CN107367693B - 一种电动汽车动力电池soc检测系统 - Google Patents

一种电动汽车动力电池soc检测系统 Download PDF

Info

Publication number
CN107367693B
CN107367693B CN201710548668.3A CN201710548668A CN107367693B CN 107367693 B CN107367693 B CN 107367693B CN 201710548668 A CN201710548668 A CN 201710548668A CN 107367693 B CN107367693 B CN 107367693B
Authority
CN
China
Prior art keywords
battery
parameter
soc
electric automobile
rbf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710548668.3A
Other languages
English (en)
Other versions
CN107367693A (zh
Inventor
王业琴
赵志国
马从国
陈基础
陈语嫣
杨艳
桑英军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Xinzhizao Technology Co ltd
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201710548668.3A priority Critical patent/CN107367693B/zh
Publication of CN107367693A publication Critical patent/CN107367693A/zh
Application granted granted Critical
Publication of CN107367693B publication Critical patent/CN107367693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电动汽车动力电池SOC检测系统,其特征在于:所述检测系统包括电池参数采集平台、电池SOC估计系统,电池参数采集平台采集汽车动力电池组电压、电流以及温度的实时参数采集,电池SOC估计系统通过这些采集到的参数能够精确估计电池SOC值;电池SOC是一个非线性的、延时的、多变量耦合和复杂的要求非常高实时系统,本发明有效解决解决传统汽车电池SOC估算方法难以取得理想效果的问题。

Description

一种电动汽车动力电池SOC检测系统
技术领域
本发明涉及电池检测设备技术领域,具体涉及一种电动汽车动力电池SOC检测系统。
背景技术
实现电动汽车电池的荷电状态(State of Charge,SOC)准确估计是保证电动汽车可靠运行的前提,也是电池组使用和维护的重要依据,对电动汽车的推广和发展具有至关重要的意义。目前,常用的SOC的估测方法主要有:安时积分法、开路电压法、卡尔曼滤波法、神经网络法等。安时积分法通过计算电流对时间的积分得到电池组的消耗电量,进而求得剩余电量,但其本质上是一种开环预测,纯积分环节的存在使得误差随时间的推移而增大。开路电压法通过检测电池的开路电压得到其剩余电量,要求电池在不对外供电的状态下长时间静置,不适合在线的实时测量。卡尔曼滤波法需要建立电池的内部模型得到状态方程,对电池模型的精度要求较高,在实际应用中具有一定的局限性。神经网络法根据建立的网络模型利用大量的样本数据进行训练学习可以获得较好的精度,但网络对初始权值的选择较为灵敏,一般收敛到初始值附近的局部最小值,初始值的改变将影响网络的收敛速度和精度。国内时玮等研究磷酸铁锂电池SOC估算方法,刘浩等研究纯电动汽车用锂离子电池SOC估算方案。电动汽车电池SOC是一个非线性的、延时的、多变量耦合和复杂的实时系统,实时性要求非常高,常规的控制方法难以取得理想效果,根据传统汽车电池SOC估算方法的缺点,本发明专利设计一种电动汽车动力电池SOC检测系统,实现对电动汽车电池参数的电压、电流和温度等参数的采集和估计电动汽车电池SOC值。
发明内容
本发明提供了一种电动汽车动力电池SOC检测系统,本发明有效解决了电池SOC是一个非线性的、延时的、多变量耦合和复杂的实时系统,,实时性要求非常高,根据传统汽车电池SOC估算方法难以取得理想效果的问题。
本发明通过以下技术方案实现:
一种电动汽车动力电池SOC检测系统,其特征在于:所述检测系统包括电池参数采集平台、电池SOC估计系统,电池参数采集平台采集汽车动力电池组电压、电流以及温度的实时参数采集,电池SOC估计系统通过这些采集到的参数能够精确估计电池SOC值;
所述电池参数采集平台由电流传感器、电压检测电路、电池组温度传感器、环境温度传感器、负载和测控单元组成,其中测控单元包括单体电池数据采集模块、CPU处理器、触摸屏、RS232接口、CAN接口、A/D转换单元以及均衡器,该电池参数采集平台采集电池组电压与电流、电池温度和环境温度,并通过CAN总线接口与电动汽车控制系统进行信息交互;
所述电池SOC估计系统包括参数归一化单元、SOM神经网络分类器、多个RBF模糊神经网络估计模型以及ANFIS补偿估计模型,利用SOM神经网络分类器对影响电池SOC值的特征参数电压、电流和温度的样本归一化参数进行分类,每类样本归一化参数输入对应的RBF模糊神经网络估计模型,RBF模糊神经网络估计模型的输出、环境温度变化量和电池内阻变化量作为ANFIS补偿估计模型的输入,RBF模糊神经网络估计模型输出减去ANFIS补偿估计模型输出作为电池SOC估计值。
本发明进一步技术改进方案是:
所述SOM神经网络分类器对电动汽车电池电压、电流和温度特征参数进行合理的样本子集划分,不同子集特征参数输入对应RBF模糊神经网络估计模型,实现对电动汽车电池SOC值精确估计。
本发明进一步技术改进方案是:
所述ANFIS估计补偿模型输出值是根据电动汽车电池环境温度变化量、电池内阻变化量和RBF模糊神经网络估计模型输出值的大小对RBF模糊神经网络估计模型输出值进行补偿,提高电动汽车动力电池SOC检测系统对电动汽车电池SOC值估计的精确度。
本发明与现有技术相比,具有以下明显优点:
一、本发明采用SOM神经网络分类器是一种数据分类方法,其目的在于将电动汽车电池特征归一化参数电压、电流和温度等数据空间中一组数据集合按相似性准则划分到若干个子集中,使得汽车电池特征归一化参数每个子集代表整个数据样本集的某个特征,建立SOM神经网络分类器对电动汽车电池特征归一化参数进行分类是找到合理的样本子集划分,根根归一化参数不同子集的特点输入对应RBF模糊神经网络估计模型来估计电池SOC值,提高估计电池SOC值的精确度。
二、本发明根据检测样本参数比较多的特点,在RBF模糊神经网络估计模型前利用SOM神经网络分类器进行电动汽车电池特征归一化参数样本子集划分,每个子集采用一个对应的RBF模糊神经网络估计模型,这种方法可以根据各个子归一化参数的特点采用对应的估计子模型,提高RBF模糊神经网络估计模型的估计精度和运算速度,该估计方法具有较好的拟合精度和泛化能力。
三、本发明利用ANFIS补偿估计模型可精确地估计环境温度变化量、电池内阻变化量和RBF模糊神经网络估计模型输出对电池SOC估计值影响程度输入、输出特性,具有良好的非线性逼近能力,ANFIS既具有模糊推理系统的推理功能,又具有神经网络的训练学习功能。将两者的优势结合,克服了单纯神经网络黑匣子特性,具有一定的透明度。通过大量实验验证了ANFIS补偿估计模型比一般BP神经网络训练快,训练次数也大大减少,克服了局部最优的问题。因此,利用AN FIS补偿估计模型建立精确的影响电池SOC值的输入、输出关系。
四、本发明采用的ANFIS补偿估计模型是一种基于Takagi-Sugeno模型的模糊推理系统,是将模糊逻辑和神经元网络有机结合的新型的模糊推理系统结构,采用反向传播算法和最小二乘法的混合算法调整前提参数和结论参数,并自动产生If-Then规则。ANFIS补偿估计模型作为一种很有特色的神经网络,同样具有以任意精度逼近任意线性和非线性函数的功能,并且收敛速度快,样本需要量少。ANFIS补偿估计模型运算速度快,结果可靠,取得好效果。
五、本发明ANFIS补偿估计模型将人工神经网络与模糊理论有机地结合起来,用神经网络来构造模糊系统,利用神经网络的学习方法,根据影响电池SOC值的输入输出样本来自动设计和调整模糊系统的参数,实现模糊系统的自学习和自适应功能,能够拟合逼近影响电池SOC值的输入输出之间的线性和非线性映射关系,特别适用于复杂的非线性电池SOC系统。
六、本发明采用的RBF模糊神经网络估计模型利用径向基(RBF)神经网络具有较快的学习速度,具有良好的泛化能力,能以任意精度逼近非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快,而模糊逻辑系统对任意复杂性系统具有较强的推理自适应性能。RBF模糊神经网络将二者优势相结合,实现功能和结构上的互补,RBF模糊神经网络估计模型对估计电池SOC值具有高度的自适应性和较高的学习精度。
附图说明
图1为本发明电池参数采集平台;
图2为本发明电池SOC估计系统;
图3为本发明测控单元软件功能示意图;
图4为本发明电池SOC检测系统平面布置图。
具体实施方式
一、电池SOC检测系统总体设计
电池SOC检测系统应具有如下功能:1)参数检测。实时采集电池充放电状态,采集电池的数据包括电压、电池电流、电池温度以及单体模块电池电压等;2)剩余电量(SOC)估计。系统应即时采集充放电电流和电压等参数,通过相应的算法进行SOC的估计,电池剩余能量相当于传统车的油量;3)热管理。实时采集电池的温度,通过对散热装置的控制防止电池温度过高;4)均衡控制。由于每块电池个体的差异以及不同使用状态等原因,因此电池在使用过程中不一致性会越来越严重,系统应能判断并自动进行均衡处理;5)信息监控。电池的主要信息通过RS232接口在触摸屏显示终端进行实时显示;6)CAN接口。根据电动汽车CAN通信协议,电池测控单元通过CAN接口与整车其他系统进行信息共享。
二、测控单元硬件设计
为了获得电动汽车电池的放电过程特性以及电池SOC估计系统建模所需数据,本发明专利一种电动汽车动力电池SOC检测系统中设计电池参数采集平台。电池参数采集平台由电流传感器、电压检测电路、电池组温度传感器、环境温度传感器、负载和测控单元组成,其中测控单元包括单体电池数据采集模块、CPU处理器、触摸屏、RSS32接口、CAN接口、A/D转换单元和均衡器,该电池参数采集平台采集电池组电压、电流、电池温度和环境温度,并通过CAN总线接口与电动汽车控制系统进行信息交互;电动汽车动力电池SOC检测系统如图1所示。电池SOC检测系统CPU处理器是整个系统的核心,CPU处理器选用集成了CAN控制器模块的DSP56F807芯片实现CAN接口,CAN接口收发器选用PCA82C250做收发器,电池均衡器采用集散式动态均衡控制,主要包括DC/DC斩波电路、隔离驱动、PWM控制器和矩阵开关型通道选择电路;采用AV100-150霍尔电压传感器和CHB-200SF霍尔电流传感器分别对电池组进行总电压和电流检测。单体电池数据采集模块实时监测取得每个单体电池的电压和温度数据,由均衡器对通道选择电路发出选通信号,实现对每个电池模块中单体电池的动态均衡充放电;通过RS232实现与触摸屏的通信以及系统的标定等。电池测控模块微控制器选用集成了2路12bit精度A/D的转换单元,电池组温度传感器和环境温度传感器选用数字温度传感器DS18B20采集电池测试点温度和电池组工作环境温度。
三、测控单元软件设计
测控单元软件采用模块化程序设计,CPU处理器程序采用C语言编写,根据系统具有的功能分为若干子程序,其中包括:程序参数和控制参数初始化模块、参数与控制模块和显示模块,实现电池电压、电流、温度和环境温度的采集、电池的均衡控制、SOC估计、曲线显示和数据显示等功能。软件功能见图3。
四、电池SOC估计系统
在测控单元的CPU处理器中设计电池SOC估计系统估计电池SOC值,电池SOC估计系统包括参数归一化单元、SOM神经网络分类器、多个RBF模糊神经网络估计模型和ANFIS估计补偿模型组成,电池SOC估计系统如图2所示,分别作如下设计:
1、SOM神经网络分类器
SOM神经网络分类器称为自组织特征映射网络,该网络是一个由全连接的神经元阵列组成的无教师自组织、自学习网络,当一个神经网络接受外界输入模式时,将会分为不同的反应区域,各区域对输入模式具有不同的响应特性。本发明专利利用SOM神经网络分类器对影响电池电量的特征归一化参数电压、电流和温度的样本进行分类,各类样本参数输入对应的模糊神经网络模型来估计电池SOC值。SOM神经网络学习算法如下:
(1)、连接权值的初始化。对N个输入神经元到输出神经元的连接权值赋予较小的权值,该网络的N=3,它们分别是电池的特征归一化参数电压、电流和温度。
(2)、计算欧氏距离dj,即输入样本X与每个输出神经元j之间的距离:
并计算出一个具有最小距离的神经元j*,即确定出某个单元k,使得对于任意的j,都有
(3)、按照式(2)修正输出神经元j*及其“邻接神经元”的权值:
wij(t+1)=wij(t)+η[xi(t)-wij(t)] (2)
(4)、根据下公式计算输出实现对电池特征参数样本分类。
(5)、提供新的学习样本来重复上述学习过程。
2、RBF模糊神经网络估计模型
模糊神经网络是一种集模糊逻辑推理的强大结构性知识表达与神经网络的强大自学习能力于一体的智能技术。本专利采用结构简单、逼近能力较好并具有函数等价性的RBF模糊神经网络,该RBF模糊神经网络为4层结构,它们分别为输入层、模糊化层、模糊规则层和解模糊层。第1层为输入层。该层有3节点,其输入量为分别为电池的特征归一化参数电压、电流和温度,它们的输入向量为X=[x1,x2,x3]。第2层为模糊化层。对输入参量进行模糊化,这里将3个输入各自划分为3个模糊子集{正大、正小、零},因此该层共有9个节点。每个节点对所对应的第i个输入变量的第j个模糊子集的隶属度μij(i=1,2,3;j=1,2,3)进行计算,隶属度函数选用高斯函数。第三层为模糊规则层,用来匹配模糊规则前件并计算出每条规则的适用度。该层每个节点代表一个模糊规则,由于输入模糊子集的全排列组合可得到3×3×3=27条规则,所以该层有27个节点。每个节点的规则适应度采用式极小运算得到。第四层为解模糊层,采用加权平均法计算模糊神经网络的输出。本专利所提的RBF神经网络(RBF-FNN)算法中,对RBF模糊神经网络参数的隶属度函数中心、隶属度函数宽度和规则层与解模糊层之间的连接权值cij σij wmn的强化学习调整主要分为以下2个阶段。①在实际应用中对模糊神经网络的参数进行初始训练调整,通过对参数的训练直至均方误差小于预设的阈值后,才认为利用当前参数下的模糊神经网络对电池SOC进行估计;②利用初始训练好的模糊神经网络对模糊神经网络的参数进行在线训练调整,以动态适应网络电池特征参数的变化,达到较好的电池负荷检测效果。
3、ANFIS补偿估计模型
由于模糊推理本身不具备自学习功能,其应用受到了很大限制,而人工神经网络又不能表达模糊语言,实际上类似一个黑箱,缺少透明度,所以不能很好地表达人脑的推理功能。基于神经网络的自适应模糊推理系统ANFIS,也称为自适应神经模糊推理系统(Adaptive Neuro-Fuzzy Inference System),将二者有机地结合起来,既能发挥二者的优点,又可弥补各自的不足。自适应神经网络模糊系统中的模糊隶属度函数及模糊规则是通过对大量已知数据的学习得到的,ANFIS最大的特点就是基于数据的建模方法,而不是基于经验或是直觉任意给定的。这对于那些特性还未被人们完全了解或者特性非常复杂的系统是尤为重要的。ANFIS补偿估计模型的输入分别为RBF模糊神经网络估计模型输出、电池内阻变化量和环境温度变化量,输出为电池SOC补偿估计量,ANFIS补偿估计模型的主要运算步骤如下:
第1层:将输入的数据模糊化,每个节点对应输出可表示为:
本发明专利为3个节点,分别是RBF模糊神经网络估计模型输出、电池内阻变化量和环境温度变化量。式n为每个输入隶属函数个数,隶属函数采用高斯隶属函数。
第2层:实现规则运算,输出规则的适用度,ANFIS补偿估计模型的规则运算采用乘法。
第3层:将各条规则的适用度归一化:
第4层:每个节点的传递函数为线性函数,表示局部的线性模型,每个自适应节点i输出为:
第5层:该层的单节点是一个固定节点,计算ANFIS补偿估计模型的补偿估计值总输出为:
ANFIS补偿估计模型中决定隶属函数形状的条件参数和推理规则的结论参数可以通过学习过程进行训练。参数采用线性最小二乘估计算法与梯度下降结合的算法调整参数。ANFIS补偿估计模型每一次迭代中首先输入信号沿网络正向传递直到第4层,此时固定条件参数,采用最小二乘估计算法调节结论参数;信号继续沿网络正向传递直到输出层(即第5层)。ANFIS补偿估计模型将获得的误差信号沿网络反向传播,用梯度法更新条件参数。以此方式对ANFIS补偿估计模型中给定的条件参数进行调整,可以得到结论参数的全局最优点,这样不仅可以降低梯度法中搜索空间的维数,还可以提高ANFIS补偿估计模型参数的收敛速度。
五、电动汽车动力电池SOC检测系统的设计举例
电动汽车动力电池SOC检测系统根据电池SOC检测系统组成部件,系统布置了电流传感器、电压检测电路、负载、环境温度传感器、电池温度传感器、电池组和测控单元的平面布置安装图,其中环境温度传感器布置在被检测电池组工作环境中,电池温度传感器布置在电池组的外壳,整个系统平面布置见图4,通过该系统实现对电动汽车电池管理参数的采集与估计电池SOC值。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (3)

1.一种电动汽车动力电池SOC检测系统,其特征在于:所述检测系统包括电池参数采集平台、电池SOC估计系统,电池参数采集平台采集汽车动力电池组电压、电流以及温度的实时参数,电池SOC估计系统通过这些采集到的参数能够精确估计电池SOC值;
所述电池参数采集平台由电流传感器、电压检测电路、电池组温度传感器、环境温度传感器、负载和测控单元组成,其中测控单元包括单体电池数据采集模块、 CPU处理器、触摸屏、RS232接口、CAN接口、A/D转换单元以及均衡器,该电池参数采集平台采集电池组电压与电流、电池温度和环境温度,并通过CAN总线接口与电动汽车控制系统进行信息交互;
所述电池SOC估计系统包括参数归一化单元、SOM神经网络分类器、多个RBF模糊神经网络估计模型以及ANFIS补偿估计模型,利用SOM 神经网络分类器对影响电池SOC值的特征参数电压、电流和温度的样本归一化参数进行分类,每类样本归一化参数输入对应的RBF模糊神经网络估计模型,对应的RBF模糊神经网络估计模型的输出、环境温度变化量和电池内阻变化量作为ANFIS补偿估计模型的输入,对应的RBF模糊神经网络估计模型输出减去ANFIS补偿估计模型输出作为电池SOC估计值。
2.根据权利要求1所述的一种电动汽车动力电池SOC检测系统,其特征在于:所述SOM神经网络分类器对电动汽车电池电压、电流和温度特征参数进行合理的样本子集划分,不同子集特征参数输入对应RBF模糊神经网络估计模型,实现对电动汽车电池SOC值精确估计。
3.根据权利要求1或2所述的一种电动汽车动力电池SOC检测系统,其特征在于:所述ANFIS估计补偿模型输出值是根据电动汽车电池环境温度变化量、电池内阻变化量和RBF模糊神经网络估计模型输出值的大小对RBF模糊神经网络估计模型输出值进行补偿,提高电动汽车动力电池SOC检测系统对电动汽车电池SOC值估计的精确度。
CN201710548668.3A 2017-07-07 2017-07-07 一种电动汽车动力电池soc检测系统 Active CN107367693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710548668.3A CN107367693B (zh) 2017-07-07 2017-07-07 一种电动汽车动力电池soc检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710548668.3A CN107367693B (zh) 2017-07-07 2017-07-07 一种电动汽车动力电池soc检测系统

Publications (2)

Publication Number Publication Date
CN107367693A CN107367693A (zh) 2017-11-21
CN107367693B true CN107367693B (zh) 2018-05-29

Family

ID=60306064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710548668.3A Active CN107367693B (zh) 2017-07-07 2017-07-07 一种电动汽车动力电池soc检测系统

Country Status (1)

Country Link
CN (1) CN107367693B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226809A (zh) * 2018-04-13 2018-06-29 淮阴工学院 一种多模型并用的电池soc估算方法
CN108896922B (zh) * 2018-06-22 2020-10-30 江西江铃集团新能源汽车有限公司 电动汽车电压平台确定方法
CN110188376A (zh) * 2019-04-12 2019-08-30 汉腾汽车有限公司 一种混合动力汽车动力电池初始电量算法
CN110412470B (zh) * 2019-04-22 2021-09-21 上海博强微电子有限公司 电动汽车动力电池soc估计方法
CN110244237A (zh) * 2019-06-20 2019-09-17 广东志成冠军集团有限公司 海岛电源储能电池估算方法、模型及系统
CN111398832A (zh) * 2020-03-19 2020-07-10 哈尔滨工程大学 一种基于anfis模型的公交车电池soc预测方法
CN111563826A (zh) * 2020-03-27 2020-08-21 青岛理工大学 一种基于电动汽车用电行为的电池信息预测系统及方法
CN114062941A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的荷电状态估算方法、装置及电动车辆
JP2022155231A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 バッテリユニット
CN113655385B (zh) * 2021-10-19 2022-02-08 深圳市德兰明海科技有限公司 锂电池soc估计方法、装置及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253347A (zh) * 2011-06-30 2011-11-23 大连大工安道船舶技术有限责任公司 电动汽车蓄电池soc估算系统
CN106501721A (zh) * 2016-06-03 2017-03-15 湘潭大学 一种基于生物进化的锂电池soc估算方法
CN106918789A (zh) * 2017-05-10 2017-07-04 成都理工大学 一种soc‑soh联合在线实时估计和在线修正方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232758A (ja) * 2007-03-19 2008-10-02 Nippon Soken Inc 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253347A (zh) * 2011-06-30 2011-11-23 大连大工安道船舶技术有限责任公司 电动汽车蓄电池soc估算系统
CN106501721A (zh) * 2016-06-03 2017-03-15 湘潭大学 一种基于生物进化的锂电池soc估算方法
CN106918789A (zh) * 2017-05-10 2017-07-04 成都理工大学 一种soc‑soh联合在线实时估计和在线修正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"电动汽车动力电池剩余电量预测系统的研究";杨三英;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20120531(第5期);C035-221 *

Also Published As

Publication number Publication date
CN107367693A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN107367693B (zh) 一种电动汽车动力电池soc检测系统
CN107422272B (zh) 一种电动汽车动力电池soc智能化检测装置
Yang et al. A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism
WO2021259196A1 (zh) 一种电池组一致性评估方法及系统
CN107436409B (zh) 一种电动汽车动力电池soc智能预测装置
Liu et al. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning
Zhang et al. An improved bidirectional gated recurrent unit method for accurate state-of-charge estimation
CN105116343B (zh) 最小二乘支持向量机的动力电池电荷状态估计方法及系统
Zhang et al. Intelligent state of charge estimation of battery pack based on particle swarm optimization algorithm improved radical basis function neural network
CN108226809A (zh) 一种多模型并用的电池soc估算方法
Zhang et al. State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network
Sheng et al. Small sample state of health estimation based on weighted Gaussian process regression
Ghaeminezhad et al. Review on state of charge estimation techniques of lithium-ion batteries: A control-oriented approach
CN106887877B (zh) 一种基于电池能量状态估计的电池组主动均衡控制系统
Wu et al. The SOC estimation of power Li-Ion battery based on ANFIS model
CN111985156A (zh) 一种预测电池健康状态的方法
Zafar et al. Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles
Li et al. A novel state of charge estimation method of lithium‐ion batteries based on the IWOA‐AdaBoost‐Elman algorithm
CN105807231A (zh) 一种用于蓄电池剩余容量检测的方法及系统
WO2024016496A1 (zh) 一种锂电池soh状态的预估方法和装置
Shen et al. Transfer learning-based state of charge and state of health estimation for Li-ion batteries: A review
CN110188376A (zh) 一种混合动力汽车动力电池初始电量算法
Chen et al. State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine
Zhang et al. Fuzzy-kalman-filter-based short-circuit fault diagnosis design for lithium-ion battery
Ke et al. Compound fault diagnosis method of modular multilevel converter based on improved capsule network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 223100 high tech Industrial Park No. three, East seven street, Hongze District, Jiangsu, A12-2 (Huaiyin Institute of Technology technology transfer center Hongze sub center)

Applicant after: Huaijin Polytechnical College

Address before: 223005 Jiangsu city in Huaian Province, while the economic and Technological Development Zone, Road No. 1

Applicant before: Huaijin Polytechnical College

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190529

Address after: 215 500 No. 201-B1-1, 33 Southeast Avenue, Changshu High-tech Industrial Development Zone, Suzhou City, Jiangsu Province

Patentee after: Suzhou high official position Energy Science Co., Ltd

Address before: 223100 high tech Industrial Park No. three, East seven street, Hongze District, Jiangsu, A12-2 (Huaiyin Institute of Technology technology transfer center Hongze sub center)

Patentee before: Huaijin Polytechnical College

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220520

Address after: No. 88, Tengfei 9th Road, Southwest Airport Economic Development Zone, Shuangliu District, Chengdu, Sichuan 610000

Patentee after: Sichuan xinzhizao Technology Co.,Ltd.

Address before: 215 500 No. 201-B1-1, 33 Southeast Avenue, Changshu High-tech Industrial Development Zone, Suzhou City, Jiangsu Province

Patentee before: SUZHOU QINGYUN ENERGY TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right