CN107367693B - 一种电动汽车动力电池soc检测系统 - Google Patents
一种电动汽车动力电池soc检测系统 Download PDFInfo
- Publication number
- CN107367693B CN107367693B CN201710548668.3A CN201710548668A CN107367693B CN 107367693 B CN107367693 B CN 107367693B CN 201710548668 A CN201710548668 A CN 201710548668A CN 107367693 B CN107367693 B CN 107367693B
- Authority
- CN
- China
- Prior art keywords
- battery
- parameter
- soc
- electric automobile
- rbf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title abstract description 6
- 238000013528 artificial neural network Methods 0.000 claims description 47
- 238000005259 measurement Methods 0.000 claims description 14
- 238000010606 normalization Methods 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 28
- 230000000694 effects Effects 0.000 abstract description 4
- 230000003111 delayed effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 23
- 210000004027 cell Anatomy 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000012549 training Methods 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 210000004205 output neuron Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 239000005955 Ferric phosphate Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229940032958 ferric phosphate Drugs 0.000 description 1
- 210000002364 input neuron Anatomy 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710548668.3A CN107367693B (zh) | 2017-07-07 | 2017-07-07 | 一种电动汽车动力电池soc检测系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710548668.3A CN107367693B (zh) | 2017-07-07 | 2017-07-07 | 一种电动汽车动力电池soc检测系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107367693A CN107367693A (zh) | 2017-11-21 |
CN107367693B true CN107367693B (zh) | 2018-05-29 |
Family
ID=60306064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710548668.3A Active CN107367693B (zh) | 2017-07-07 | 2017-07-07 | 一种电动汽车动力电池soc检测系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107367693B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108226809A (zh) * | 2018-04-13 | 2018-06-29 | 淮阴工学院 | 一种多模型并用的电池soc估算方法 |
CN108896922B (zh) * | 2018-06-22 | 2020-10-30 | 江西江铃集团新能源汽车有限公司 | 电动汽车电压平台确定方法 |
CN110188376A (zh) * | 2019-04-12 | 2019-08-30 | 汉腾汽车有限公司 | 一种混合动力汽车动力电池初始电量算法 |
CN110412470B (zh) * | 2019-04-22 | 2021-09-21 | 上海博强微电子有限公司 | 电动汽车动力电池soc估计方法 |
CN110244237A (zh) * | 2019-06-20 | 2019-09-17 | 广东志成冠军集团有限公司 | 海岛电源储能电池估算方法、模型及系统 |
CN111398832A (zh) * | 2020-03-19 | 2020-07-10 | 哈尔滨工程大学 | 一种基于anfis模型的公交车电池soc预测方法 |
CN111563826A (zh) * | 2020-03-27 | 2020-08-21 | 青岛理工大学 | 一种基于电动汽车用电行为的电池信息预测系统及方法 |
CN114062941A (zh) * | 2020-07-31 | 2022-02-18 | 比亚迪股份有限公司 | 一种动力电池的荷电状态估算方法、装置及电动车辆 |
JP2022155231A (ja) * | 2021-03-30 | 2022-10-13 | 本田技研工業株式会社 | バッテリユニット |
CN113655385B (zh) * | 2021-10-19 | 2022-02-08 | 深圳市德兰明海科技有限公司 | 锂电池soc估计方法、装置及计算机可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253347A (zh) * | 2011-06-30 | 2011-11-23 | 大连大工安道船舶技术有限责任公司 | 电动汽车蓄电池soc估算系统 |
CN106501721A (zh) * | 2016-06-03 | 2017-03-15 | 湘潭大学 | 一种基于生物进化的锂电池soc估算方法 |
CN106918789A (zh) * | 2017-05-10 | 2017-07-04 | 成都理工大学 | 一种soc‑soh联合在线实时估计和在线修正方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232758A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Soken Inc | 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置 |
-
2017
- 2017-07-07 CN CN201710548668.3A patent/CN107367693B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253347A (zh) * | 2011-06-30 | 2011-11-23 | 大连大工安道船舶技术有限责任公司 | 电动汽车蓄电池soc估算系统 |
CN106501721A (zh) * | 2016-06-03 | 2017-03-15 | 湘潭大学 | 一种基于生物进化的锂电池soc估算方法 |
CN106918789A (zh) * | 2017-05-10 | 2017-07-04 | 成都理工大学 | 一种soc‑soh联合在线实时估计和在线修正方法 |
Non-Patent Citations (1)
Title |
---|
"电动汽车动力电池剩余电量预测系统的研究";杨三英;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20120531(第5期);C035-221 * |
Also Published As
Publication number | Publication date |
---|---|
CN107367693A (zh) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107367693B (zh) | 一种电动汽车动力电池soc检测系统 | |
CN107422272B (zh) | 一种电动汽车动力电池soc智能化检测装置 | |
Yang et al. | A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism | |
WO2021259196A1 (zh) | 一种电池组一致性评估方法及系统 | |
CN107436409B (zh) | 一种电动汽车动力电池soc智能预测装置 | |
Liu et al. | State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning | |
Zhang et al. | An improved bidirectional gated recurrent unit method for accurate state-of-charge estimation | |
CN105116343B (zh) | 最小二乘支持向量机的动力电池电荷状态估计方法及系统 | |
Zhang et al. | Intelligent state of charge estimation of battery pack based on particle swarm optimization algorithm improved radical basis function neural network | |
CN108226809A (zh) | 一种多模型并用的电池soc估算方法 | |
Zhang et al. | State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network | |
Sheng et al. | Small sample state of health estimation based on weighted Gaussian process regression | |
Ghaeminezhad et al. | Review on state of charge estimation techniques of lithium-ion batteries: A control-oriented approach | |
CN106887877B (zh) | 一种基于电池能量状态估计的电池组主动均衡控制系统 | |
Wu et al. | The SOC estimation of power Li-Ion battery based on ANFIS model | |
CN111985156A (zh) | 一种预测电池健康状态的方法 | |
Zafar et al. | Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles | |
Li et al. | A novel state of charge estimation method of lithium‐ion batteries based on the IWOA‐AdaBoost‐Elman algorithm | |
CN105807231A (zh) | 一种用于蓄电池剩余容量检测的方法及系统 | |
WO2024016496A1 (zh) | 一种锂电池soh状态的预估方法和装置 | |
Shen et al. | Transfer learning-based state of charge and state of health estimation for Li-ion batteries: A review | |
CN110188376A (zh) | 一种混合动力汽车动力电池初始电量算法 | |
Chen et al. | State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine | |
Zhang et al. | Fuzzy-kalman-filter-based short-circuit fault diagnosis design for lithium-ion battery | |
Ke et al. | Compound fault diagnosis method of modular multilevel converter based on improved capsule network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 223100 high tech Industrial Park No. three, East seven street, Hongze District, Jiangsu, A12-2 (Huaiyin Institute of Technology technology transfer center Hongze sub center) Applicant after: Huaijin Polytechnical College Address before: 223005 Jiangsu city in Huaian Province, while the economic and Technological Development Zone, Road No. 1 Applicant before: Huaijin Polytechnical College |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190529 Address after: 215 500 No. 201-B1-1, 33 Southeast Avenue, Changshu High-tech Industrial Development Zone, Suzhou City, Jiangsu Province Patentee after: Suzhou high official position Energy Science Co., Ltd Address before: 223100 high tech Industrial Park No. three, East seven street, Hongze District, Jiangsu, A12-2 (Huaiyin Institute of Technology technology transfer center Hongze sub center) Patentee before: Huaijin Polytechnical College |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220520 Address after: No. 88, Tengfei 9th Road, Southwest Airport Economic Development Zone, Shuangliu District, Chengdu, Sichuan 610000 Patentee after: Sichuan xinzhizao Technology Co.,Ltd. Address before: 215 500 No. 201-B1-1, 33 Southeast Avenue, Changshu High-tech Industrial Development Zone, Suzhou City, Jiangsu Province Patentee before: SUZHOU QINGYUN ENERGY TECHNOLOGY CO.,LTD. |
|
TR01 | Transfer of patent right |