CN107340166A - 氧化铝陶瓷成分标准物质及其制备方法 - Google Patents

氧化铝陶瓷成分标准物质及其制备方法 Download PDF

Info

Publication number
CN107340166A
CN107340166A CN201710611959.2A CN201710611959A CN107340166A CN 107340166 A CN107340166 A CN 107340166A CN 201710611959 A CN201710611959 A CN 201710611959A CN 107340166 A CN107340166 A CN 107340166A
Authority
CN
China
Prior art keywords
aluminium oxide
oxide ceramics
standard substance
reference materials
standard reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710611959.2A
Other languages
English (en)
Inventor
冀克俭
赵晓刚
邓卫华
李艳玲
高岩立
巩琛
邵鸿飞
龚维
李颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Non Metallic Material Research Institute
Original Assignee
Shandong Non Metallic Material Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Non Metallic Material Research Institute filed Critical Shandong Non Metallic Material Research Institute
Priority to CN201710611959.2A priority Critical patent/CN107340166A/zh
Publication of CN107340166A publication Critical patent/CN107340166A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Glass Compositions (AREA)

Abstract

本发明属于化学计量技术领域。以氧化铝陶瓷的基本元素构成为设计依据,以拟薄水铝石为主体,由几种梯度分布的掺杂金属元素的硝酸盐为添加,采用溶胶凝胶法合成工艺,干燥烧结制备。本发明涉及的氧化铝陶瓷成分分析标准物质,为一组掺杂Fe、La、Y、Mg元素的α‑Al2O3粉末,掺杂元素的质量分数分别为Fe2O3:0.5%~4%,La2O3:0.5%~4%,Y2O3:0.5%~4%,MgO:0.5%~4%,间隔不小于0.5%。成分可设计性强,结构疏松,粉体粒径和元素分布均匀,均匀性、稳定性好,元素覆盖面广,适用于氧化铝陶瓷成分分析时仪器校准及方法评价,为氧化铝陶瓷配方设计提供实验数据支持。

Description

氧化铝陶瓷成分标准物质及其制备方法
技术领域
本发明属于化学计量技术领域,涉及标准物质制备技术,特别涉及氧化铝陶瓷成分化学成分标准物质的制备技术。
背景技术
氧化铝具有机械强度高、硬度大、耐高温、化学稳定性好等优异的物理化学特性,被广泛应用在冶金、化工、电子、国防、航天及核工业等高科技领域。
目前制备氧化铝粉体的方法主要有胆碱化铝水解法、硫酸铝铵热解法、碳酸铝铵热解法、异丙醇铝水解法、高纯铝活化水解法。胆碱化铝水解法、硫酸铝铵热解法、碳酸铝铵热解法、高纯铝活化水解法均是通过首先形成前驱体沉淀,然后再进行高温煅烧获得氧化铝,但这些前驱体粒度小,吸附能力强,因此易引入杂质,同时高温煅烧过程中颗粒易团聚,影响最终产品质量(王伟,翟佳,江琦,超细氧化铝的制备及应用研究进展,广州化工,2012,40(8))。
张美湘等在“溶胶-凝胶法制备α-Al2O3微晶陶瓷的研究”(《玻璃与搪瓷》2003,31(1))介绍的制备方法是以一水氧化铝为原料,采用溶胶-凝胶法,经搅拌分散、胶溶、凝胶以及凝胶干燥过程制备了α-Al2O3微晶陶瓷的前驱体,热处理得到α-Al2O3微晶陶瓷。通过TG(DTG)-DTA和XRD等分析测试手段,详细考察了胶溶剂、pH值、固含量等工艺参数对α-Al2O3微晶陶瓷性能的影响,得到了合适的工艺参数。
马艳红等在“拟薄水铝石溶胶-凝胶过程的影响因素研究”(《轻金属》2009(06))介绍了以拟薄水铝石为原料,研究溶胶凝胶过程的影响因素,初始固含、加酸量、温度、胶凝剂加入量对凝胶稳定时间都有影响,如果时间太短,凝胶中各成分分散不均,会造成偏析,如果时间太长,影响凝胶质量,拟薄水铝石的凝胶时间通常在(7~8)分钟效果较为理想。
现有文献报道的研究关注的是氧化铝材料的合成与性能,追求提高纯度与物料均匀性,对杂质元素成分的预期掺杂(成分标准物质)与含量控制的研究未见报道。
发明内容
本发明的目的是根据氧化铝陶瓷的化学成分分析的需要,提供一种含有预期掺杂元素的氧化铝粉体,作为氧化铝陶瓷化学元素定量分析的标准物质;本发明的同时提供该标准物质的制备方法。
本发明的目的是这样实现的,以氧化铝陶瓷的基本元素构成为设计依据,以拟薄水铝石为主体,由几种梯度分布的、不同含量的掺杂金属元素的硝酸盐为添加构成氧化铝陶瓷成分分析标准物质,采用溶胶凝胶法合成工艺,干燥烧结得到预期化学成分含量的氧化铝陶瓷成分分析标准物质。
本发明涉及的氧化铝陶瓷成分分析标准物质,为一组掺杂Fe、La、Y、Mg元素的α-Al2O3粉末,掺杂元素的质量分数分别为Fe2O3:0.5%~4%,La2O3:0.5%~4%,Y2O3:0.5%~4%,MgO:0.5%~4%,间隔不小于0.5%;余量氧化铝。
本发明涉及的氧化铝陶瓷成分分析标准物质,还包括SiO2:<0.5%。
本发明涉及的氧化铝陶瓷成分分析标准物质,以拟薄水铝石为原料,添加相应元素的硝酸盐,其特征在于:所用物料均为高纯试剂。
本发明涉及的氧化铝陶瓷成分分析标准物质的制备方法,以拟薄水铝石为原料,添加相应元素的硝酸盐,采用溶胶凝胶法制备,包括配料、溶胶、凝胶、干胶、烧结和定值与匹配六个步骤:
(1)配料:按金属氧化物的设计配比换算拟薄水铝石和硝酸盐用量,金属氧化物总量为100%;按二氧化硅换算正硅酸乙酯用量;
(2)溶胶:按配比将拟薄水铝石分散在去离子水中,固体份质量含量介于10%-25%之间,用1:1)的硝酸溶液调节体系pH值介于4-6之间,得到透明溶胶A;
(3)凝胶:将掺杂元素的水溶液加入溶胶A中,搅拌均匀得到凝胶B
(4)干胶:80℃-100℃边加热边搅拌凝胶B得到干燥疏松的干胶粉末C;
(5)烧结:将干胶粉末C在1240℃~1260℃煅烧50min-120min;自然冷却至室温得到氧化铝陶瓷成分分析标准物质候选物;
(6)定值与匹配:对标准物质候选物进行定值得到预期含量的单个标准物质样品,匹配梯度分布的掺杂金属含量的标准物质样品,得到氧化铝陶瓷成分分析标准物质。本发明涉及氧化铝陶瓷成分分析标准物质的制备方法,以拟薄水铝石为原料,添加相应元素的硝酸盐,采用溶胶凝胶法制备,包括配料、溶胶、凝胶、干胶、烧结和定值六个步骤:其特征在于:所述烧结过程升温速度介于5℃/min-20℃/min之间。
本发明涉及的氧化铝陶瓷成分分析标准物质的制备方法,其特征在于:采用电感耦合等离子体发射光谱法对标准物质候选物进行定值。
本发明涉及氧化铝陶瓷成分分析标准物质的制备方法,以拟薄水铝石为原料,添加相应元素的硝酸盐,采用溶胶凝胶法制备,包括配料、溶胶、凝胶、干胶、烧结和定值六个步骤其特征在于:所述烧结过程使用氧化铝坩埚作为容器。
本发明涉及的氧化铝陶瓷成分分析标准物质,成分可设计性强,均匀性、稳定性好,元素覆盖面广,适用于氧化铝陶瓷成分分析时仪器校准及方法评价,为氧化铝陶瓷配方设计提供实验数据支持。
本发明涉及氧化铝陶瓷成分分析标准物质的制备方法,可控性好,产品结构疏松,粉体粒径和元素分布均匀,特别适用于化学成分量标准物质的制备。
具体实施方式:
下面以一组标准物质的设计与制备为例对发明内容进行详细说明,但不作为对保护范围的限制,在组分比例设计范围中的调整均构成本发明的一部分。
氧化铝陶瓷成分分析标准物质物质的设计组分含量如表1所示。
表1氧化铝陶瓷成分分析标准物质的设计成分单位:%
——1#氧化铝陶瓷成分分析标准物质样品制备
(1)分别称取九水硝酸铁2.53g、六水硝酸镧1.33g、六水硝酸钇1.70g、六水硝酸镁3.18g,然后加入50mL去离子水,搅拌均匀;称取正硅酸乙酯0.10g配成溶胶并倒入步骤(1)中配好的溶液,轻微搅拌至均匀。
(2)将128g高纯拟薄水铝石,加入640ml去离子水,用1:2的硝酸溶液调节pH值为5,采用高速分散机分散均匀后,放入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A;
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,用去离子水冲洗三遍烧杯,继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)启动捏合机加热,温度设定为90℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以10℃/min的速率从室温升至1250℃,保温60min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:0.49%;La2O3:0.48%;Y2O3:0.51%;MgO:0.50%;SiO2:0.0264%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。
——2#氧化铝陶瓷成分分析标准物质制备
(1)分别称取九水硝酸铁5.06g、六水硝酸镧2.66g、六水硝酸钇3.39g、六水硝酸镁6.36g,然后加入75mL去离子水,搅拌至均匀。称取正硅酸乙酯0.75g配成溶胶并倒入步骤(1)中配好的溶液,轻微搅拌至均匀。
(2)称取125g高纯拟薄水铝石,加入1250ml去离子水,用1:1的硝酸溶液调节pH值为4,采用高速分散机分散均匀后,放入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,然后用去离子水冲洗三遍烧杯。继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)打开捏合机加热,温度设定为80℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以15℃/min的速率从室温升至1240℃,保温90min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:0.98%;La2O3:0.96%;Y2O3:1.05%;MgO:1.04%;SiO2:0.19%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。
——3#氧化铝陶瓷成分分析标准物质制备
(1)分别称取九水硝酸铁10.12g、六水硝酸镧5.32g、六水硝酸钇6.79g、六水硝酸镁12.72g,然后加入100mL去离子水,搅拌至均匀。称取正硅酸乙酯1.48g配成溶胶并倒入步骤(1)中配好的溶液,轻微搅拌至均匀。
(2)称取120g高纯拟薄水铝石,加入800ml去离子水,用1:5的硝酸溶液调节pH值为4.5,采用高速分散机分散均匀后,将溶胶放入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,然后用去离子水冲洗三遍烧杯。继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)打开捏合机加热,温度设定为95℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以5℃/min的速率从室温升至1240℃,保温50min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:1.98%;La2O3:2.04%;Y2O3:1.97%;MgO:1.96%;SiO2:0.38%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。
——4#氧化铝陶瓷成分分析标准物质制备
(1)分别称取九水硝酸铁20.24g、六水硝酸镧10.63g、六水硝酸钇13.57g、六水硝酸镁25.44g,然后加入150mL去离子水,搅拌至均匀。称取正硅酸乙酯0.10g配成溶胶并倒入步骤(1)中配好的溶液,轻微搅拌至均匀。
(2)称取110g高纯拟薄水铝石,加入730ml去离子水,用1:6的硝酸溶液调节pH值为5,采用高速分散机分散均匀后,将溶胶放入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,然后用去离子水冲洗三遍烧杯。继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)打开捏合机加热,温度设定为90℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以15℃/min的速率从室温升至1250℃,保温100min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:3.97%;La2O3:4.01%;Y2O3:3.99%;MgO:3.96%;SiO2:0.0259%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。
——5#氧化铝陶瓷成分分析标准物质样品制备
(1)分别称取九水硝酸铁2.53g、六水硝酸镧10.63g、六水硝酸钇6.79g、六水硝酸镁3.18g,然后加入75mL去离子水,搅拌均匀。
(2)将120g高纯拟薄水铝石,加入600ml去离子水,用1:10的硝酸溶液调节pH值为5,采用高速分散机分散均匀后,放入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A;
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,用去离子水冲洗三遍烧杯,继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)启动捏合机加热,温度设定为90℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以10℃/min的速率从室温升至1250℃,保温60min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:0.49%;La2O3:4.01%;Y2O3:1.97%;MgO:1.51%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。
——6#氧化铝陶瓷成分分析标准物质制备
(1)分别称取九水硝酸铁15.18g、六水硝酸镧2.66g、六水硝酸钇10.18g、六水硝酸镁3.18g,然后加入100mL去离子水,搅拌至均匀。称取正硅酸乙酯0.10g配成溶胶并倒入步骤(1)中配好的溶液,轻微搅拌至均匀。
(2)称取121g高纯拟薄水铝石,加入810ml去离子水,用1:6的硝酸溶液调节pH值为5.5,采用高速分散机分散均匀后,将溶胶放入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,然后用去离子水冲洗三遍烧杯。继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)打开捏合机加热,温度设定为85℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以15℃/min的速率从室温升至1260℃,保温80min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:3.03%;La2O3:0.96%;Y2O3:2.97%;MgO:0.50%;SiO2:0.0261%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。
——7#氧化铝陶瓷成分分析标准物质制备
(1)分别称取九水硝酸铁7.59g、六水硝酸镧7.97g、六水硝酸钇1.70g、六水硝酸镁12.72g,然后加入100mL去离子水,搅拌至均匀。称取正硅酸乙酯0.10g配成溶胶并倒入步骤(1)中配好的溶液,轻微搅拌至均匀。
(2)称取121g高纯拟薄水铝石,加入485ml去离子水,用1:10的硝酸溶液调节pH值为6,采用高速分散机分散均匀后,转入卧式砂磨机中用锆珠进行砂磨,得到透明溶胶A;
(3)将透明溶胶A倒入捏合机内,开启捏合机,边搅拌边加入步骤(1)中配好的掺杂元素溶液,然后用去离子水冲洗三遍烧杯。继续捏合至得到颜色均一的凝胶B,捏合过程中间隔半小时停机刮壁。
(4)打开捏合机加热,温度设定为100℃,边加热边搅拌至凝胶变成干燥疏松的粉末,得到干胶粉末C。
(5)用万能粉碎机破碎干胶粉末C并过100目筛。筛下的粉末放入带盖的氧化铝坩埚内,在马弗炉内煅烧,煅烧工艺如下:以20℃/min的速率从室温升至1240℃,保温120min。自然冷却至室温得到标准物质候选物。
(6)将氧化铝陶瓷粉末按最小包装单位分装到棕色玻璃瓶中,采用电感耦合等离子体发射光谱法进行定值。元素含量为Fe2O3:1.52%;La2O3:2.96%;Y2O3:0.51%;MgO:1.97%;SiO2:0.0258%。依据JJF1343-2012中的规定,用方差分析法对分装好的标准物质进行均匀性检验,结果显示该标准物质是均匀的;用回归曲线法从短期稳定性(-20℃和50℃两个温度点,检测10天)和长期稳定性(常温保存,检测13个月)两方面对标准物质进行稳定性检测,结果显示该标准物质在稳定性考察期内是稳定的。

Claims (6)

1.一种氧化铝陶瓷成分分析标准物质,为一组掺杂Fe、La、Y、Mg元素的α-Al2O3粉末,掺杂元素的质量分数分别为Fe2O3:0.5%~4%,La2O3:0.5%~4%,Y2O3:0.5%~4%,MgO:0.5%~4%,间隔不小于0.5%;余量氧化铝。
2.根据权利要求1所述的氧化铝陶瓷成分分析标准物质,还包括SiO2:<0.5%。
3.根据权利要求1或2任意一项所述的氧化铝陶瓷成分分析标准物质的制备方法,以拟薄水铝石为原料,添加相应元素的硝酸盐,采用溶胶凝胶法制备,包括配料、溶胶、凝胶、干胶、烧结和定值与匹配六个步骤:
(1)配料:按金属氧化物的设计配比换算拟薄水铝石和硝酸盐用量,金属氧化物总量为100%;按二氧化硅换算正硅酸乙酯用量;
(2)溶胶:按配比将拟薄水铝石分散在去离子水中,固体份质量含量介于10%-25%之间,用1:1)的硝酸溶液调节体系pH值介于4-6之间,得到透明溶胶A;
(3)凝胶:将掺杂元素的水溶液加入溶胶A中,搅拌均匀得到凝胶B
(4)干胶:80℃-100℃边加热边搅拌凝胶B得到干燥疏松的干胶粉末C;
(5)烧结:将干胶粉末C在1240℃~1260℃煅烧50min-120min;自然冷却至室温得到氧化铝陶瓷成分分析标准物质候选物;
(6)定值与匹配:对标准物质候选物进行定值得到预期含量的单个标准物质样品,匹配梯度分布的掺杂金属含量的标准物质样品,得到氧化铝陶瓷成分分析标准物质。
4.根据权利要求3所述氧化铝陶瓷成分分析标准物质的制备方法,其特征在于:所述烧结过程升温速度介于5℃/min-20℃/min之间。
5.根据权利要求3所述的氧化铝陶瓷成分分析标准物质的制备方法,其特征在于:采用电感耦合等离子体发射光谱法对标准物质候选物进行定值。
6.根据权利要求3所述氧化铝陶瓷成分分析标准物质的制备方法,其特征在于:所述烧结过程使用氧化铝坩埚作为容器。
CN201710611959.2A 2017-07-25 2017-07-25 氧化铝陶瓷成分标准物质及其制备方法 Pending CN107340166A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710611959.2A CN107340166A (zh) 2017-07-25 2017-07-25 氧化铝陶瓷成分标准物质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710611959.2A CN107340166A (zh) 2017-07-25 2017-07-25 氧化铝陶瓷成分标准物质及其制备方法

Publications (1)

Publication Number Publication Date
CN107340166A true CN107340166A (zh) 2017-11-10

Family

ID=60216535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710611959.2A Pending CN107340166A (zh) 2017-07-25 2017-07-25 氧化铝陶瓷成分标准物质及其制备方法

Country Status (1)

Country Link
CN (1) CN107340166A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030550A (zh) * 2018-06-04 2018-12-18 安徽天宇磁业股份有限公司 一种钕铁硼永磁材料镀层检测分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343176A (zh) * 2008-08-15 2009-01-14 苏州创元投资发展(集团)有限公司 一种自补强亚微米晶氧化铝陶瓷的制备方法
CN101844784A (zh) * 2010-05-21 2010-09-29 山东大学 一种α-Al2O3纳米结构聚集体材料及其制备方法
CN104101526A (zh) * 2014-07-17 2014-10-15 中国兵器工业集团第五三研究所 一种碳化硅含量标准物质及其制备方法
CN104483174A (zh) * 2014-12-26 2015-04-01 中国兵器工业集团第五三研究所 氧化铟锡材料化学成分标准物质及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343176A (zh) * 2008-08-15 2009-01-14 苏州创元投资发展(集团)有限公司 一种自补强亚微米晶氧化铝陶瓷的制备方法
CN101844784A (zh) * 2010-05-21 2010-09-29 山东大学 一种α-Al2O3纳米结构聚集体材料及其制备方法
CN104101526A (zh) * 2014-07-17 2014-10-15 中国兵器工业集团第五三研究所 一种碳化硅含量标准物质及其制备方法
CN104483174A (zh) * 2014-12-26 2015-04-01 中国兵器工业集团第五三研究所 氧化铟锡材料化学成分标准物质及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030550A (zh) * 2018-06-04 2018-12-18 安徽天宇磁业股份有限公司 一种钕铁硼永磁材料镀层检测分析方法

Similar Documents

Publication Publication Date Title
Chen et al. Preparation of mullite by the reaction sintering of kaolinite and alumina
Gören et al. Colloidal stability–slip casting behavior relationship in slurry of mullite synthesized by the USP method
Sevast’yanov et al. Synthesis of ultrafine refractory oxides zirconia-hafnia-yttria by sol-gel technology
Meher et al. Physicochemical characteristics of alumina gel in hydroxyhydrogel and normal form
JP6331840B2 (ja) 赤色ジルコニア焼結体及びその製造方法
Yu et al. Thermal characteristic difference between α-Al2O3 and cristobalite powders during mullite synthesis induced by size reduction
Yurdakul et al. One-step hydrothermal synthesis of yttria-stabilized tetragonal zirconia polycrystalline nanopowders for blue-colored zirconia-cobalt aluminate spinel composite ceramics
Montoya et al. Synthesis and characterization of praseodymium-containing ZrSiO4 solid solutions from gels
CN107340166A (zh) 氧化铝陶瓷成分标准物质及其制备方法
Herrera et al. Microstructure of Fe–ZrSiO4 solid solutions prepared from gels
Zuev et al. Spectral characteristics of nanoamorphous phosphors obtained by evaporation of Sr2Gd8 (SiO4) 6O2: Eu polycrystals
CN102173867B (zh) 电熔氧化锆生产锆铁红色料的方法
Tamsu Selli et al. Influence of calcined halloysite on technological & mechanical properties of wall tile body
EP3805185A1 (en) Zirconia sintered body and production method thereof
Li et al. Influence of high-energy ball milling and additives on the formation of sphere-like α-Al2O3 powder by high-temperature calcination
Dreßler et al. Aluminum speciation and thermal evolution of aluminas resulting from modified Yoldas sols
Valášková et al. Cordierite/CeO2 ceramic nanocomposites from vermiculite with fixed CeO2 nanoparticles, talc and kaolin
CN108033477A (zh) 一种镁铝尖晶石包裹型γ~Ce2S3红色色料及其制备方法
CN105000911B (zh) 一种钴硅橄榄石结构的紫色陶瓷色料的制备方法
da Cunha et al. A Novel Method For Fabricating Cr-Doped Alpha-Al 2 O 3 Nanoparticles: Green Approach To Nanotechnology
Ahmadi et al. Synthesis of Y (Al, Cr) O3 red pigments by co-precipitation method and their interactions with glazes
Liu et al. Effects of synthesis method on cation distribution and optical properties of Co/Cr co-doped MgGa2O4 nanoparticles
CN106430980B (zh) 一种颗粒增强可加工陶瓷及其制备方法
Mergen Production of sintered high alumina refractories from Turkish bauxite ore
Lee et al. Thermal properties and phase transformation of 2 mol% Y2O3-PSZ nanopowders prepared by a co-precipitation process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171110

WD01 Invention patent application deemed withdrawn after publication