CN107359225B - 一种增强发光辐射效率的led外延生长方法 - Google Patents

一种增强发光辐射效率的led外延生长方法 Download PDF

Info

Publication number
CN107359225B
CN107359225B CN201710682360.8A CN201710682360A CN107359225B CN 107359225 B CN107359225 B CN 107359225B CN 201710682360 A CN201710682360 A CN 201710682360A CN 107359225 B CN107359225 B CN 107359225B
Authority
CN
China
Prior art keywords
layer
gan
kept
passed
reaction cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710682360.8A
Other languages
English (en)
Other versions
CN107359225A (zh
Inventor
徐平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangneng Hualei Optoelectrical Co Ltd
Original Assignee
Xiangneng Hualei Optoelectrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangneng Hualei Optoelectrical Co Ltd filed Critical Xiangneng Hualei Optoelectrical Co Ltd
Priority to CN201710682360.8A priority Critical patent/CN107359225B/zh
Publication of CN107359225A publication Critical patent/CN107359225A/zh
Application granted granted Critical
Publication of CN107359225B publication Critical patent/CN107359225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本申请公开了一种增强发光辐射效率的LED外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长AlGaN:Zn薄垒层、交替生长InxGa(1‑x)N/GaN发光层、生长AlGaN:Mg薄垒层、生长P型AlGaN层、生长掺杂Mg的P型GaN层,降温冷却。通过本发明,解决现有LED外延生长中存在的电子漏电流及量子阱发光区辐射效率低下的问题。

Description

一种增强发光辐射效率的LED外延生长方法
技术领域
本申请涉及LED外延生长技术领域,具体地说,涉及一种增强发光辐射效率的LED外延生长方法。
背景技术
LED作为照明光源与现有常规照明光源相比具有能耗低、寿命长、体积小、发光效率高、无污染以及色彩丰富等优点。目前国内生产LED的规模正在逐步扩大,市场对LED的需求及LED光效的需求都在与日俱增。
由于目前LED的量子效率依然不高,致使LED的发光效率无法得到突破性提高,成为业界最为关注的问题。
目前LED中量子阱多使用氮化镓材料,氮化镓材料为钎锌矿结构,由于材料本身的自极化效应以及晶格不匹配的问题,导致产生量子限制斯塔克效应,随着驱动电流增加,电子漏电流现象变得更加严重,空穴注入水平不高,量子阱发光区辐射效率低下,严重阻碍了LED发光效率的提高,影响LED的节能效果。
因此,针对上述问题,本发明提供一种增强发光辐射效率的LED外延生长方法,解决现有LED外延生长中存在的电子漏电流及量子阱发光区辐射效率低下的问题。
发明内容
有鉴于此,本申请所要解决的技术问题是提供了一种增强发光辐射效率的LED外延生长方法,解决现有LED外延生长中存在的电子漏电流及量子阱发光区辐射效率低下的问题。
为了解决上述技术问题,本申请有如下技术方案:一种增强发光辐射效率的LED外延生长方法,依次包括:
采用金属化学气相沉积法MOCVD,在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底5min-10min;
生长低温缓冲层GaN、并对所述低温缓冲层GaN进行腐蚀,形成不规则岛型;
生长不掺杂GaN层;
生长掺杂Si的N型GaN层;
保持反应腔压力800mbar-950mbar,保持温度750℃-900℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及1000sccm-1500sccm的DMZn,生长15nm-35nm的掺杂Zn的AlGaN层,形成AlGaN:Zn薄垒层,其中,Zn掺杂浓度为1E17atoms/cm3-5E17atoms/cm3
交替生长InxGa(1-x)N/GaN发光层;
保持反应腔压力600mbar-850mbar,保持温度650℃-750℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及800sccm-1050sccm的CP2Mg,生长15nm-35nm的掺杂Mg的AlGaN层,形成AlGaN:Mg薄垒层,其中,Mg掺杂浓度为3E17atoms/cm3-6E17atoms/cm3
生长P型AlGaN层;
生长掺杂Mg的P型GaN层;
降温至650℃-680℃,保温20min-30min,关闭加热系统、关闭给气系统,随炉冷却。
优选地,生长低温缓冲层GaN、并对所述低温缓冲层GaN进行腐蚀,形成不规则岛型,进一步为:
降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa及100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN;
升高温度到1000℃-1100℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2,保温300s-500s,将低温缓冲层GaN腐蚀成不规则岛形。
优选地,所述生长不掺杂GaN层,进一步为:
升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa及100L/min-130L/min的H2,持续生长2μm-4μm的不掺杂GaN层。
优选地,所述生长掺杂Si的N型GaN层,进一步为:
保持反应腔压力300mbar-600mbar,保持温度1000℃-1200℃,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,其中,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,其中,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
优选地,所述交替生长InxGa(1-x)N/GaN发光层,进一步为:
保持反应腔压力300mbar-400mbar、保持温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn及100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,其中,x=0.20-0.25,发光波长为450nm-455nm;
升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa及100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复交替生长InxGa(1-x)N层和GaN层,得到InxGa(1-x)N/GaN发光层,其中,InxGa(1-x)N层和GaN层的交替生长周期数为7-15个。
优选地,所述生长P型AlGaN层,进一步为:
保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl及1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,其中,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
优选地,所述生长掺Mg的P型GaN层,进一步为:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2及1000sccm-3000sccm的Cp2Mg,持续生长50nm-200nm的掺Mg的P型GaN层,其中,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
优选地,所述降温冷却,进一步为:
降温至650℃-680℃,保温20min-30min,关闭加热系统、关闭给气系统,随炉冷却。
与现有技术相比,本申请所述的方法,达到了如下效果:
本发明增强发光辐射效率的LED外延生长方法中,在InGaN/GaN量子阱结构的两侧,分别生长AlGaN:Zn薄垒层和AlGaN:Mg薄垒层结构,来增强LED的发光辐射效率,从而提高LED的发光效率。靠近P型AlGaN层的9,可以提供较多空穴进入量子阱区域,提高空穴迁移率,推动空穴注入量子阱发光区,提高整个量子阱区域的空穴注入水平,增强空穴与电子的辐射效率;靠近N型GaN层的AlGaN:Zn薄垒层具有较大的禁带宽度,从而使得量子垒的有效势垒高度得到提高,能有效束缚并阻挡了电子从量子阱内溢出,抑制电子漏电流的产生,提升电子和空穴在量子阱内的注入效率,进而增强发光辐射效率,使LED的发光效率得到提升。
当然,实施本发明的任一产品必不特定需要同时达到以上所述的所有技术效果。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明实施例1中所述增强发光辐射效率的LED外延生长方法的流程示意图;
图2为本发明实施例1中所述增强发光辐射效率的LED外延层的结构示意图;
图3为本发明实施例2中所述增强发光辐射效率的LED外延生长方法的流程示意图;
图4为本发明实施例2中所述增强发光辐射效率的LED外延层的结构示意图;
图5为常规LED外延生长方法的流程示意图;
图6为常规LED外延层的结构示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,金属有机源二甲基锌(DMZn)作为锌源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在70mbar到900mbar(mbar为气压单位)之间。本发明解决了现有技术中LED外延生长中存在的电子漏电流及LED内量子效率低的问题。
实施例1
如图1和图2所示,本实施例所述增强发光辐射效率的LED外延生长方法,包括如下步骤:
步骤101、采用金属化学气相沉积法MOCVD,在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底5min-10min。
步骤102、生长低温缓冲层GaN、并对所述低温缓冲层GaN进行腐蚀,形成不规则岛型。
步骤103、生长不掺杂GaN层。
步骤104、生长掺杂Si的N型GaN层。
步骤105、生长AlGaN:Zn薄垒层:保持反应腔压力800mbar-950mbar,保持温度750℃-900℃,通入流量为50000sccm-55000sccm(sccm为毫升每分钟)的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及1000sccm-1500sccm的DMZn,生长15-35nm的掺杂Zn的AlGaN层,形成AlGaN:Zn薄垒层,其中,Zn掺杂浓度为1E17atoms/cm3-5E17atoms/cm3(1E17代表10的17次方,也就是1017,5E17代表5×1017,atoms/cm3为浓度单位,以下表示方式以此类推)。
步骤106、交替生长InxGa(1-x)N/GaN发光层。
InxGa(1-x)N/GaN发光层,即为InGaN/GaN量子阱。
步骤107、生长AlGaN:Mg薄垒层:保持反应腔压力600mbar-850mbar,保持温度650℃-750℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及800sccm-1050sccm的CP2Mg,生长15nm-35nm的掺杂Mg的AlGaN层,形成AlGaN:Mg薄垒层,其中,Mg掺杂浓度为3E17atoms/cm3-6E17atoms/cm3
步骤108、生长P型AlGaN层。
步骤109、生长掺杂Mg的P型GaN层。
步骤110、降温至650℃-680℃,保温20min-30min,关闭加热系统、关闭给气系统,随炉冷却。
目前LED的内部量子效率依然不高,随驱动电流增加,电子漏电想象更加严重,致使LED发光效率下降。如采用常规LED外延生长工艺制备外延片,InGaN/GaN量子阱结构由于内建极化电场的存在,能带出现弯曲,弯曲的GaN导带使得量子垒的有效高度严重降低,从而对电子的束缚阻挡能力也大幅下降,随着电流注入密度的增加,电子漏电流变多,内量子效率出现严重的衰减。本实施例通过在InGaN/GaN量子阱结构的两侧,分别生长AlGaN:Zn薄垒层和AlGaN:Mg薄垒层结构,来增强LED的发光辐射效率,从而提高LED的发光效率。靠近P型AlGaN层一侧的AlGaN:Mg薄垒层,可以提供较多空穴进入量子阱区域,提高空穴迁移率,推动空穴注入量子阱发光区,提高整个量子阱区域的空穴注入水平,增强空穴与电子的辐射效率;靠近N型GaN层一侧的AlGaN:Zn薄垒层具有较大的禁带宽度,从而使得量子垒的有效势垒高度得到提高,能有效束缚并阻挡了电子从量子阱内溢出,抑制电子漏电流的产生,提升电子和空穴在量子阱内的注入效率,进而增强发光辐射效率,使LED的发光效率得到提升。
如图2所示,为利用本实施例所述的增强发光辐射效率的LED外延生长方法制备得到的LED外延层的结构示意图,该LED包括如下结构:衬底101、低温缓冲层GaN102、不掺杂GaN层103、掺杂Si的N型GaN层104、AlGaN:Zn薄垒层105、InxGa(1-x)N/GaN发光层106(其中,包括交叠的:InxGa(1-x)N层161和GaN层162)、AlGaN:Mg薄垒层P107、AlGaN层108及掺杂Mg的P型GaN层109。
实施例2
本实施例具体描述了整体生长LED外延层的具体内容,如图3和图4所示,本实施例所述增强发光辐射效率的LED外延生长方法,包括如下步骤:
步骤201、处理蓝宝石衬底:向放置有衬底的金属有机化学气相沉积系统的反应腔内,在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底5min-10min。
步骤202、生长低温缓冲层GaN:降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa及100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
升高温度到1000℃-1100℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2,保温300s-500s,将低温缓冲层GaN腐蚀成不规则岛形。
步骤203、生长不掺杂GaN层:升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa及100L/min-130L/min的H2,持续生长2μm-4μm的不掺杂GaN层。
步骤204、生长掺杂Si的N型GaN层:保持反应腔压力300mbar-600mbar,保持温度1000℃-1200℃,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,其中,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,其中,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
步骤205、生长AlGaN:Zn薄垒层:保持反应腔压力800mbar-950mbar,保持温度750℃-900℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及1000sccm-1500sccm的DMZn,生长15-35nm的掺杂Zn的AlGaN层,形成AlGaN:Zn薄垒层,其中,Zn掺杂浓度为1E17atoms/cm3-5E17atoms/cm3
步骤206、交替生长InxGa(1-x)N/GaN发光层:保持反应腔压力300mbar-400mbar、保持温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn及100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,其中,x=0.20-0.25,发光波长为450nm-455nm。
升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa及100L/min-130L/min的N2,生长8nm-15nm的GaN层。重复交替生长InxGa(1-x)N层和GaN层,得到InxGa(1-x)N/GaN发光层,其中,InxGa(1-x)N层和GaN层的交替生长周期数为7-15个。
步骤207、所述生长AlGaN:Mg薄垒层:保持反应腔压力600mbar-850mbar,保持温度650℃-750℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及800sccm-1050sccm的CP2Mg,生长15nm-35nm的掺杂Mg的AlGaN层,形成AlGaN:Mg薄垒层,其中,Mg掺杂浓度为3E17atoms/cm3-6E17atoms/cm3
步骤208、生长P型AlGaN层:保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl及1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,其中,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
步骤209、生长掺杂Mg的P型GaN层:保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2及1000sccm-3000sccm的Cp2Mg,持续生长50nm-200nm的掺Mg的P型GaN层,其中,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
步骤210、降温冷却:降温至650℃-680℃,保温20min-30min,关闭加热系统、关闭给气系统,随炉冷却得到发光二极管。
如图4所示,为利用本实施例所述的增强发光辐射效率的LED外延生长方法制备得到的LED外延层的结构示意图,该LED包括如下结构:衬底201、低温缓冲层GaN202、不掺杂GaN层203、掺杂Si的N型GaN层204、AlGaN:Zn薄垒层205、InxGa(1-x)N/GaN发光层206(其中,包括交叠的:InxGa(1-x)N层261和GaN层262)、AlGaN:Mg薄垒层207、P型AlGaN层208及掺杂Mg的P型GaN层209。
本实施例所述的增强发光辐射效率的LED外延生长方法,在InGaN/GaN量子阱结构的两侧,分别生长AlGaN:Zn薄垒层和AlGaN:Mg薄垒层结构,来增强LED的发光辐射效率,从而提高LED的发光效率。
实施例3
以下提供一种常规LED外延生长方法作为本发明的对比实施例。
如图5和图6所示,常规LED外延生长方法,包括如下步骤:
步骤301、处理蓝宝石衬底:向放置有衬底的金属有机化学气相沉积系统的反应腔内,在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底5min-10min。
步骤302、生长低温缓冲层GaN:降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa及100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN。
升高温度到1000℃-1100℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2,保温300s-500s,将低温缓冲层GaN腐蚀成不规则岛形。
步骤303、生长不掺杂GaN层:升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa及100L/min-130L/min的H2,持续生长2μm-4μm的不掺杂GaN层。
步骤304、生长掺杂Si的N型GaN层:保持反应腔压力300mbar-600mbar,保持温度1000℃-1200℃,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,其中,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,其中,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
步骤305、交替生长InxGa(1-x)N/GaN发光层:保持反应腔压力300mbar-400mbar、保持温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn及100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,其中,x=0.20-0.25,发光波长为450nm-455nm。
升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa及100L/min-130L/min的N2,生长8nm-15nm的GaN层。重复交替生长InxGa(1-x)N层和GaN层,得到InxGa(1-x)N/GaN发光层,其中,InxGa(1-x)N层和GaN层的交替生长周期数为7-15个。
步骤306、生长P型AlGaN层:保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl及1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,其中,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
步骤307、生长掺杂Mg的P型GaN层:保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2及1000sccm-3000sccm的Cp2Mg,持续生长50nm-200nm的掺Mg的P型GaN层,其中,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
步骤308、降温冷却:降温至650℃-680℃,保温20min-30min,关闭加热系统、关闭给气系统,随炉冷却得到发光二极管。
如图6所示,利用常规技术外延生长方法制备得到的LED外延层,由下至上包括如下结构:衬底301、低温缓冲层GaN302、不掺杂GaN层303、掺杂Si的N型GaN层304、InxGa(1-x)N/GaN发光层305(其中,包括交叠的:InxGa(1-x)N层351和GaN层352)、P型AlGaN层306及掺杂Mg的P型GaN层307。
根据常规的LED外延生长方法(对比实施例3的方法)制备样品1,根据本专利描述的方法制备样品2;样品1和样品2外延生长方法的不同点在于:样品2生长有AlGaN:Zn薄垒层和AlGaN:Mg薄垒层,其它外延层生长条件完全一样;样品1和样品2在相同的前工艺条件下镀ITO层约150nm,相同的条件下镀Cr/Pt/Au电极约1500nm,相同的条件下镀保护层SiO2约100nm,然后在相同的条件下将样品研磨切割成635μm*635μm(25mil*25mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选100颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。以下表1为样品1、2产品电性参数的比较表。
表1样品1、2产品电性参数的比较表
由表1的数据可得出以下结论:
将积分球获得的数据进行分析对比,请参考表1,从表1中可以看出,
本专利提供的生长方法LED漏电流变小且抗静电性能得到提升,发光效率得到明显提升,其它各项LED电性参数变优,实验数据证明了本专利方案能提升LED产品发光效率的可行性。
通过以上各实施例可知,本申请存在的有益效果是:
本发明增强发光辐射效率的LED外延生长方法中,在InGaN/GaN量子阱结构的两侧,分别生长AlGaN:Zn薄垒层和AlGaN:Mg薄垒层结构,来增强LED的发光辐射效率,从而提高LED的发光效率。靠近P型AlGaN层一侧的AlGaN:Mg薄垒层,可以提供较多空穴进入量子阱区域,提高空穴迁移率,推动空穴注入量子阱发光区,提高整个量子阱区域的空穴注入水平,增强空穴与电子的辐射效率;靠近N型GaN层一侧的AlGaN:Zn薄垒层具有较大的禁带宽度,从而使得量子垒的有效势垒高度得到提高,能有效束缚并阻挡了电子从量子阱内溢出,抑制电子漏电流的产生,提升电子和空穴在量子阱内的注入效率,进而增强发光辐射效率,使LED的发光效率得到提升。
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (6)

1.一种增强发光辐射效率的LED外延生长方法,依次包括:
采用金属化学气相沉积法MOCVD,在1000℃-1100℃的H2气氛下,通入100L/min-130L/min的H2,保持反应腔压力100mbar-300mbar,处理蓝宝石衬底5min-10min;
生长低温缓冲层GaN、并对所述低温缓冲层GaN进行腐蚀,形成不规则岛型;
生长不掺杂GaN层;
生长掺杂Si的N型GaN层;
保持反应腔压力800mbar-950mbar,保持温度750℃-900℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及1000sccm-1500sccm的DMZn,生长15nm-35nm的掺杂Zn的AlGaN层,形成AlGaN:Zn薄垒层,其中,Zn掺杂浓度为1E17atoms/cm3-5E17atoms/cm3
交替生长InxGa(1-x)N/GaN发光层;
保持反应腔压力600mbar-850mbar,保持温度650℃-750℃,通入流量为50000sccm-55000sccm的NH3、50sccm-70sccm的TMGa、90L/min-110L/min的H2、1200sccm-1400sccm的TMAl及800sccm-1050sccm的CP2Mg,生长15nm-35nm的掺杂Mg的AlGaN层,形成AlGaN:Mg薄垒层,其中,Mg掺杂浓度为3E17atoms/cm3-6E17atoms/cm3
生长P型AlGaN层:保持反应腔压力200mbar-400mbar、温度900℃-950℃,通入流量为50000sccm-70000sccm的NH3、30sccm-60sccm的TMGa、100L/min-130L/min的H2、100sccm-130sccm的TMAl及1000sccm-1300sccm的Cp2Mg,持续生长50nm-100nm的P型AlGaN层,其中,Al掺杂浓度1E20atoms/cm3-3E20atoms/cm3,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
生长掺杂Mg的P型GaN层;
降温至650℃-680℃,保温20min-30min,关闭加热系统、关闭给气系统,随炉冷却。
2.根据权利要求1所述增强发光辐射效率的LED外延生长方法,其特征在于,生长低温缓冲层GaN、并对所述低温缓冲层GaN进行腐蚀,形成不规则岛型,进一步为:
降温至500℃-600℃,保持反应腔压力300mbar-600mbar,通入流量为10000sccm-20000sccm的NH3、50sccm-100sccm的TMGa及100L/min-130L/min的H2,在蓝宝石衬底上生长厚度为20nm-40nm的低温缓冲层GaN;
升高温度到1000℃-1100℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、100L/min-130L/min的H2,保温300s-500s,将低温缓冲层GaN腐蚀成不规则岛形。
3.根据权利要求1所述增强发光辐射效率的LED外延生长方法,其特征在于,所述生长不掺杂GaN层,进一步为:
升高温度到1000℃-1200℃,保持反应腔压力300mbar-600mbar,通入流量为30000sccm-40000sccm的NH3、200sccm-400sccm的TMGa及100L/min-130L/min的H2,持续生长2μm-4μm的不掺杂GaN层。
4.根据权利要求1所述增强发光辐射效率的LED外延生长方法,其特征在于,所述生长掺杂Si的N型GaN层,进一步为:
保持反应腔压力300mbar-600mbar,保持温度1000℃-1200℃,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及20sccm-50sccm的SiH4,持续生长3μm-4μm掺杂Si的N型GaN,其中,Si掺杂浓度5E18atoms/cm3-1E19atoms/cm3
保持反应腔压力、温度不变,通入流量为30000sccm-60000sccm的NH3、200sccm-400sccm的TMGa、100L/min-130L/min的H2及2sccm-10sccm的SiH4,持续生长200nm-400nm掺杂Si的N型GaN,其中,Si掺杂浓度5E17atoms/cm3-1E18atoms/cm3
5.根据权利要求1所述增强发光辐射效率的LED外延生长方法,其特征在于,所述交替生长InxGa(1-x)N/GaN发光层,进一步为:
保持反应腔压力300mbar-400mbar、保持温度700℃-750℃,通入流量为50000sccm-70000sccm的NH3、20sccm-40sccm的TMGa、1500sccm-2000sccm的TMIn及100L/min-130L/min的N2,生长掺杂In的2.5nm-3.5nm的InxGa(1-x)N层,其中,x=0.20-0.25,发光波长为450nm-455nm;
升高温度至750℃-850℃,保持反应腔压力300mbar-400mbar,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa及100L/min-130L/min的N2,生长8nm-15nm的GaN层;
重复交替生长InxGa(1-x)N层和GaN层,得到InxGa(1-x)N/GaN发光层,其中,InxGa(1-x)N层和GaN层的交替生长周期数为7-15个。
6.根据权利要求1所述增强发光辐射效率的LED外延生长方法,其特征在于,所述生长掺Mg的P型GaN层,进一步为:
保持反应腔压力400mbar-900mbar、温度950℃-1000℃,通入流量为50000sccm-70000sccm的NH3、20sccm-100sccm的TMGa、100L/min-130L/min的H2及1000sccm-3000sccm的Cp2Mg,持续生长50nm-200nm的掺Mg的P型GaN层,其中,Mg掺杂浓度1E19atoms/cm3-1E20atoms/cm3
CN201710682360.8A 2017-08-10 2017-08-10 一种增强发光辐射效率的led外延生长方法 Active CN107359225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710682360.8A CN107359225B (zh) 2017-08-10 2017-08-10 一种增强发光辐射效率的led外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710682360.8A CN107359225B (zh) 2017-08-10 2017-08-10 一种增强发光辐射效率的led外延生长方法

Publications (2)

Publication Number Publication Date
CN107359225A CN107359225A (zh) 2017-11-17
CN107359225B true CN107359225B (zh) 2019-04-26

Family

ID=60287135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710682360.8A Active CN107359225B (zh) 2017-08-10 2017-08-10 一种增强发光辐射效率的led外延生长方法

Country Status (1)

Country Link
CN (1) CN107359225B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598233A (zh) * 2018-04-18 2018-09-28 湘能华磊光电股份有限公司 一种led外延层生长方法
CN110957403B (zh) * 2019-12-24 2022-09-30 湘能华磊光电股份有限公司 一种led外延结构生长方法
CN115241336B (zh) * 2022-09-19 2022-12-30 江西兆驰半导体有限公司 外延片、外延片生长工艺及发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253182A (zh) * 2013-06-26 2014-12-31 南通同方半导体有限公司 一种具有非对称垒层的蓝光led外延结构
CN104253181A (zh) * 2013-06-26 2014-12-31 南通同方半导体有限公司 一种具有多重垒层led外延结构
CN105206722A (zh) * 2015-11-03 2015-12-30 湘能华磊光电股份有限公司 一种led外延生长方法
CN105932118A (zh) * 2016-06-13 2016-09-07 湘能华磊光电股份有限公司 提高空穴注入的led外延生长方法
CN106711298A (zh) * 2017-02-16 2017-05-24 湘能华磊光电股份有限公司 一种发光二极管外延生长方法及发光二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253182A (zh) * 2013-06-26 2014-12-31 南通同方半导体有限公司 一种具有非对称垒层的蓝光led外延结构
CN104253181A (zh) * 2013-06-26 2014-12-31 南通同方半导体有限公司 一种具有多重垒层led外延结构
CN105206722A (zh) * 2015-11-03 2015-12-30 湘能华磊光电股份有限公司 一种led外延生长方法
CN105932118A (zh) * 2016-06-13 2016-09-07 湘能华磊光电股份有限公司 提高空穴注入的led外延生长方法
CN106711298A (zh) * 2017-02-16 2017-05-24 湘能华磊光电股份有限公司 一种发光二极管外延生长方法及发光二极管

Also Published As

Publication number Publication date
CN107359225A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
CN107507891B (zh) 提高内量子效率的led外延生长方法
CN105869999B (zh) Led外延生长方法
CN107359225B (zh) 一种增强发光辐射效率的led外延生长方法
CN106409999B (zh) 一种led外延超晶格生长方法
CN107452841B (zh) 基于石墨烯的led外延生长方法
CN108550665A (zh) 一种led外延结构生长方法
CN106328777A (zh) 一种发光二极管应力释放层的外延生长方法
CN105870270B (zh) Led外延超晶格生长方法
CN108598233A (zh) 一种led外延层生长方法
CN106684218B (zh) 一种提升发光效率的led外延生长方法
CN105895753B (zh) 提高led发光效率的外延生长方法
CN107946416B (zh) 一种提高发光效率的led外延生长方法
CN106328780B (zh) 基于AlN模板的发光二极管衬底外延生长的方法
CN106206884B (zh) Led外延p层生长方法
CN105869994B (zh) 一种超晶格层的生长方法及含此结构的led外延结构
CN106711298B (zh) 一种发光二极管外延生长方法及发光二极管
CN106374021A (zh) 基于蓝宝石图形化衬底的led外延生长方法
CN107564999B (zh) 一种提升发光效率的led外延生长方法
CN107134517B (zh) 一种led外延生长方法
CN107068817B (zh) Led外延生长方法
CN105870269B (zh) 提高空穴注入的发光二极管外延生长方法
CN112941490A (zh) Led外延量子阱生长方法
CN105845788B (zh) 一种led电流扩展层外延生长方法
CN112687770A (zh) Led外延生长方法
CN106784195B (zh) 一种提高发光二极管品质的外延生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant