CN107367730B - 适用于条带式合成孔径声呐对场景目标成像的自聚焦方法 - Google Patents

适用于条带式合成孔径声呐对场景目标成像的自聚焦方法 Download PDF

Info

Publication number
CN107367730B
CN107367730B CN201610308444.0A CN201610308444A CN107367730B CN 107367730 B CN107367730 B CN 107367730B CN 201610308444 A CN201610308444 A CN 201610308444A CN 107367730 B CN107367730 B CN 107367730B
Authority
CN
China
Prior art keywords
strong scattering
point
scattering point
phase error
synthetic aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610308444.0A
Other languages
English (en)
Other versions
CN107367730A (zh
Inventor
段江涛
黄勇
刘纪元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN201610308444.0A priority Critical patent/CN107367730B/zh
Publication of CN107367730A publication Critical patent/CN107367730A/zh
Application granted granted Critical
Publication of CN107367730B publication Critical patent/CN107367730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明涉及适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,包括:得到粗聚焦后的图像数据;在距离向和方位向上进行分块,得到分块单元;选取强散射点;将强散射点圆移居中后进行加窗,再跟方位向的参考LFM信号卷积,得到强散射点在方位压缩前的信号形式;从所选择的强散射点目标原来的位置向两边各截取半个合成孔径长度并做解斜处理,得到强散射点的解斜处理结果;得到各强散射点处的相位误差的梯度,对各强散射点处的相位误差的梯度进行求和,得到对应的方位向的相位误差;利用方位向的相位误差进行一次补偿再聚焦成像;判断当前是否满足迭代终止条件,若不满足,重新执行之前步骤,否则,结束迭代操作,得到最终的成像结果。

Description

适用于条带式合成孔径声呐对场景目标成像的自聚焦方法
技术领域
本发明涉及合成孔径成像系统运动误差估计和补偿领域,特别涉及一种适用于条带式合成孔径声呐(synthetic aperture sonar,SAS)对场景目标成像的自聚焦方法。
背景技术
合成孔径声呐是一种水下高分辨率的成像设备,其合成孔径成像可以看成方位向的一维全息过程,一个理想点目标的回波在方位向上的波形也是线性调频(LFM)信号;SAS的方位向的波束锐化和高分辨率可以看作对这个方位向的回波多普勒信号进行脉冲压缩的结果。在合成孔径声呐成像过程中,会受到载体随机振动和不规则运动、声波传播媒介不稳定等难以避免的因素的干扰,使得在接收信号的方位向相位中叠加进入了未知的相位误差。其中部分误差可以通过各种运动补偿方法进行修正,但仍然会有相当部分的残余相位误差的存在,使得最终的成像结果在方位向产生散焦和模糊。
为了克服上述问题,本领域技术人员提出可以用图像自聚焦方法估计出接收的回波信号中的残余相位误差,然后对回波信号进行相应的相位补偿之后再成像,从而使方位向分辨率得到一定程度的改进,同时可以降低对高精度的运动传感器设备的依赖。
现有技术中最为常见的图像自聚焦方法是经典的PGA算法,该算法最早是针对聚束式SAR提出的。对于聚束模式而言,发射波束一直照射在某一恒定的成像区域,此区域内的所有的点目标叠加进的相位误差是相同的,其形式为方位的一维函数;回波数据的空间频谱和相位误差是相乘的关系。而实际上,几乎所有的SAS都是工作在条带模式下;在条带模式下,波束先后扫射过的测绘带里,不同方位位置的目标所叠加进的相位误差存在差异,回波信号的空间频谱与相位误差表现为卷积的关系。因此,经典的PGA算法不能直接用于条带模式的SAS,需要做相应的调整。另外,因为PGA算法对相位误差的估计要依赖于选取到合适的点目标,在对复杂的场景目标成像时由于不恰当的选点方法,经常导致误差估计性能的下降,甚至算法的发散和失效。
发明内容
本发明的目的在于克服现有技术中的图像自聚焦方法误差性能估计等缺陷,从而提供一种能有效提高SAS系统对复杂场景目标成像时自聚焦性能的适应性和稳健性的自聚焦方法。
为了实现上述目的,本发明提供了一种适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,包括:
步骤1)、采用CS成像算法对合成孔径声呐所接收到的原始回波数据进行处理,得到粗聚焦后的图像数据;
步骤2)、将粗聚焦后的图像数据在距离向和方位向上进行分块,得到分块单元;其中,在分块时保证各个分块单元内相位误差的空变性尽量小;
步骤3)、在步骤2)所得到的经过分块的图像数据所在图像域中选取强散射点;
步骤4)、通过圆移操作使得步骤3)所选取的强散射点居中,然后进行加窗,加窗后再跟方位向的参考LFM信号卷积,从而得到所述强散射点在方位压缩前的信号形式;
步骤5)、在步骤4)所得到的强散射点在方位压缩前的信号形式中,从各强散射点目标原来的位置向两边各截取半个合成孔径长度并做解斜处理,进而得到各强散射点的解斜处理结果;
步骤6)、基于步骤5)所得到的各强散射点的解斜处理结果,采用相位误差梯度的最大似然估计式对相位误差的梯度进行计算,得到各强散射点处的相位误差的梯度,然后对各强散射点处的相位误差的梯度进行求和,从而得到相应的方位向的相位误差;
步骤7)、利用步骤6)估计得到的方位向的相位误差进行一次补偿再聚焦成像;
步骤8)、判断当前是否满足迭代终止条件,若不满足,重新执行步骤2),否则,结束迭代操作,得到最终的成像结果。
上述技术方案中,在所述的步骤3)中,对一个分块单元选取强散射点包括:
步骤3-1)、对点扩展函数的宽度进行估计;该步骤进一步包括:
首先,求出步骤2)所得到的分块单元内的数据幅度的算术平均值;然后对所述分块单元内最大值点的方位向位置进行记录;接着在最大值位置的两边分别找到首个幅度低于算术平均值的图像点sl和s2,两者的间隔作为点扩展函数的宽度;
步骤3-2)、由所处理区域内的图像数据幅度计算幅度阈值Ath
步骤3-3)、统计sl和s2两点外幅度值超过幅度阈值Ath的像素个数,当其占统计样本总数的比例低于P0时,判定此点是孤立的散射点,将所述孤立的散射点作为所要选取的强散射点;否则属于非孤立的散射点,不作为备选点。
上述技术方案中,在所述步骤3-2)中,采用Weibull分布或K-分布计算幅度阈值Ath
上述技术方案中,采用Weibull分布计算幅度阈值Ath包括:
计算Weibull分布中的尺度参数和形状参数的最大似然估计,并根据现场测算设定杂波幅度超过门限的概率最大值为P0,进而求出幅度阈值Ath;其中,
Weibul分布的概率密度函数的表达式为:
其中β为尺度参数,δ表示形状参数,A为代表幅度变量的统计变量,W为分布函数名;
求取幅度阈值Ath的表达式为:
上述技术方案中,在所述的步骤4)中,所述加窗具体包括:
步骤4-1)、先通过二次差分求出步骤3)所得到的强散射点的回波数据的波形的包络;
步骤4-2)、寻找之前步骤所得包络的构成采样样本中极大值两边中首个呈现相对缓慢起伏的样本点来确定包络的宽度,将该宽度作为所选择的加窗的宽度;
步骤4-3)、利用步骤4-2)所确定的加窗的宽度实现加窗操作。
上述技术方案中,在步骤4-1)和步骤4-2)之间还包括:当方位向的相位误差较大时,对步骤4-1)所得到的波形的包络做进一步的二次差分。
上述技术方案中,在步骤1)的CS成像处理的过程中采用了NFFT技术。
上述技术方案中,步骤8)中所涉及的迭代终止条件包括:步骤6)估计得到的方位向的相位误差是否小于一设定的阈值,或者之前的迭代次数是否达到一定的数目。
本发明的优点在于:
本发明可以有效地嵌入到SAS系统的成像算法中,提高SAS系统对复杂场景目标成像时自聚焦性能的适应性和稳健性。
附图说明
图1是本发明的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法的流程图。
具体实施方式
现结合附图对本发明作进一步的描述。
如图1所示,本发明的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法包括以下步骤:
步骤1)、采用CS成像算法对合成孔径声呐所接收到的原始回波数据进行处理,得到粗聚焦后的图像数据。
为了提高对方位速度非均匀的适应性,在步骤1)的CS成像处理的过程中采用了NFFT技术。
步骤2)、将粗聚焦后的图像数据在距离向和方位向上进行分块,得到分块单元,并保证各个分块单元内相位误差的空变性尽量小。
步骤3)、在步骤2)所得到的经过分块的图像数据所在图像域中选取强散射点。
步骤4)、通过圆移操作使得步骤3)所选取的强散射点居中,然后进行加窗,加窗后再跟方位向的参考LFM信号卷积,从而得到所述强散射点在方位压缩前的信号形式。
本步骤中所涉及的方位向的参考LFM信号根据合成孔径声呐的阵列构成信息和工作参数计算得到,如何计算属于本领域技术人员的公知常识。
步骤5)、在步骤4)所得到的强散射点在方位压缩前的信号形式中,从各强散射点目标原来的位置向两边各截取半个合成孔径长度并做解斜处理,进而得到各强散射点的解斜处理结果。
步骤6)、基于步骤5)所得到的各强散射点的解斜处理结果,采用相位误差梯度的最大似然估计式对相位误差的梯度进行计算,得到各强散射点处的相位误差的梯度,然后对各强散射点处的相位误差的梯度进行求和,从而得到相应的方位向的相位误差。
步骤7)、利用步骤6)估计得到的方位向的相位误差进行一次补偿再聚焦成像;
步骤8)、判断当前是否满足迭代终止条件,若不满足,重新执行步骤2),否则的,结束迭代操作,得到最终的成像结果。
本步骤中的迭代终止条件包括:步骤6)估计得到的方位向的相位误差是否小于一设定的阈值,或者之前的迭代次数是否达到一定的数目。
以上是对本发明的自聚焦方法的基本步骤的描述,下面对该方法中的步骤做进一步的说明。
在所述的步骤3)中,对一个分块单元选取强散射点具体包括:
步骤3-1)、对点扩展函数的宽度进行估计;该步骤进一步包括:
首先,求出步骤2)所得到的分块单元内的数据幅度的算术平均值;然后对所述分块单元内最大值点的方位向位置进行记录;接着在最大值位置的两边分别找到首个幅度低于算术平均值的图像点sl和s2,两者的间隔可作为点扩展函数的宽度。
步骤3-2)、由所处理区域内的图像数据幅度计算Weibull分布中的尺度参数和形状参数的最大似然估计,并根据现场测算设定杂波幅度超过门限的概率最大值为P0,进而求出幅度阈值Ath;其中,
Weibul分布的概率密度函数的表达式为:
其中β为尺度参数,δ表示形状参数,A为代表幅度变量的统计变量,W为分布函数名。Weibull分布相对于一般的Rayleigh模型能提供更强的适应性,其中的尺度参数和形状参数通过输入图像数据后用最大似然估计法求得。
求取幅度阈值Ath的表达式为:
步骤3-3)、统计sl和s2两点外幅度值超过幅度阈值Ath的像素个数,当其占统计样本总数的比例低于P0时,可判定此点是孤立的散射点,将所述孤立的散射点作为所要选取的强散射点;否则属于非孤立的散射点,不作为备选点。
以上是步骤3)的选取强散射点的步骤描述。通过上述操作,一般能在在每个分块单元内选出若干个强散射点。另外还需要说明的是步骤3-2)中的Weibull分布还可以用K-分布代替,如何利用K-分布求解幅度阈值Ath为本领域技术人员所公知,不在此处重复说明。
在所述的步骤4)中,所述加窗具体包括:
步骤4-1)、先通过二次差分求出步骤3)所得到的强散射点的回波数据的波形的包络。其中,所述波形的包络一般较原脉冲信号更加平滑,更有利于进行窗宽的确定,通过连接波形的一次差分值中的正负转变点可得到波形的包络。
步骤4-2)、寻找之前步骤所得包络的构成采样样本中极大值两边中首个呈现相对缓慢起伏的样本点来确定包络的宽度,该宽度可以作为所选择的加窗的宽度。
其中,在判断样本点是否为相对缓慢起伏的样板点时,需要根据实测数据进行优化或自适应的选取。例如,假设在包络的最高点即极大值的一侧有(a,b,c,d)4个相邻的采样点,a是靠近最高点的一端;若满足|b-c|<0.1*(a-b)且|2c-b-d|<0.1*b(为了更稳健,可对之后(c,d,e)等采样点进行是否起伏平稳的判定),则判定点b是包络的该侧第一个起伏缓慢的点,作为所寻找的窗口在此侧的端点来用于后续的窗宽确定。上述判断过程中所涉及的取值0.1仅仅是一个参考值,实际应用中可根据实际情况取值。
步骤4-3)、利用步骤4-2)所确定的加窗的宽度实现加窗操作。
作为一种优选实现方式,在步骤4-1)和步骤4-2)之间还包括:当方位向的相位误差较大时,可对步骤4-1)所得到的波形的包络做进一步的二次差分,以得到更平滑的包络。
最后所应说明的是,以上实施例仅用以说明本实用新型的技术方案而非限制。尽管参照实施例对本实用新型进行了详细说明,本领域的普通技术人员应当理解,对本实用新型的技术方案进行修改或者等同替换,都不脱离本实用新型技术方案的精神和范围,其均应涵盖在本实用新型的权利要求范围当中。

Claims (8)

1.一种适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,包括:
步骤1)、采用CS成像算法对合成孔径声呐所接收到的原始回波数据进行处理,得到粗聚焦后的图像数据;
步骤2)、将粗聚焦后的图像数据在距离向和方位向上进行分块,得到分块单元;其中,在分块时保证各个分块单元内相位误差的空变性尽量小;
步骤3)、在步骤2)所得到的经过分块的图像数据所在图像域中选取强散射点;
步骤4)、通过圆移操作使得步骤3)所选取的强散射点居中,然后进行加窗,加窗后再跟方位向的参考LFM信号卷积,从而得到所述强散射点在方位压缩前的信号形式;
步骤5)、在步骤4)所得到的各强散射点在方位压缩前的信号形式中,从各强散射点目标原来的位置向两边各截取半个合成孔径长度并做解斜处理,进而得到所选择的各强散射点的解斜处理结果;
步骤6)、基于步骤5)所得到的各强散射点的解斜处理结果,采用相位误差梯度的最大似然估计式对相位误差的梯度进行计算,得到该强散射点处的相位误差的梯度,然后对各强散射点处的相位误差的梯度进行求和,从而得到相应的方位向的相位误差;
步骤7)、利用步骤6)估计得到的方位向的相位误差进行一次补偿再聚焦成像;
步骤8)、判断当前是否满足迭代终止条件,若不满足,重新执行步骤2),否则,结束迭代操作,得到最终的成像结果。
2.根据权利要求1所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,在所述的步骤3)中,对一个分块单元选取强散射点包括:
步骤3-1)、对点扩展函数的宽度进行估计;该步骤进一步包括:
首先,求出步骤2)所得到的分块单元内的数据幅度的算术平均值;然后对所述分块单元内最大值点的方位向位置进行记录;接着在最大值位置的两边分别找到首个幅度低于算术平均值的图像点sl和s2,两者的间隔作为点扩展函数的宽度;
步骤3-2)、由所处理区域内的图像数据幅度计算幅度阈值Ath
步骤3-3)、统计sl和s2两点外幅度值超过幅度阈值Ath的像素个数,当其占统计样本总数的比例低于P0时,判定此点是孤立的散射点,将所述孤立的散射点作为所要选取的强散射点;否则属于非孤立的散射点,不作为备选点。
3.根据权利要求2所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,在所述步骤3-2)中,采用Weibull分布或K-分布计算幅度阈值Ath
4.根据权利要求3所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,采用Weibull分布计算幅度阈值Ath包括:
计算Weibull分布中的尺度参数和形状参数的最大似然估计,并根据现场测算设定杂波幅度超过门限的概率最大值为P0,进而求出幅度阈值Ath;其中,
Weibul分布的概率密度函数的表达式为:
其中β为尺度参数,δ表示形状参数,A为代表幅度变量的统计变量,W为分布函数名;
求取幅度阈值Ath的表达式为:
5.根据权利要求1所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,在所述的步骤4)中,所述加窗具体包括:
步骤4-1)、先通过二次差分求出步骤3)所得到的强散射点的回波数据的波形的包络;
步骤4-2)、寻找之前步骤所得包络的构成采样样本中极大值两边中首个呈现相对缓慢起伏的样本点来确定包络的宽度,将该宽度作为所选择的加窗的宽度;
步骤4-3)、利用步骤4-2)所确定的加窗的宽度实现加窗操作。
6.根据权利要求5所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,在步骤4-1)和步骤4-2)之间还包括:当方位向的相位误差较大时,对步骤4-1)所得到的波形的包络做进一步的二次差分。
7.根据权利要求1所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,在步骤1)的CS成像处理的过程中采用了NFFT技术。
8.根据权利要求1所述的适用于条带式合成孔径声呐对场景目标成像的自聚焦方法,其特征在于,步骤8)中所涉及的迭代终止条件包括:步骤6)估计得到的方位向的相位误差是否小于一设定的阈值,或者之前的迭代次数是否达到一定的数目。
CN201610308444.0A 2016-05-11 2016-05-11 适用于条带式合成孔径声呐对场景目标成像的自聚焦方法 Active CN107367730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610308444.0A CN107367730B (zh) 2016-05-11 2016-05-11 适用于条带式合成孔径声呐对场景目标成像的自聚焦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610308444.0A CN107367730B (zh) 2016-05-11 2016-05-11 适用于条带式合成孔径声呐对场景目标成像的自聚焦方法

Publications (2)

Publication Number Publication Date
CN107367730A CN107367730A (zh) 2017-11-21
CN107367730B true CN107367730B (zh) 2019-08-20

Family

ID=60304705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610308444.0A Active CN107367730B (zh) 2016-05-11 2016-05-11 适用于条带式合成孔径声呐对场景目标成像的自聚焦方法

Country Status (1)

Country Link
CN (1) CN107367730B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568410B (zh) * 2019-10-09 2021-08-31 上海无线电设备研究所 一种空间频率色散的微波雷达超分辨方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652156A (zh) * 2004-02-05 2005-08-10 中国科学院声学研究所 一种利用图像分块进行合成孔径声纳图像自聚焦的方法
CN1731212A (zh) * 2005-08-25 2006-02-08 中国船舶重工集团公司第七一五研究所 一种合成孔径声纳成像的自聚焦处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652156A (zh) * 2004-02-05 2005-08-10 中国科学院声学研究所 一种利用图像分块进行合成孔径声纳图像自聚焦的方法
CN1731212A (zh) * 2005-08-25 2006-02-08 中国船舶重工集团公司第七一五研究所 一种合成孔径声纳成像的自聚焦处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"一种多子阵合成孔径声纳CS成像算法";刘维 等;《声学技术》;20080531;第27卷(第05期);第636-641页 *
"条带式合成孔径声呐相位梯度自聚焦算法";张友文;《哈尔滨工业大学学报》;20090531(第05期);第156-160页 *

Also Published As

Publication number Publication date
CN107367730A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
US6088295A (en) Feature imaging and adaptive focusing for synthetic aperture processor
CN107561508B (zh) 一种用于匀加速运动目标的相参积累检测方法
CN105445701B (zh) Ddma‑mimo雷达目标的单脉冲角度估计方法
CN110088642B (zh) 用于检测目标对象的前进方向和速度的系统和方法
CN109669182B (zh) 无源双基地sar动/静目标联合稀疏成像方法
CN107918115B (zh) 基于多径利用的雷达目标定位方法
US8760340B2 (en) Processing radar return signals to detect targets
CN109324322A (zh) 一种基于被动相控阵天线的测向与目标识别方法
CN109324315A (zh) 基于双层次块稀疏性的空时自适应处理雷达杂波抑制方法
CN113532437B (zh) 基于多径利用的超宽带定位室内目标方法
CN109655819B (zh) 一种基于实孔径多普勒波束锐化的杂波抑制三维成像方法
CN110879391B (zh) 基于电磁仿真和弹载回波仿真的雷达图像数据集制作方法
CN111045002A (zh) 基于TRT和SNuFFT的机动目标相参积累方法
JP2009236720A (ja) 移動目標検出装置
Zhang et al. Moving target detection based on time reversal in a multipath environment
CN107367730B (zh) 适用于条带式合成孔径声呐对场景目标成像的自聚焦方法
CN110261837A (zh) 一种基于航迹信息的复杂目标rcs计算方法
CN109164440A (zh) 一种多频雷达测距的方法
CN106772373B (zh) 针对任意地面运动目标的sar成像方法
CN109884621B (zh) 雷达高度表回波相参积累方法
CN108427111A (zh) 一种雷达测距方法及装置
KR20200117602A (ko) Sar 영상의 객체 응답 초해상도화 방법 및 객체 응답 초해상도화 장치
CN113093174A (zh) 基于phd滤波雷达起伏微弱多目标的检测前跟踪方法
CN109031211B (zh) 一种基于序列优化的认知雷达稳健旁瓣抑制方法
CN106405519B (zh) 基于跟踪信息的isar成像时间段选择方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant