CN107367310A - 一种基于计算机视觉的河流水位远程监测方法 - Google Patents

一种基于计算机视觉的河流水位远程监测方法 Download PDF

Info

Publication number
CN107367310A
CN107367310A CN201710559521.4A CN201710559521A CN107367310A CN 107367310 A CN107367310 A CN 107367310A CN 201710559521 A CN201710559521 A CN 201710559521A CN 107367310 A CN107367310 A CN 107367310A
Authority
CN
China
Prior art keywords
water gauge
image
region
method based
monitoring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710559521.4A
Other languages
English (en)
Inventor
丁泉龙
谢清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710559521.4A priority Critical patent/CN107367310A/zh
Publication of CN107367310A publication Critical patent/CN107367310A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/04Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by dip members, e.g. dip-sticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于计算机视觉的河流水位远程监测方法,包括以下步骤:星光摄像头获取图像;夜间补光;图像预处理;水尺一次分割;水尺矫正;水尺二次分割;水位刻度识别。本方法工作原理是通过星光摄像头获取河流水尺实时图像,并将图像传输到计算机;对图像进行预处理,提取ROI区域;利用连通区域匹配方法进行水尺定位,实现水尺一次分割;利用霍夫变换直线检测算法矫正一次分割后的水尺;利用霍夫变换直线检测算法对矫正的水尺进行二次分割,得到精细的水尺图像;识别水尺水位线上方第一个数字并计算第一个数字与水位线之间的刻度值,算出水尺水位线刻度值。本发明易于实现、可靠性高、实时性强,可为河流水位检测提供实时可靠的信息。

Description

一种基于计算机视觉的河流水位远程监测方法
技术领域
本发明涉及计算机视觉与图像处理技术领域,具体涉及一种基于计算机视觉的河流水位远程监测方法。
背景技术
随着计算机技术和信息技术的高速发展,计算机视觉与图像识别技术广泛的应用于各个方面,比如车牌识别,条形码识别,人脸识别等。
当前水资源问题已经成为社会和经济发展的重要因素之一,因此建立完善的水资源管理与防灾系统,是现代水利管理的需要。
目前监测河流水位的方法有很多,如浮子式水位计、压力式水位计、电子水尺等,在不同的情况下有着不同的应用。然而,基于计算机视觉的河流水位监测方法有着明显不同于以上方法的优点,一个监控中心可以利用多个摄像头监测多个地点,计算机自动识别摄像头水尺刻度,在水位不正常时弹出警报,监测人员可以查看摄像头画面及时报告。监测人员不用时刻盯着各路摄像画面,也不用亲临河流现场,只要根据报警即可知晓水位异常情况,并实时了解现场状况。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于计算机视觉的河流水位远程监测方法,该方法用于对河流水位进行实时监测,可以通过设置预警,提前做好防灾准备。
本发明的目的可以通过采取如下技术方案达到:
一种基于计算机视觉的河流水位远程监测方法,所述方法包括下列步骤:
S1、利用摄像头获取当前水位图像,将图像传输到计算机;
S2、将图像灰度化,提取感兴趣区域ROI;
S3、利用连通区域匹配方法进行水尺定位,从感兴趣区域ROI分割出水尺图像,即水尺一次分割;
S4、检测水尺图像是否存在倾斜,若存在倾斜则利用霍夫变换直线检测算法矫正一次分割后的水尺图像;
S5、利用霍夫变换直线检测算法对矫正的水尺进行二次分割,得到精细的水尺图像;
S6、识别水尺水位线上方第一个数字并计算第一个数字与水位线之间的刻度值,算出水尺水位线刻度值。
进一步地,所述步骤S1中利用星光摄像头获取水尺图像,若在夜间,补光灯会自动开启,对拍摄环境进行补光。
进一步地,所述步骤S2、将图像灰度化,提取感兴趣区域ROI之后还包括:
对感兴趣区域ROI进行高斯滤波。
进一步地,所述步骤S3具体包括:
S301、通过图像二值化、形态学操作获得感兴趣区域ROI中所有连通区域;
S302、将每个连通区域与水尺分类器匹配,确定水尺所属连通区域;
S303、将水尺所属连通区域分割得到水尺图像。
进一步地,所述水尺分类器是通过提取大量实际水尺图片样本与非水尺图片样本的方向梯度直方图特征,并通过支持向量机SVM分类得到。
进一步地,所述步骤S4具体包括:
S401、利用霍夫变换直线检测算法获取水尺左右边缘方向上的直线,求解水尺偏离垂直方向的角度β;
S402、对水尺图像进行角度为β仿射变换,实现对水尺的矫正。
进一步地,所述求解水尺偏离垂直方向的角度β过程如下:
现场施工保证水尺倾斜角度不超过±15°,将倾斜角度在75°到105°之间的直线角度求和取平均,即为当前水尺角度θ;
通过公式β=θ-90°求解水尺偏离垂直方向的角度β,其中,β大于零表示水尺左偏,β小于零表示水尺右偏。
进一步地,所述步骤S6具体包括:
S601、通过canny边缘检测算法获取水尺图像上的刻度边缘与数字边缘,其中,水尺左半部分,数字区域与“E”区域交替出现,水尺右半部分,白块区域与区域交替出现;
S602、利用边缘信息得到水尺右半部分各个白块以及区域的坐标,筛选出水尺低端第一个完整的区域坐标,第一个完整的区域坐标左移水尺宽度的一半得到第一个完整数字区域的坐标,截取数字区域图像到数字分类器匹配,得到该数字图像所属数字。
S603、一个完整的区域对应实际长度5厘米,数字刻度的单位为分米,令完整的区域在图像中的高为h个像素,令第一个完整数字底端与水尺图像底端距离H个像素,令当前第一个完整数字为N,则当前水位W(单位:厘米)计算公式如下:
进一步地,所述数字分类器是通过提取大量实际数字图片样本与非数字图片样本的HOG特征,并通过支持向量机SVM分类得到。
本发明相对于现有技术具有如下的优点及效果:
1、与传统人工监测相比,基于计算机视觉的河流水位远程检测方法能够实时反应现场情况,因此实时性高;本发明的监测精度在厘米级,相比人眼观测,精度高。
2、与传感器监测相比,基于计算机视觉的河流水位远程检测方法可视化效果好;传感器设备安装难度高,维护成本高,本方法借助城市监控摄像头、水位刻度尺以及上位机程序就能实现水位远程监测,实现简单,维护简单。
3、本发明采用连通域查找以及HOG特征+SVM分类器相结合的方式实现图像中水尺定位、分割、刻度识别,漏检率低,稳定性高。
4、本发明利用水尺先验特征分割水尺上的数字与刻度,鲁棒性强,精度高。
5、相比于现有基于图像处理的水位监测方法,本方法简单,非常适用于城市水利监测,只需要利用城市网络摄像头、水尺以及远端计算机即可实现河流水位远程监测。
附图说明
图1是本发明公开的一种基于计算机视觉的河流水位远程监测方法的流程图;
图2是图像连通区域图;
图3是水尺所属连通区域图;
图4是水尺一次分割结果图;
图5是尺矫正结果图;
图6是水尺二次分割结果图;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本实施例提供了一种基于计算机视觉的河流水位远程监测方法,步骤如图1所示;所述方法具体步骤如下:
步骤S1、利用摄像头获取当前水位图像,将图像传输到计算机;若在夜间,补光灯会自动开启,对拍摄环境进行补光。
具体实施方式中,利用星光摄像头获取水尺图像,并将实时画面传输到计算机,星光摄像头在夜间微弱光照条件下能够获得清晰图像。
其中,为防止郊外夜晚没有任何人造光源并且无月光的情况,补光灯会在低照度情况下自动开启,制造微弱星光环境,保证夜间星光摄像头拍摄清晰画面。
步骤S2、将图像灰度化,提取感兴趣区域ROI;为减少噪声的影响,对ROI进行高斯滤波。
具体实施方式中,以一定的帧率提取视频流中的图像帧,将其灰度化,提取感兴趣区域ROI,高斯滤波。
步骤S3、从ROI分割出水尺图像,即水尺一次分割。
步骤S301、通过图像二值化、形态学操作获得ROI图片中所有连通区域,如图2所示,黑色矩形块为查找到的连通区域;
步骤S302、将每个连通区域与水尺分类器匹配,确定水尺所属连通区域,如图3虚线矩形区域所示;
步骤S303、将水尺所属连通区域分割得到水尺图像,如图4所示;
步骤S4、将步骤S3中得到的水尺图像若存在倾斜,则需要矫正;
步骤S401、利用霍夫变换直线检测算法获取水尺左右边缘方向上的直线。现场施工保证水尺倾斜角度不超过±15°,将倾斜角度在75°到105°之间的直线角度求和取平均,即为当前水尺角度θ。β=θ-90°为水尺偏离垂直方向的角度,β大于零表示水尺左偏,β小于零表示水尺右偏;
步骤S402、对水尺图像进行角度为β仿射变换,实现对水尺的矫正,矫正结果如图5所示;
步骤S5、针对水尺矫正后的图像存在多余背景,对水尺二次分割;利用霍夫变换直线检测算法获取水尺左右边缘直线;通过获取最左与最右直线坐标从而获取精细的水尺图像,二次分割后的结果如图6所示。
步骤S6、水尺刻度识别;
步骤S601、通过canny边缘检测算法获取水尺图像上的刻度边缘与数字边缘;
步骤S602、水尺左半部分,数字区域与“E”区域交替出现;水尺右半部分,白块区域与区域交替出现;利用边缘信息得到水尺右半部分各个白块以及区域的坐标,筛选出水尺低端第一个完整的区域坐标;第一个完整的区域坐标左移水尺宽度的一半得到第一个完整数字区域的坐标;截取数字区域到数字图片分类器匹配,识别该数字图片。
步骤S603、一个完整的区域对应实际长度为5(单位:厘米),数字刻度的单位为分米,令完整的区域在图像中的高为h个像素,令第一个完整数字底端与水尺图像底端距离H个像素,令当前第一个完整数字为N,则当前水位W(单位:厘米)计算公式如下:
综上所述,相比于现有基于图像处理的水位监测方法,本实施例中公开的河流水位远程监测方法操作简单,非常适用于城市水利监测,只需要利用城市网络摄像头、水尺以及远端计算机即可实现河流水位远程监测;本方法采用连通域查找与HOG特征加SVM支持向量机分类相结合的方法定位水尺,识别率高;利用水尺先验特征分割水尺上的数字与刻度,鲁棒性强,精度高。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述方法包括下列步骤:
S1、利用摄像头获取当前水位图像,将图像传输到计算机;
S2、将图像灰度化,提取感兴趣区域ROI;
S3、利用连通区域匹配方法进行水尺定位,从感兴趣区域ROI分割出水尺图像,即水尺一次分割;
S4、检测水尺图像是否存在倾斜,若存在倾斜则利用霍夫变换直线检测算法矫正一次分割后的水尺图像;
S5、利用霍夫变换直线检测算法对矫正的水尺进行二次分割,得到精细的水尺图像;
S6、识别水尺水位线上方第一个数字并计算第一个数字与水位线之间的刻度值,算出水尺水位线刻度值。
2.根据权利要求1所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述步骤S1中利用星光摄像头获取水尺图像,若在夜间,补光灯会自动开启,对拍摄环境进行补光。
3.根据权利要求1所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述步骤S2、将图像灰度化,提取感兴趣区域ROI之后还包括:
对感兴趣区域ROI进行高斯滤波。
4.根据权利要求1所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述步骤S3具体包括:
S301、通过图像二值化、形态学操作获得感兴趣区域ROI中所有连通区域;
S302、将每个连通区域与水尺分类器匹配,确定水尺所属连通区域;
S303、将水尺所属连通区域分割得到水尺图像。
5.根据权利要求4所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,
所述水尺分类器是通过提取大量实际水尺图片样本与非水尺图片样本的方向梯度直方图特征,并通过支持向量机SVM分类得到。
6.根据权利要求1所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述步骤S4具体包括:
S401、利用霍夫变换直线检测算法获取水尺左右边缘方向上的直线,求解水尺偏离垂直方向的角度β;
S402、对水尺图像进行角度为β仿射变换,实现对水尺的矫正。
7.根据权利要求1所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述求解水尺偏离垂直方向的角度β过程如下:
现场施工保证水尺倾斜角度不超过±15°,将倾斜角度在75°到105°之间的直线角度求和取平均,即为当前水尺角度θ;
通过公式β=θ-90°求解水尺偏离垂直方向的角度β,其中,β大于零表示水尺左偏,β小于零表示水尺右偏。
8.根据权利要求1所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述步骤S6具体包括:
S601、通过canny边缘检测算法获取水尺图像上的刻度边缘与数字边缘,其中,水尺左半部分,数字区域与“E”区域交替出现,水尺右半部分,白块区域与区域交替出现;
S602、利用边缘信息得到水尺右半部分各个白块以及区域的坐标,筛选出水尺低端第一个完整的区域坐标,第一个完整的区域坐 标左移水尺宽度的一半得到第一个完整数字区域的坐标,截取数字区域图像到数字分类器匹配,得到该数字图像所属数字;
S603、一个完整的区域对应实际长度5厘米,数字刻度的单位为分米,令完整的区域在图像中的高为h个像素,令第一个完整数字底端与水尺图像底端距离H个像素,令当前第一个完整数字为N,则当前水位W(单位:厘米)计算公式如下:
9.根据权利要求8所述的一种基于计算机视觉的河流水位远程监测方法,其特征在于,所述数字分类器是通过提取大量实际数字图片样本与非数字图片样本的HOG特征,并通过支持向量机SVM分类得到。
CN201710559521.4A 2017-07-11 2017-07-11 一种基于计算机视觉的河流水位远程监测方法 Pending CN107367310A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710559521.4A CN107367310A (zh) 2017-07-11 2017-07-11 一种基于计算机视觉的河流水位远程监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710559521.4A CN107367310A (zh) 2017-07-11 2017-07-11 一种基于计算机视觉的河流水位远程监测方法

Publications (1)

Publication Number Publication Date
CN107367310A true CN107367310A (zh) 2017-11-21

Family

ID=60306112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710559521.4A Pending CN107367310A (zh) 2017-07-11 2017-07-11 一种基于计算机视觉的河流水位远程监测方法

Country Status (1)

Country Link
CN (1) CN107367310A (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366204A (zh) * 2018-03-05 2018-08-03 山东锋士信息技术有限公司 一种嵌入水位流量计算模型的智能监控摄像机
CN108423136A (zh) * 2018-02-27 2018-08-21 力鸿智信(北京)科技有限公司 一种船舶载货重量确定方法及装置
CN108596221A (zh) * 2018-04-10 2018-09-28 江河瑞通(北京)技术有限公司 标尺读数的图像识别方法及设备
CN108759973A (zh) * 2018-04-28 2018-11-06 南京昊控软件技术有限公司 一种水位测量方法
CN108921165A (zh) * 2018-06-21 2018-11-30 江苏南水水务科技有限公司 基于水尺图像的水位识别方法
CN108961305A (zh) * 2018-07-05 2018-12-07 四创科技有限公司 一种基于图像识别的海浪爬坡监测方法
CN109443480A (zh) * 2018-11-02 2019-03-08 南京邮电大学 基于图像处理的水位标尺定位及水位测量方法
CN109508630A (zh) * 2018-09-27 2019-03-22 杭州朗澈科技有限公司 一种基于人工智能识别水尺水位的方法
CN109522889A (zh) * 2018-09-03 2019-03-26 中国人民解放军国防科技大学 一种基于图像分析的水文尺水位识别估算方法
CN109827554A (zh) * 2018-08-02 2019-05-31 水利部交通运输部国家能源局南京水利科学研究院 一种基于视频所测河流表面流速结合水力模型的河流流量测验方法
CN110223341A (zh) * 2019-06-14 2019-09-10 北京国信华源科技有限公司 一种基于图像识别的智能水位监测方法
CN110287953A (zh) * 2019-05-20 2019-09-27 湖北九感科技有限公司 水位自动识别方法及装置
CN110849444A (zh) * 2019-11-20 2020-02-28 武汉世纪水元科技股份有限公司 一种基于机器视觉的视频水位测量方法
CN111024181A (zh) * 2019-11-20 2020-04-17 武汉世纪水元科技股份有限公司 针对复杂环境的视觉传感水位测量系统
CN111220235A (zh) * 2018-11-23 2020-06-02 杭州海康威视数字技术股份有限公司 水位监测方法及装置
CN111382680A (zh) * 2020-02-26 2020-07-07 浙江大华技术股份有限公司 一种闸门监测方法、终端及计算机可读存储介质
CN111476785A (zh) * 2020-04-20 2020-07-31 四创科技有限公司 基于位置记录的夜间红外反光水尺检测方法
CN112013921A (zh) * 2019-05-30 2020-12-01 杭州海康威视数字技术股份有限公司 一种基于水位尺测量图像获取水位信息的方法、装置和系统
CN112308009A (zh) * 2020-11-12 2021-02-02 湖北九感科技有限公司 水尺水位识别方法及装置
CN112362900A (zh) * 2020-10-30 2021-02-12 天地伟业技术有限公司 一种无人值守的水位流速监测摄像机及监测方法
CN112784753A (zh) * 2021-01-22 2021-05-11 西安电子科技大学 一种基于机器视觉的中小自然河流水文水位检测方法
CN113167628A (zh) * 2018-12-03 2021-07-23 比奥-拉德实验室公司 液位确定
CN113223073A (zh) * 2021-04-16 2021-08-06 北京科技大学 一种河道水位评估方法
CN113537129A (zh) * 2021-07-29 2021-10-22 河南浩宇空间数据科技有限责任公司 一种基于机器视觉的水位标尺定位及水位计算方法
CN113822105A (zh) * 2020-07-07 2021-12-21 湖北亿立能科技股份有限公司 基于svm水标尺在线二分类器的人工智能水位监测系统
CN114353718A (zh) * 2021-12-28 2022-04-15 同济大学 一种机场道面水膜厚度的高精度监测装置
CN115439861A (zh) * 2022-09-30 2022-12-06 北京中盛益华科技有限公司 一种基于ocr的水尺识别方法
CN115909298A (zh) * 2022-09-26 2023-04-04 杭州数聚链科技有限公司 一种基于机器视觉的货船水尺标度读取方法
CN116452595A (zh) * 2023-06-19 2023-07-18 烟台金丝猴食品科技有限公司 一种基于图像处理的控制方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586956A (zh) * 2009-06-18 2009-11-25 上海交通大学 基于单目摄像机的河流水位监测方法
CN102494733A (zh) * 2011-12-12 2012-06-13 西安电子科技大学 基于图像处理的水位监测系统及方法
CN105160288A (zh) * 2015-06-30 2015-12-16 浙江海洋学院 一种水尺图像分析方法
CN106557764A (zh) * 2016-11-02 2017-04-05 江西理工大学 一种基于二进制编码字符水尺和图像处理的水位识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586956A (zh) * 2009-06-18 2009-11-25 上海交通大学 基于单目摄像机的河流水位监测方法
CN102494733A (zh) * 2011-12-12 2012-06-13 西安电子科技大学 基于图像处理的水位监测系统及方法
CN105160288A (zh) * 2015-06-30 2015-12-16 浙江海洋学院 一种水尺图像分析方法
CN106557764A (zh) * 2016-11-02 2017-04-05 江西理工大学 一种基于二进制编码字符水尺和图像处理的水位识别方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
冯伟兴,梁洪,王臣业: "《Visual C++数字图像模式识别典型案例详解》", 31 July 2012, 机械工业出版社 *
杨杰,张翔: "《视频目标检测和跟踪及其应用》", 31 August 2012, 上海交通大学出版社出版社 *
陈刚等: "《Matlab在数字图像处理中的应用》", 31 January 2016, 清华大学出版社 *
麦好: "《机器学习实践指南 案例应用解析》", 31 July 2016, 机械工业出版社 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423136B (zh) * 2018-02-27 2019-11-05 力鸿智信(北京)科技有限公司 一种船舶载货重量确定方法及装置
CN108423136A (zh) * 2018-02-27 2018-08-21 力鸿智信(北京)科技有限公司 一种船舶载货重量确定方法及装置
CN108366204A (zh) * 2018-03-05 2018-08-03 山东锋士信息技术有限公司 一种嵌入水位流量计算模型的智能监控摄像机
CN108596221A (zh) * 2018-04-10 2018-09-28 江河瑞通(北京)技术有限公司 标尺读数的图像识别方法及设备
CN108596221B (zh) * 2018-04-10 2020-12-01 江河瑞通(北京)技术有限公司 标尺读数的图像识别方法及设备
CN108759973A (zh) * 2018-04-28 2018-11-06 南京昊控软件技术有限公司 一种水位测量方法
CN108759973B (zh) * 2018-04-28 2020-03-31 南京昊控软件技术有限公司 一种水位测量方法
CN108921165A (zh) * 2018-06-21 2018-11-30 江苏南水水务科技有限公司 基于水尺图像的水位识别方法
CN108921165B (zh) * 2018-06-21 2022-04-22 江苏南水水务科技有限公司 基于水尺图像的水位识别方法
CN108961305B (zh) * 2018-07-05 2021-04-27 四创科技有限公司 一种基于图像识别的海浪爬坡监测方法
CN108961305A (zh) * 2018-07-05 2018-12-07 四创科技有限公司 一种基于图像识别的海浪爬坡监测方法
CN109827554A (zh) * 2018-08-02 2019-05-31 水利部交通运输部国家能源局南京水利科学研究院 一种基于视频所测河流表面流速结合水力模型的河流流量测验方法
CN109827554B (zh) * 2018-08-02 2021-01-22 水利部交通运输部国家能源局南京水利科学研究院 一种基于视频所测河流表面流速结合水力模型的河流流量测验方法
CN109522889A (zh) * 2018-09-03 2019-03-26 中国人民解放军国防科技大学 一种基于图像分析的水文尺水位识别估算方法
CN109508630B (zh) * 2018-09-27 2021-12-03 杭州朗澈科技有限公司 一种基于人工智能识别水尺水位的方法
CN109508630A (zh) * 2018-09-27 2019-03-22 杭州朗澈科技有限公司 一种基于人工智能识别水尺水位的方法
CN109443480A (zh) * 2018-11-02 2019-03-08 南京邮电大学 基于图像处理的水位标尺定位及水位测量方法
CN111220235A (zh) * 2018-11-23 2020-06-02 杭州海康威视数字技术股份有限公司 水位监测方法及装置
CN111220235B (zh) * 2018-11-23 2022-03-08 杭州海康威视数字技术股份有限公司 水位监测方法及装置
CN113167628A (zh) * 2018-12-03 2021-07-23 比奥-拉德实验室公司 液位确定
CN110287953B (zh) * 2019-05-20 2021-02-26 湖北九感科技有限公司 水位自动识别方法及装置
CN110287953A (zh) * 2019-05-20 2019-09-27 湖北九感科技有限公司 水位自动识别方法及装置
CN112013921A (zh) * 2019-05-30 2020-12-01 杭州海康威视数字技术股份有限公司 一种基于水位尺测量图像获取水位信息的方法、装置和系统
CN110223341A (zh) * 2019-06-14 2019-09-10 北京国信华源科技有限公司 一种基于图像识别的智能水位监测方法
CN110223341B (zh) * 2019-06-14 2024-05-28 北京国信华源科技有限公司 一种基于图像识别的智能水位监测方法
CN110849444A (zh) * 2019-11-20 2020-02-28 武汉世纪水元科技股份有限公司 一种基于机器视觉的视频水位测量方法
CN111024181A (zh) * 2019-11-20 2020-04-17 武汉世纪水元科技股份有限公司 针对复杂环境的视觉传感水位测量系统
CN111382680B (zh) * 2020-02-26 2023-04-25 浙江大华技术股份有限公司 一种闸门监测方法、终端及计算机可读存储介质
CN111382680A (zh) * 2020-02-26 2020-07-07 浙江大华技术股份有限公司 一种闸门监测方法、终端及计算机可读存储介质
CN111476785A (zh) * 2020-04-20 2020-07-31 四创科技有限公司 基于位置记录的夜间红外反光水尺检测方法
CN111476785B (zh) * 2020-04-20 2023-04-07 四创科技有限公司 基于位置记录的夜间红外反光水尺检测方法
CN113822105B (zh) * 2020-07-07 2024-04-19 湖北亿立能科技股份有限公司 基于svm水标尺在线二分类器的人工智能水位监测系统
CN113822105A (zh) * 2020-07-07 2021-12-21 湖北亿立能科技股份有限公司 基于svm水标尺在线二分类器的人工智能水位监测系统
CN112362900A (zh) * 2020-10-30 2021-02-12 天地伟业技术有限公司 一种无人值守的水位流速监测摄像机及监测方法
CN112308009A (zh) * 2020-11-12 2021-02-02 湖北九感科技有限公司 水尺水位识别方法及装置
CN112308009B (zh) * 2020-11-12 2024-02-27 湖北九感科技有限公司 水尺水位识别方法及装置
CN112784753A (zh) * 2021-01-22 2021-05-11 西安电子科技大学 一种基于机器视觉的中小自然河流水文水位检测方法
CN113223073B (zh) * 2021-04-16 2022-04-19 北京科技大学 一种河道水位评估方法
CN113223073A (zh) * 2021-04-16 2021-08-06 北京科技大学 一种河道水位评估方法
CN113537129A (zh) * 2021-07-29 2021-10-22 河南浩宇空间数据科技有限责任公司 一种基于机器视觉的水位标尺定位及水位计算方法
CN114353718A (zh) * 2021-12-28 2022-04-15 同济大学 一种机场道面水膜厚度的高精度监测装置
CN115909298A (zh) * 2022-09-26 2023-04-04 杭州数聚链科技有限公司 一种基于机器视觉的货船水尺标度读取方法
CN115439861A (zh) * 2022-09-30 2022-12-06 北京中盛益华科技有限公司 一种基于ocr的水尺识别方法
CN116452595A (zh) * 2023-06-19 2023-07-18 烟台金丝猴食品科技有限公司 一种基于图像处理的控制方法及设备
CN116452595B (zh) * 2023-06-19 2023-08-18 烟台金丝猴食品科技有限公司 一种基于图像处理的控制方法及设备

Similar Documents

Publication Publication Date Title
CN107367310A (zh) 一种基于计算机视觉的河流水位远程监测方法
US11854272B2 (en) Hazard detection from a camera in a scene with moving shadows
Srinivasa Vision-based vehicle detection and tracking method for forward collision warning in automobiles
CN106128115B (zh) 一种基于双摄像机检测道路交通信息的融合方法
CN101030256B (zh) 车辆图像分割方法和装置
JP4930046B2 (ja) 路面判別方法および路面判別装置
WO2017080102A1 (zh) 飞行装置、飞行控制系统及方法
US20070041614A1 (en) Road marking recognition apparatus and method
CN103235938A (zh) 车牌检测与识别的方法及系统
CN103366156A (zh) 道路结构检测和跟踪
CN101383004A (zh) 一种红外和可见光图像相结合的乘客目标检测方法
CN107220976B (zh) 一种航拍公路图像的公路定位方法
US20180173982A1 (en) System and method for 1d root association providing sparsity guarantee in image data
CN102915433A (zh) 基于字符组合的车牌定位和识别方法
CN109099929A (zh) 基于场景指纹的智能车定位装置及方法
CN103021179A (zh) 基于实时监控视频中的安全带检测方法
KR101236223B1 (ko) 차선 검출 방법
WO2023020251A1 (en) Methods, systems, and computer-readable storage mediums for detecting state of signal light
CN106803073B (zh) 基于立体视觉目标的辅助驾驶系统及方法
CN114511592A (zh) 一种基于rgbd相机和bim系统的人员轨迹追踪方法及系统
US10115028B2 (en) Method and device for classifying an object in an image
CN105282542B (zh) 一种视频图像中异常条纹的检测方法及系统
CN106340031A (zh) 一种检测运动物体的方法和装置
CN108460348A (zh) 基于三维模型的道路目标检测方法
CN111754550A (zh) 一种农机运动状态下动态障碍物检测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171121

WD01 Invention patent application deemed withdrawn after publication