CN107356282A - Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations - Google Patents

Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations Download PDF

Info

Publication number
CN107356282A
CN107356282A CN201710483450.4A CN201710483450A CN107356282A CN 107356282 A CN107356282 A CN 107356282A CN 201710483450 A CN201710483450 A CN 201710483450A CN 107356282 A CN107356282 A CN 107356282A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710483450.4A
Other languages
Chinese (zh)
Inventor
周东华
张峻峰
何潇
卢晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201710483450.4A priority Critical patent/CN107356282A/en
Publication of CN107356282A publication Critical patent/CN107356282A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention discloses bullet train robust interval Transducer-fault Detecting Method in the case of a kind of resolution limitations, belongs to field of signal processing, and this method includes establishing soft-sensing model step, designs robust Residual Generation device step, design error failure inspection policies step.The present invention can real time on-line monitoring sensor states, ensure the steady safe operation of bullet train, meet the practical application request of interval Transducer fault detection.

Description

Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations
Technical field
The invention belongs to signal processing technology field, specific one kind is related in the case of resolution limitations between bullet train robust Have a rest Transducer-fault Detecting Method.
Background technology
Numerous sensors are included in bullet train, and working environment residing for these sensors is severe, intermittent fault occurs Situation is more universal, and huge potential safety hazard is constituted to bullet train safe operation.
Technology for Transducer Fault Detection can be monitored using various redundancies to sensor, be that raising sensor can By the effective ways of property, extensive concern is obtained.But existing robust sensor fault detection method heavy dependence model is not true Qualitative framework, and need to obtain the prior informations such as corresponding uncertainty structure and structural parameters.In addition, existing method is generally only Permanent sensors failure can be detected, the detection of interval sensor fault can not be carried out in the case of resolution limitations.
The content of the invention
For above-mentioned technical problem present in prior art, the present invention proposes high speed in the case of a kind of resolution limitations Train robust interval Transducer-fault Detecting Method, real time on-line monitoring sensor states, ensure that bullet train is steadily transported safely OK, it is reasonable in design, the deficiencies in the prior art are overcome, there is good effect.
To achieve these goals, the present invention adopts the following technical scheme that:
Bullet train robust interval Transducer-fault Detecting Method, comprises the following steps in the case of a kind of resolution limitations:
Step 1:Establish soft-sensing model
Shown in the state equation of bullet train critical system such as formula (1):
X (k+1)=(Ac(k)+Aδ(k))x(k)+(Bc(k)+Bδ(k))u(k)+w(k), (1);
Wherein,For system mode;For control input;For process noise;For procedure parameter;It is not true for procedure parameter It is qualitative;
Resolution ratio isSensor actual measurement equation such as formula (2) shown in:
Y (k)=(Cc(k)+Cδ(k))x(k)+v(k)+Δ(y(k))+f(k), (2);
Wherein,(meet for actual measurement output);Lured for resolution ratio Lead uncertainty;For measurement noise;For measurement parameter;For measurement parameter not Certainty;
Shown in interval sensor fault equation such as formula (3):
Wherein,For interval sensor fault;For the pattern of i-th of intermittent fault;For The time of origin of i intermittent fault;For the extinction time of i-th of intermittent fault;Γ () is unit jump function.
According to above-mentioned state equation and actual measurement establishing equation soft-sensing model such as formula (4):
Y (k)=(Cc(k)+Cδ(k))x(k)+v(k)+Δ(Y(k))+f(k), (4);
Wherein,Exported for hard measurement;Induced for hard measurement uncertain.
Step 2:Design robust Residual Generation device
Step 2.1:State estimator initial value is set according to formula (5):
Step 2.2:According to formula (6) computing system state average:
μx(k)=Ac(k-1)μx(k-1)+Bc(k-1)u(k-1), (6);
Step 2.3:According to formula (7) computing system state second moment:
Step 2.4:Intermediate variable is calculated according to formula (8), formula (9):
Wherein αl, l ∈ { 1,2,3,4,5 } are positive count;For on k-1 moment state estimation error covariances Boundary;
Step 2.5:State estimator gain is calculated according to formula (10):
Kx(k)=H (k) Cc(k)TQ(k)-1, (10);
Step 2.6:The state estimation error covariance upper bound is calculated according to formula (11):
Step 2.7:State estimation is calculated according to formula (12), (13):
Step 2.8:Residual error is calculated according to formula (14):
Step 3:Design error failure inspection policies
Step 3.1:Fault detect statistic is calculated according to formula (15)
TD(k)=r (k)Tr(k), (15);
Step 3.2:Failure determination threshold value is calculated according to formula (16)
Step 3.3:Set fault detection logic
If TD(k-1)≤JD(k-1),TD(k) > JD(k), then the k moment breaks down, fault warning indicatrix Ia=1,
If TD(k-1) > JD(k-1),TD(k)≤JD(k), then k moment failure vanishes, trouble shooting indicatrix Ir=1.It is excellent Selection of land, in step 1, specifically comprise the following steps:
Step 1.1:Calculate preferable measurement output average
Step 1.2:Calculate preferable measurement output second moment
Step 1.3:Calculate hard measurement output
Wherein,
Step 1.4:Calculate hard measurement and induce uncertain second moment
Wherein,
Advantageous effects caused by the present invention:
The present invention can real time on-line monitoring sensor states, ensure the steady safe operation of bullet train, meet interval pass The practical application request of sensor fault detect.
Brief description of the drawings
Fig. 1 is the flow of bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations of the present invention Figure.
Fig. 2 is the structure of bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations of the present invention Figure.
Fig. 3 is No. 1, and sensor resolution induction is uncertain and hard measurement induces probabilistic square curve map.
Fig. 4 is No. 2, and sensor resolution induction is uncertain and hard measurement induces probabilistic square curve map.
Fig. 5 is the testing result schematic diagram that intermittent fault occurs for No. 1 sensor in the present invention.
Fig. 6 is the testing result schematic diagram that intermittent fault occurs for No. 2 sensors in the present invention.
Fig. 7 is No. 1 and No. 2 sensors while the testing result schematic diagram that intermittent fault occurs in the present invention.
Embodiment
Below in conjunction with the accompanying drawings and embodiment is described in further detail to the present invention:
Bullet train robust interval Transducer-fault Detecting Method in the case of a kind of resolution limitations, its flow such as Fig. 1 institutes Show, its structure is as shown in Fig. 2 specifically comprise the following steps:
Step 1:Establish soft-sensing model
Shown in the state equation of bullet train critical system such as formula (1):
X (k+1)=(Ac(k)+Aδ(k))x(k)+(Bc(k)+Bδ(k))u(k)+w(k), (1);
Wherein,For system mode;For control input;For process noise;For procedure parameter;It is not true for procedure parameter It is qualitative.
Resolution ratio isSensor actual measurement equation such as formula (2) shown in:
Y (k)=(Cc(k)+Cδ(k))x(k)+v(k)+Δ(y(k))+f(k), (2);
Wherein,(meet for actual measurement output);Lured for resolution ratio Uncertainty is led, its square curve is as shown in Figure 3, Figure 4;For measurement noise;For measurement parameter;It is uncertain for measurement parameter.
Shown in interval sensor fault equation such as formula (3):
Wherein,For interval sensor fault;For the pattern of i-th of intermittent fault;For The time of origin of i intermittent fault;For the extinction time of i-th of intermittent fault;Γ () is unit jump function.
Above-mentioned stochastic variable meets following condition:
Initial system state x (0) average isCovariance is P0, second moment Σ0;Noise w (k), v (k) average It is zero, covariance matrix is respectively Σw(k), Σv(k);Parameter uncertainty Aδ(k),Bδ(k),Cδ(k) average is zero, covariance Matrix is respectively
Subscript (j) represents the jth dimension component of vector in the present invention.
According to above-mentioned state equation and actual measurement establishing equation soft-sensing model such as formula (4):
Y (k)=(Cc(k)+Cδ(k))x(k)+v(k)+Δ(Y(k))+f(k), (4);
Wherein,Exported for hard measurement;Uncertain, its equal Fang Qu is induced for hard measurement Line is as shown in Figure 3, Figure 4.
Circular is:
Step 1.1:Calculate preferable measurement output average
Step 1.2:Calculate preferable measurement output second moment
Step 1.3:Calculate hard measurement output
Wherein,
Step 1.4:Calculate hard measurement and induce uncertain second moment
Wherein,
Step 2:Design robust Residual Generation device
Step 2.1:State estimator initial value is set according to formula (5):
Step 2.2:According to formula (6) computing system state average:
μx(k)=Ac(k-1)μx(k-1)+Bc(k-1)u(k-1), (6);
Step 2.3:According to formula (7) computing system state second moment:
Step 2.4:Intermediate variable is calculated according to formula (8), formula (9):
Wherein αl, l ∈ { 1,2,3,4,5 } are positive count.
Step 2.5:State estimator gain is calculated according to formula (10):
Kx(k)=H (k) Cc(k)TQ(k)-1, (10);
Step 2.6:The state estimation error covariance upper bound is calculated according to formula (11):
Step 2.7:State estimation is calculated according to formula (12), (13):
Step 2.8:Residual error is calculated according to formula (14):
Step 3:Design error failure inspection policies
Step 3.1:Fault detect statistic is calculated according to formula (15)
TD(k)=r (k)Tr(k), (15);
Step 3.2:Failure determination threshold value is calculated according to formula (16)
Step 3.3:Set fault detection logic
If TD(k-1)≤JD(k-1),TD(k) > JD(k), then the k moment breaks down, fault warning indicatrix Ia=1,
If TD(k-1) > JD(k-1),TD(k)≤JD(k), then k moment failure vanishes, trouble shooting indicatrix Ir=1.
Testing result is as shown in Fig. 5, Fig. 6, Fig. 7.
Certainly, described above is not limitation of the present invention, and the present invention is also not limited to the example above, this technology neck The variations, modifications, additions or substitutions that the technical staff in domain is made in the essential scope of the present invention, it should also belong to the present invention's Protection domain.

Claims (2)

1. bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations, it is characterised in that:Including as follows Step:
Step 1:Establish soft-sensing model
Shown in the state equation of bullet train critical system such as formula (1):
X (k+1)=(Ac(k)+Aδ(k))x(k)+(Bc(k)+Bδ(k))u(k)+w(k), (1);
Wherein,For system mode;For control input;For process noise;For procedure parameter;It is not true for procedure parameter It is qualitative;
Resolution ratio isSensor actual measurement equation such as formula (2) shown in:
Y (k)=(Cc(k)+Cδ(k))x(k)+v(k)+Δ(y(k))+f(k), (2);
Wherein,(meet for actual measurement output);For resolution ratio induction not Certainty;For measurement noise;For measurement parameter;Do not known for measurement parameter Property;
Shown in interval sensor fault equation such as formula (3):
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;infin;</mi> </munderover> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>o</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>-</mo> <mi>&amp;Gamma;</mi> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Wherein,For interval sensor fault;For the pattern of i-th of intermittent fault;For i-th The time of origin of intermittent fault;For the extinction time of i-th of intermittent fault;Γ () is unit jump function;
According to above-mentioned state equation and actual measurement establishing equation soft-sensing model such as formula (4):
Y (k)=(Cc(k)+Cδ(k))x(k)+v(k)+Δ(Y(k))+f(k), (4);
Wherein,Exported for hard measurement;Induced for hard measurement uncertain;
Step 2:Design robust Residual Generation device
Step 2.1:State estimator initial value is set according to formula (5):
Step 2.2:According to formula (6) computing system state average:
μx(k)=Ac(k-1)μx(k-1)+Bc(k-1)u(k-1), (6);
Step 2.3:According to formula (7) computing system state second moment:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <msub> <mi>A</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>A</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <msub> <mi>B</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>B</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&amp;mu;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mi>u</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msub> <mi>B</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msup> <msub> <mi>&amp;mu;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mi>T</mi> </msup> <msub> <mi>A</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Step 2.4:Intermediate variable is calculated according to formula (8), formula (9):
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>C</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mi>u</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msub> <mi>B</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;mu;</mi> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mi>u</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msub> <mi>B</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>B</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>B</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>C</mi> <mi>&amp;delta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>5</mn> </msub> <mo>)</mo> </mrow> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <mrow> <mo>(</mo> <msup> <msub> <mi>&amp;alpha;</mi> <mi>l</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>t</mi> <mi>r</mi> <mo>(</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>&amp;Delta;</mi> <mrow> <mo>(</mo> <mi>Y</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mo>&amp;Sigma;</mo> <mrow> <mi>&amp;Delta;</mi> <mrow> <mo>(</mo> <mi>Y</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <msub> <mi>n</mi> <mi>y</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>n</mi> <mi>y</mi> </msub> </mrow> </msub> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Wherein αl, l ∈ { 1,2,3,4,5 } are positive count;For the k-1 moment state estimation error covariances upper bound;
Step 2.5:State estimator gain is calculated according to formula (10):
Kx(k)=H (k) Cc(k)TQ(k)-1, (10);
Step 2.6:The state estimation error covariance upper bound is calculated according to formula (11):
Step 2.7:State estimation is calculated according to formula (12), (13):
<mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>Y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>B</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
<mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Step 2.8:Residual error is calculated according to formula (14):
<mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>C</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Step 3:Design error failure inspection policies
Step 3.1:Fault detect statistic is calculated according to formula (15)
TD(k)=r (k)Tr(k), (15);
Step 3.2:Failure determination threshold value is calculated according to formula (16)
Step 3.3:Set fault detection logic
If TD(k-1)≤JD(k-1),TD(k) > JD(k), then the k moment breaks down, fault warning indicatrix Ia=1,
If TD(k-1) > JD(k-1),TD(k)≤JD(k), then k moment failure vanishes, trouble shooting indicatrix Ir=1.
2. bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations according to claim 1, It is characterized in that:In step 1, specifically comprise the following steps:
Step 1.1:Calculate preferable measurement output average
Step 1.2:Calculate preferable measurement output second moment
Step 1.3:Calculate hard measurement output
Wherein,
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mo>(</mo> <msqrt> <mfrac> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> </msqrt> <mo>(</mo> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> <mo>-</mo> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>w</mi> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;Phi;</mi> <mo>(</mo> <mfrac> <mrow> <mi>w</mi> <mo>-</mo> <mi>x</mi> </mrow> <msqrt> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> <mo>-</mo> <mi>&amp;Phi;</mi> <mo>(</mo> <mfrac> <mrow> <mi>v</mi> <mo>-</mo> <mi>x</mi> </mrow> <msqrt> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Step 1.4:Calculate hard measurement and induce uncertain second moment
Wherein,
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>-</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mo>(</mo> <mi>x</mi> <mo>-</mo> <mn>2</mn> <mi>z</mi> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msqrt> <mfrac> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> </msqrt> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <mn>2</mn> <mi>z</mi> <mo>+</mo> <mi>w</mi> <mo>)</mo> </mrow> <msqrt> <mfrac> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> </msqrt> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>w</mi> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>}</mo> <mo>)</mo> <mo>&amp;times;</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;Phi;</mi> <mo>(</mo> <mfrac> <mrow> <mi>w</mi> <mo>-</mo> <mi>x</mi> </mrow> <msqrt> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> <mo>-</mo> <mi>&amp;Phi;</mi> <mo>(</mo> <mfrac> <mrow> <mi>v</mi> <mo>-</mo> <mi>x</mi> </mrow> <msqrt> <mrow> <mi>y</mi> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> 3
CN201710483450.4A 2017-06-23 2017-06-23 Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations Pending CN107356282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710483450.4A CN107356282A (en) 2017-06-23 2017-06-23 Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710483450.4A CN107356282A (en) 2017-06-23 2017-06-23 Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations

Publications (1)

Publication Number Publication Date
CN107356282A true CN107356282A (en) 2017-11-17

Family

ID=60273644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710483450.4A Pending CN107356282A (en) 2017-06-23 2017-06-23 Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations

Country Status (1)

Country Link
CN (1) CN107356282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170955A (en) * 2017-12-28 2018-06-15 山东科技大学 Consider robust state monitoring and the fault detection method of random sensor saturation effect
CN108345711A (en) * 2018-01-09 2018-07-31 山东科技大学 Based on event driven EMU robust sensor intermittent fault detection method
CN110017857A (en) * 2019-04-04 2019-07-16 广东工业大学 Nonlinear transducer method for diagnosing faults based on adaptive learning and neural network

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110191635A1 (en) * 2010-01-29 2011-08-04 Honeywell International Inc. Noisy monitor detection and intermittent fault isolation
CN102436179A (en) * 2011-11-25 2012-05-02 中国电力科学研究院 Design method of robustness fault detection filter of linear uncertain system
CN103776480A (en) * 2014-01-29 2014-05-07 清华大学 Small-fault detection method and device based on multiple moving average
CN104360679A (en) * 2014-10-21 2015-02-18 南京航空航天大学 Train suspension system fault diagnosis and fault-tolerant control method based on dynamic actuator
CN104697807A (en) * 2015-03-24 2015-06-10 清华大学 Intermittent fault detection method for high-speed train pantograph
CN105511454A (en) * 2016-01-20 2016-04-20 浙江大学 Method for detecting industrial control loop time varying oscillation behaviors
CN106325264A (en) * 2016-11-04 2017-01-11 山东科技大学 False separability evaluation method for flight control system of unmanned aerial vehicle
CN106525466A (en) * 2016-10-14 2017-03-22 清华大学 Robust filtering method and system for a key part of motor train unit braking system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110191635A1 (en) * 2010-01-29 2011-08-04 Honeywell International Inc. Noisy monitor detection and intermittent fault isolation
CN102436179A (en) * 2011-11-25 2012-05-02 中国电力科学研究院 Design method of robustness fault detection filter of linear uncertain system
CN103776480A (en) * 2014-01-29 2014-05-07 清华大学 Small-fault detection method and device based on multiple moving average
CN104360679A (en) * 2014-10-21 2015-02-18 南京航空航天大学 Train suspension system fault diagnosis and fault-tolerant control method based on dynamic actuator
CN104697807A (en) * 2015-03-24 2015-06-10 清华大学 Intermittent fault detection method for high-speed train pantograph
CN105511454A (en) * 2016-01-20 2016-04-20 浙江大学 Method for detecting industrial control loop time varying oscillation behaviors
CN106525466A (en) * 2016-10-14 2017-03-22 清华大学 Robust filtering method and system for a key part of motor train unit braking system
CN106325264A (en) * 2016-11-04 2017-01-11 山东科技大学 False separability evaluation method for flight control system of unmanned aerial vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鄢镕易: "一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法", 《自动化学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108170955A (en) * 2017-12-28 2018-06-15 山东科技大学 Consider robust state monitoring and the fault detection method of random sensor saturation effect
CN108170955B (en) * 2017-12-28 2021-08-27 山东科技大学 Robust state monitoring and fault detection method considering saturation effect of random sensor
CN108345711A (en) * 2018-01-09 2018-07-31 山东科技大学 Based on event driven EMU robust sensor intermittent fault detection method
CN110017857A (en) * 2019-04-04 2019-07-16 广东工业大学 Nonlinear transducer method for diagnosing faults based on adaptive learning and neural network

Similar Documents

Publication Publication Date Title
CN107272651B (en) A kind of Robust Detection Method of Braking System for Multiple Units interval multiplying property sensor fault
CN103776480B (en) Small fault detection method based on repeatedly rolling average and device
CN107356282A (en) Bullet train robust interval Transducer-fault Detecting Method in the case of resolution limitations
CN109027704A (en) Pepe monitoring system and monitoring method based on microstructured optical fibers distributed sensing
CN106096243B (en) A kind of water supply network leakage failure based on adjoint matrix reversely sources method
CN108205311A (en) A kind of event triggering transmission Fault Estimation method of the time-varying system based on Unknown Input Observer technology
CN107704695A (en) A kind of full-scale quantitative Diagnosis method of housing washer defect
CN104458173B (en) Steel framework structure mutational damage recognition method and system
CN107100674A (en) The recognition methods of the pseudo- data of calibration experiment in mining gas sensor Monitoring Data
CN108345711A (en) Based on event driven EMU robust sensor intermittent fault detection method
CN104764992A (en) Hardware Trojan detection method based on bypass analysis
CN103754335A (en) Ship draught and attitude robust real-time measurement system and method thereof
CN104931255A (en) Method for evaluating whether fault feature parameter of gearbox good or bad
CN104933871A (en) Method and system for detecting traffic vehicles
Park et al. Security of cyber-physical systems in the presence of transient sensor faults
CN206095564U (en) Vibration test detecting system
CN103743920A (en) Subway train speed measurement method and device on basis of single sensor
CN103983692A (en) Damage alarming method for retaining wall structure system
CN103759740B (en) Gyro failure autonomous diagnostic method of inspector in static state
CN105044786B (en) Pipe robot very low frequencies signal supervisory instrument based on quadrature coil sensor
CN107703740A (en) A kind of robust interval sensor fault diagnosis method of bullet train critical system
CN106649951A (en) Axle speed measurement-based train speed calculation method
CN104875735A (en) Intermittent fault detection method and system of ATO (automatic train operation) controlled high-speed train brake system
Yang et al. Enhanced resilient sensor attack detection using fusion interval and measurement history
CN105092274A (en) Container in-transit state abnormity discrimination method based on multi-sensor perception

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171117