M=4, N in this example =1.
低折射率沟槽(11、21、31、41)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11、21、31、41)的折射率。The low refractive index grooves (11, 21, 31, 41) have a lower refractive index than the high refractive index core (1); the outer cladding (3) has a lower refractive index than the low refractive index grooves (11, 21, 31 , 41) Refractive index.
高折射率芯区(1)的直径为40微米,低折射率沟槽的厚度为2微米,泄露通道的宽度为6微米。The diameter of the high-refractive index core region (1) is 40 microns, the thickness of the low-refractive index groove is 2 microns, and the width of the leakage channel is 6 microns.
实施例三Embodiment Three
大模场面积改进型3层沟槽4泄露通道光纤,参见图3。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11、21、31、41),第二层低折射率沟槽(12、22、32、42),第三层低折射率沟槽(13、23、33、43),外包层(3),本实例中M=4,N=3。Large mode area improved 3-layer grooved 4-leakage channel optical fiber, see Figure 3. The center of the optical fiber is a high-refractive-index core region (1), and the first layer of low-refractive-index grooves (11, 21, 31, 41) are distributed from the inside to the outside, and the second layer of low-refractive-index grooves (12, 22, 32 , 42), the third layer of low-refractive-index grooves (13, 23, 33, 43), the outer cladding layer (3), M=4, N=3 in this example.
低折射率沟槽(11、21、31、41)、(12、22、32、42)、(13、23、33、43)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11、21、31、41)、(12、22、32、42)、(13、23、33、43)的折射率。The low refractive index trenches (11, 21, 31, 41), (12, 22, 32, 42), (13, 23, 33, 43) have a lower refractive index than the high refractive index core region (1); The refractive index of the outer cladding (3) is smaller than that of the low refractive index trenches (11, 21, 31, 41), (12, 22, 32, 42), (13, 23, 33, 43).
高折射率芯区(1)的直径为30微米,低折射率沟槽的厚度为2微米,低折射率沟槽之间的距离为15微米,泄露通道的宽度为4微米。The diameter of the high-refractive index core (1) is 30 microns, the thickness of the low-refractive-index trenches is 2 microns, the distance between the low-refractive-index trenches is 15 microns, and the width of the leakage channel is 4 microns.
实施例四Embodiment four
大模场面积改进型6层沟槽1泄露通道光纤,参见图4。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11),第二层低折射率沟槽(12),第三层低折射率沟槽(13),第四层低折射率沟槽(14),第五层低折射率沟槽(15),第六层低折射率沟槽(16),外包层(3),本实例中M=1,N=6。Large mode area improved 6-layer grooved 1 leakage channel optical fiber, see Figure 4. The center of the optical fiber is a high-refractive-index core region (1), and the first layer of low-refractive-index grooves (11), the second layer of low-refractive-index grooves (12), and the third layer of low-refractive-index grooves are distributed from the inside to the outside. (13), the fourth layer of low-refractive index groove (14), the fifth layer of low-refractive index groove (15), the sixth layer of low-refractive index groove (16), outer cladding (3), M in this example =1, N=6.
低折射率沟槽(11、12、13、14、15、16)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11、12、13、14、15、16)的折射率。The low refractive index grooves (11, 12, 13, 14, 15, 16) have a lower refractive index than the high refractive index core (1); the outer cladding (3) has a lower refractive index than the low refractive index grooves (11 , 12, 13, 14, 15, 16) refractive index.
高折射率芯区(1)的直径为30微米,低折射率沟槽的厚度为2微米,低折射率沟槽之间的距离为8微米,泄露通道的宽度为6微米。The diameter of the high-refractive index core (1) is 30 microns, the thickness of the low-refractive-index trenches is 2 microns, the distance between the low-refractive-index trenches is 8 microns, and the width of the leakage channel is 6 microns.
实施例五Embodiment five
大模场面积改进型6层沟槽2泄露通道光纤,参见图5。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11、21),第二层低折射率沟槽(12、22),第三层低折射率沟槽(13、23),第四层低折射率沟槽(14、24),第五层低折射率沟槽(15、25),第六层低折射率沟槽(16、26),外包层(3),本实例中M=2,N=6。Large mode area improved 6-layer grooved 2-leakage channel fiber, see Figure 5. The center of the optical fiber is a high-refractive-index core region (1), and the first layer of low-refractive-index grooves (11, 21) is distributed from the inside to the outside, the second layer of low-refractive-index grooves (12, 22), and the third layer of low-refractive Refractive index grooves (13, 23), the fourth layer of low refractive index grooves (14, 24), the fifth layer of low refractive index grooves (15, 25), the sixth layer of low refractive index grooves (16, 26 ), outer cladding (3), M=2, N=6 in this example.
低折射率沟槽(11、21)、(12、22)、(13、23)、(14、24)、(15、25)、(16、26)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11、21)、(12、22)、(13、23)、(14、24)、(15、25)、(16、26)的折射率。The low refractive index trenches (11, 21), (12, 22), (13, 23), (14, 24), (15, 25), (16, 26) have a lower refractive index than the high refractive index core region ( 1) the refractive index; the outer cladding (3) has a lower refractive index than the low refractive index grooves (11, 21), (12, 22), (13, 23), (14, 24), (15, 25), Refractive index of (16, 26).
高折射率芯区(1)的直径为30微米,低折射率沟槽的厚度为2微米,低折射率沟槽之间的距离为8微米,泄露通道的宽度为4微米。The diameter of the high-refractive index core (1) is 30 microns, the thickness of the low-refractive-index trenches is 2 microns, the distance between the low-refractive-index trenches is 8 microns, and the width of the leakage channel is 4 microns.
实施例六Embodiment six
大模场面积改进型6层沟槽3泄露通道光纤,参见图6。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11、21、31),第二层低折射率沟槽(12、22、32),第三层低折射率沟槽(13、23、33),第四层低折射率沟槽(14、24、34),第五层低折射率沟槽(15、25、35),第六层低折射率沟槽(16、26、36),外包层(3),本实例中M=3,N=6。Large mode area improved 6-layer grooved 3-leakage channel optical fiber, see Figure 6. The center of the optical fiber is a high-refractive-index core region (1), and a first layer of low-refractive-index grooves (11, 21, 31) and a second layer of low-refractive-index grooves (12, 22, 32) are distributed from inside to outside, The third layer of low refractive index grooves (13, 23, 33), the fourth layer of low refractive index grooves (14, 24, 34), the fifth layer of low refractive index grooves (15, 25, 35), the sixth layer of low refractive index grooves Low-refractive-index trenches (16, 26, 36), outer cladding (3), M=3, N=6 in this example.
低折射率沟槽(11、21、31)、(12、22、32)、(13、23、33)、(14、24、34)、(15、25、35)、(16、26、36)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11、21、31)、(12、22、32)、(13、23、33)、(14、24、34)、(15、25、35)、(16、26、36)的折射率。Low refractive index grooves (11, 21, 31), (12, 22, 32), (13, 23, 33), (14, 24, 34), (15, 25, 35), (16, 26, 36) has a refractive index smaller than that of the high-refractive-index core region (1); , 23, 33), (14, 24, 34), (15, 25, 35), (16, 26, 36) of the refractive index.
高折射率芯区(1)的直径为30微米,低折射率沟槽的厚度为2微米,低折射率沟槽之间的距离为8微米,泄露通道的宽度为6微米。The diameter of the high-refractive index core (1) is 30 microns, the thickness of the low-refractive-index trenches is 2 microns, the distance between the low-refractive-index trenches is 8 microns, and the width of the leakage channel is 6 microns.
实施例七Embodiment seven
大模场面积改进型6层沟槽4泄露通道光纤,参见图7--9。该光纤中心为高折射率芯区(1),由内到外分布第一层低折射率沟槽(11、21、31、41),第二层低折射率沟槽(12、22、32、42),第三层低折射率沟槽(13、23、33、43),第四层低折射率沟槽(14、24、34、44),第五层低折射率沟槽(15、25、35、45),第六层低折射率沟槽(16、26、36、46),外包层(3),本实例中M=4,N=6。Large mode area improved 6-layer grooved 4-leakage channel optical fiber, see Figure 7-9. The center of the optical fiber is a high-refractive-index core region (1), and the first layer of low-refractive-index grooves (11, 21, 31, 41) are distributed from the inside to the outside, and the second layer of low-refractive-index grooves (12, 22, 32 , 42), the third layer of low-refractive index grooves (13, 23, 33, 43), the fourth layer of low-refractive index grooves (14, 24, 34, 44), the fifth layer of low-refractive index grooves (15 , 25, 35, 45), the sixth layer of low-refractive index trenches (16, 26, 36, 46), the outer cladding layer (3), M=4, N=6 in this example.
低折射率沟槽(11、21、31、41)、(12、22、32、42)、(13、23、33、43)、(14、24、34、44)、(15、25、35、45)、(16、26、36、46)的折射率小于高折射率芯区(1)的折射率;外包层(3)的折射率小于低折射率沟槽(11、21、31、41)、(12、22、32、42)、(13、23、33、43)、(14、24、34、44)、(15、25、35、45)、(16、26、36、46)的折射率。Low refractive index grooves (11, 21, 31, 41), (12, 22, 32, 42), (13, 23, 33, 43), (14, 24, 34, 44), (15, 25, 35, 45), (16, 26, 36, 46) have a lower refractive index than the high refractive index core (1); the outer cladding (3) has a lower refractive index than the low refractive index groove (11, 21, 31 , 41), (12, 22, 32, 42), (13, 23, 33, 43), (14, 24, 34, 44), (15, 25, 35, 45), (16, 26, 36 , 46) the refractive index.
高折射率芯区(1)的直径为30微米,低折射率沟槽的厚度为2微米,低折射率沟槽之间的距离为8微米,泄露通道的宽度为6微米。The diameter of the high-refractive index core (1) is 30 microns, the thickness of the low-refractive-index trenches is 2 microns, the distance between the low-refractive-index trenches is 8 microns, and the width of the leakage channel is 6 microns.
图8为图7光纤基模的场分布。Fig. 8 is the field distribution of the fundamental mode of the fiber in Fig. 7 .
图9为图7光纤高阶模的场分布。Fig. 9 is the field distribution of the high-order mode of the fiber in Fig. 7 .
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710857152.7A CN107367788A (en) | 2017-09-20 | 2017-09-20 | A kind of large mode field improved multilayer groove optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710857152.7A CN107367788A (en) | 2017-09-20 | 2017-09-20 | A kind of large mode field improved multilayer groove optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107367788A true CN107367788A (en) | 2017-11-21 |
Family
ID=60302980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710857152.7A Pending CN107367788A (en) | 2017-09-20 | 2017-09-20 | A kind of large mode field improved multilayer groove optical fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107367788A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024125462A1 (en) * | 2022-12-16 | 2024-06-20 | 中国移动通信有限公司研究院 | Optical fiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003019257A1 (en) * | 2001-08-30 | 2003-03-06 | Crystal Fibre A/S | Optical fibre with high numerical aperture, method of its production, and use thereof |
WO2004053550A1 (en) * | 2002-12-09 | 2004-06-24 | Crystal Fibre A/S | Improvements relating to photonic crystal fibres |
CN101021590A (en) * | 2007-02-07 | 2007-08-22 | 燕山大学 | Optical fiber capable of effectively transmitting 2-3 um wavelength |
CN101403808A (en) * | 2007-06-15 | 2009-04-08 | 古河电子北美公司 | Bend insensitivity in single mode optical fibers |
CN103293594A (en) * | 2013-06-28 | 2013-09-11 | 中国科学院西安光学精密机械研究所 | Large-mode-field quartz energy transmission optical fiber |
-
2017
- 2017-09-20 CN CN201710857152.7A patent/CN107367788A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003019257A1 (en) * | 2001-08-30 | 2003-03-06 | Crystal Fibre A/S | Optical fibre with high numerical aperture, method of its production, and use thereof |
WO2004053550A1 (en) * | 2002-12-09 | 2004-06-24 | Crystal Fibre A/S | Improvements relating to photonic crystal fibres |
CN101021590A (en) * | 2007-02-07 | 2007-08-22 | 燕山大学 | Optical fiber capable of effectively transmitting 2-3 um wavelength |
CN101403808A (en) * | 2007-06-15 | 2009-04-08 | 古河电子北美公司 | Bend insensitivity in single mode optical fibers |
CN103293594A (en) * | 2013-06-28 | 2013-09-11 | 中国科学院西安光学精密机械研究所 | Large-mode-field quartz energy transmission optical fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024125462A1 (en) * | 2022-12-16 | 2024-06-20 | 中国移动通信有限公司研究院 | Optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10197727B2 (en) | Large core holey fibers | |
CN107329205B (en) | Rare earth doped optical fiber | |
WO2021129182A1 (en) | Fiber amplifier | |
CN102262263B (en) | Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof | |
CN102305958B (en) | Large mode field area single-mode chrysanthemum fiber core distribution fiber and manufacturing method thereof | |
CN108761635B (en) | Double-clad ytterbium-doped optical fiber | |
Napierała et al. | Extremely large-mode-area photonic crystal fibre with low bending loss | |
US20230123319A1 (en) | Optical amplifying fiber, optical fiber amplifier, and optical communication system | |
CN105589127A (en) | Optical fiber of single-mode multi-ring fiber core coupled to multiple rare-earth-doped segmented fiber cores | |
CN105607183B (en) | A kind of counter-bending petaloid larger-mode-area single-mode fiber | |
WO2021193305A1 (en) | Optical amplification fibre, optical fibre amplifier and optical communication system | |
CN106842413A (en) | A kind of flap optical fiber of large mode field single mode multilayer fibre core | |
CN107272110B (en) | A kind of ZBLAN fluoride photonic crystal fiber of super large positive dispersion | |
CN100555010C (en) | The multi-core fiber and the preparation method that comprise the single core of photosensitivity | |
CN108333669B (en) | Single-polarization aperiodic large-pitch single-mode active microstructure optical fiber | |
CN101764343B (en) | Optical fiber of coupling multilayer rare earth blending ring-shaped fiber core with single-mold fiber core | |
CN107367788A (en) | A kind of large mode field improved multilayer groove optical fiber | |
CN102819062B (en) | Air hole square array fiber core annular doping four-core photonic crystal fiber | |
CN107870389B (en) | A large-mode-field bending-resistant single-mode fiber with a parabolic core coupled to a lobe-shaped core | |
CN110780378A (en) | A multilayer refractive index groove gradient fiber leaking high-order modes | |
CN100559670C (en) | Single-mode active fiber companion coupled multimode active fiber ultra-brightness single-mode laser | |
CN106997071A (en) | A kind of flap optical fiber of large mode field single mode multilayer fibre core | |
CN113589425B (en) | Multi-core microstructure optical fiber | |
CN107505673A (en) | A kind of large mode field multilayer flap optical fiber | |
CN112346171A (en) | Bendable all-solid-state single-polarization photonic band gap fiber with core diameter of more than 45 micrometers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171121 |
|
WD01 | Invention patent application deemed withdrawn after publication |